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Abstract

Tunneling is a fundamental effect of quantum mechanics, which allows waves to penetrate into re-

gions that are inaccessible by classical dynamics. We study this phenomenon for generic non-integrable

systems with a mixed phase space, where tunneling occurs between the classically separated phase-

space regions of regular and chaotic motion. We derive a semiclassical prediction for the corresponding

tunneling rates from the regular region to the chaotic sea. This prediction is based on paths which

connect the regular and the chaotic region in complexified phase space. We show that these com-

plex paths can be constructed despite the obstacle of natural boundaries. For the standard map we

demonstrate that tunneling rates can be predicted with high accuracy, by using only a few dominant

complex paths. This gives the semiclassical foundation for the long-conjectured and often-observed

exponential scaling with Planck’s constant of regular-to-chaotic tunneling rates.

Zusammenfassung

Tunneln ist ein grundlegender Effekt der Quantenmechanik, welcher es quantenmechanischenWellen-

funktionen erlaubt in Gebiete einzudringen, die der klassischen Dynamik verwehrt bleiben. In dieser

Arbeit wird das Phänomen des Tunnelns für generische Hamilton’sche Systeme mit gemischten Phasen-

raum untersucht. In diesen Systemen tritt das Tunneln zwischen den klassisch getrennten Phasenraum-

bereichen regulärer und chaotischer Dynamik auf. Für diesen Tunnelprozess wird eine semiklassische

Vorhersage regulär-chaotischer Tunnelraten hergeleitet. Diese Vorhersage beruht auf Pfaden, welche

Gebiete regulärer und chaotischer Dynamik im komplexen Phasenraum miteinander verbinden. Es

wird gezeigt, dass eine Konstruktion dieser komplexen Pfade trotz der Existenz natürlicher Begren-

zungen (Engl.: natural boundaries) möglich ist. Die eingeführte Theorie wird auf das Beispiel der

Standardabbildung angewandt. Die semiklassisch vorhergesagten Tunnelraten stehen in exzellenter

Übereinstimmung mit numerisch bestimmten Tunnelraten und basieren auf einer geringen Anzahl

komplexer Pfade. Damit gelingt erstmals eine semiklassische Begründung für den gemeinhin ver-

muteten und häufig beobachteten exponentiellen Zusammenhang zwischen regulär-chaotischen Tun-

nelraten und der effektiven Planck’schen Konstante.
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1. Introduction

Tunneling is a fascinating quantum-mechanical effect which allows waves to penetrate into regions

that are inaccessible by classical dynamics. The discovery of the tunneling effect dates back to a series

of seminal papers on molecular spectra [1, 2], nuclear disintegration [3–6], and field emission [7], which

unraveled the importance of tunneling in the early days of quantum mechanics. Since then tunnel-

ing has been established as a fundamental concept of quantum mechanics leading to Nobel-winning

research on electron tunneling [8–10] and scanning-tunneling microscopy [11]. Still, it is driving re-

search on recent frontiers of science, as is, e. g., illustrated by experimental works which demonstrate

tunneling for ever larger objects such as atoms [12, 13] and Bose–Einstein condensates [14].

Until today, the textbook picture of tunneling [15, 16] is based on WKB methods [17–21] for

integrable systems. For these systems, a WKB-like wave function localizes on a torus, corresponding

to regular classical trajectories of energy 𝐸 inside a potential well 𝑉 (𝑞). Semiclassically, these wave

functions can penetrate through the classically forbidden barrier regions in which 𝑉 (𝑞) > 𝐸 along

an exponentially decreasing solution of the Schrödinger equation with imaginary momentum 𝑝(𝑞) =√︀
2𝑚(𝐸 − 𝑉 (𝑞)). This gives rise to an exponentially small tunneling probability of the wave function

in classically forbidden regions, leading to metastable states which decay in time. The corresponding

tunneling rate of such metastable states is semiclassically given by

𝛾 ∝ exp

(︂
−2 Im𝒮

~

)︂
. (1.1)

This rate depends exponentially on Planck’s constant ℎ = 2𝜋~ and the classical action 𝒮 =
∫︀
𝑝(𝑞) d𝑞

of the single complex path (𝑞, 𝑝(𝑞)) which goes through the barrier region along the complexified torus

of energy 𝐸. This is illustrated in Fig. 1.1(a) for the case of a Hamiltonian with cubic potential.

Despite its popularity, this WKB-like picture of tunneling fails for generic non-integrable systems:

Such non-integrable systems have a mixed phase space, in which classically separated regions of regular

and chaotic motion coexist. Therefore, in contrast to barrier tunneling in integrable systems, non-

integrable systems exhibit dynamical tunneling [22, 23] from the regular to the chaotic phase-space

region. For this tunneling process it is impossible to find any complex WKB-like path which connects

the regular to the chaotic phase-space region. This is due to natural boundaries, beyond which the

complexified tori of the regular region cease to exist [24, 25], see Fig. 1.1(b).

Due to the failure of the WKB-method in non-integrable systems, a semiclassical approach to

regular-to-chaotic tunneling rates remains an open problem. Its solution is for example important

for chaos-assisted tunneling [26–30] for which regular-to-chaotic tunneling is the basic building block.

Furthermore, a semiclassical approach to regular-to-chaotic tunneling rates is relevant for applications
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Figure 1.1.: Complex paths for (a) integrable and (c) non-integrable systems. (a) Complexified
phase space of an integrable system. The bound motion along regular tori (closed lines) enclosed
by the separatrix is semiclassically connected to the regular tori of unbound motion (open lines
on the right) by a WKB-like path (green arrow) along the complexified torus (red surface). (b, c)
Complexified phase space of the non-integrable standard map with a mixed phase space. Lines
show regular tori. Blue dotes show an orbit in the chaotic phase-space region. (b) The complexified
regular example torus breaks at the natural boundary (white line), such that a WKB-like path from
the regular to the chaotic region does not exist. (c) By using approximate tori for the regular region,
which go beyond the natural boundary (white line), we construct complex paths (green arrows) for
regular-to-chaotic tunneling rates.

in atomic and molecular physics [31–37], ultra-cold atoms [38–40], optical cavities [41–46], microwave

resonators [47–50], spectral statistics [51–54], and the structure of eigenfunctions [55–58] in systems

with a mixed phase space. For many of these systems regular-to-chaotic tunneling rates can be

determined numerically. Moreover, quantum-mechanical predictions for regular-to-chaotic tunneling

rates are available [42, 59–65] and show [64] that regular-to-chaotic tunneling rates exhibit two regimes:

(i) The regime ℎ . 𝐴reg where Planck’s constant ℎ is smaller but comparable to the area of the regular

region 𝐴reg. Here, regular-to-chaotic tunneling rates arise from direct regular-to-chaotic tunneling

[42, 62, 65]. (ii) The regime ℎ ≪ 𝐴reg, where regular-to-chaotic tunneling is additionally affected by

resonance-assisted tunneling [59–61, 63].

Nevertheless, a deep understanding of regular-to-chaotic tunneling rates requires a semiclassical

theory similar to Eq. (1.1). Up to now, such theories exist for integrable [15, 16, 66, 67] and near-

integrable systems [68–75]. However, for non-integrable systems a semiclassical approach to regular-

to-chaotic tunneling only exists for propagators in the time domain [76–82]. A semiclassical prediction

for regular-to-chaotic tunneling rates, similar to Eq. (1.1), has up to now only been conjectured [83],

though, in order to explain the exponential ℎ-scaling of tunneling rates for cavities [42, 43, 47, 50],

ultra-cold atoms [40], and quantum maps [65] in the regime ℎ . 𝐴reg.

In this thesis a first semiclassical prediction of direct regular-to-chaotic tunneling rates 𝛾 for generic

non-integrable systems is achieved in the regime ℎ . 𝐴reg, i. e. in the experimentally relevant regime

where 𝛾 is large. This prediction is derived by combining the quantum-mechanical predictions of

the fictitious integrable system approach, Refs. [62, 65], with the complex-path approach developed
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by Shudo and Ikeda, Refs. [76–82]. Our main result, Eq. (4.14), uses specific complex paths, whose

construction overcomes the conceptual difficulties caused by natural boundaries, see Fig. 1.1(c). It

formally resembles Eq. (1.1), but is based on complex paths which contain a time-evolution segment in

addition to WKB-like segments. We demonstrate how to predict tunneling rates by our approach and

find excellent agreement to numerical tunneling rates for the standard map where only a few complex

paths dominate. These results provide a semiclassical foundation of the conjectured exponential

ℎ-scaling of regular-to-chaotic tunneling rates.

This thesis is organized as follows: In Chap. 2 we introduce non-integrable systems with a mixed

phase space using the paradigmatic example of the standard map and explain both its classical and

quantum-mechanical treatment. In Chap. 3 we explain and discuss the concept of regular-to-chaotic

tunneling rates and present their quantum-mechanical prediction in terms of the fictitious integrable

system approach. The main part of this thesis is presented in Chap. 4 where our complex-path

approach to regular-to-chaotic tunneling rates is derived and its application to the standard map is

demonstrated. We close this thesis with a summary in Chap. 5.





2. Systems with a mixed phase space – The

standard map

Regular-to-chaotic tunneling occurs in generic Hamiltonian systems with a mixed phase space. Such

systems comprise ballistic quantum dots, atoms and molecules in a laser field, or optical microcavities.

However, for such systems even a numerical treatment of regular-to-chaotic tunneling can become

exceedingly complicated. Therefore we exploit the universality of regular-to-chaotic tunneling in

Hamiltonian systems with a mixed phase space and study the subject for the standard map, which is

the paradigmatic model system that exhibits all generic features of a mixed phase space.

In this chapter we introduce the classical dynamics of the standard map and discuss the notion

of a mixed phase space. We further discuss non-linear resonance chains and partial barriers in the

standard map. Subsequently, we introduce the quantization of the standard map and qualitatively

elucidate quantum manifestations of such classical phase-space structures.

2.1. The standard map

The standard map belongs to the class of kicked Hamiltonian systems, defined by Hamilton functions

of the form

𝐻(𝑞, 𝑝, 𝑡) = 𝑇 (𝑝) + 𝑉 (𝑞)
∑︁

𝑛∈Z
𝛿(𝑡− 𝑛). (2.1)

Here, 𝑇 (𝑝) is the kinetic energy. It governs the free motion of a particle which is exposed to a kicking

potential 𝑉 (𝑞) once per unit in time. The standard map [84] in dimensionless units is obtained by

using the kinetic energy

𝑇 (𝑝) =
𝑝2

2
(2.2)

combined with the kicking potential

𝑉 (𝑞) =
𝜅

(2𝜋)2
cos (2𝜋𝑞). (2.3)

Since the kicking strength 𝜅 is an external parameter, the standard map denotes a whole family of

systems.

In order to study the classical dynamics of such a kicked system, it is convenient to consider the
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system stroboscopically. This gives rise to the stroboscopic map 𝑈 , which determines how the system

evolves in phase space during one period of the external driving. More specifically, starting at (𝑞, 𝑝)

at time 𝑡0 we reach (𝑞′, 𝑝′) at time 𝑡′ = 𝑡0 + 1 according to

(𝑞′, 𝑝′) = 𝑈(𝑞, 𝑝) = (𝑈pos(𝑞, 𝑝), 𝑈mom(𝑞, 𝑝)). (2.4)

In order to obtain this mapping 𝑈 explicitely one has to integrate Hamilton’s equations of motion,

𝑞(𝑡) :=
d𝑞(𝑡)
d𝑡

=
𝜕𝐻(𝑞(𝑡), 𝑝(𝑡), 𝑡)

𝜕𝑝
, (2.5a)

�̇�(𝑡) :=
d𝑝(𝑡)
d𝑡

= −𝜕𝐻(𝑞(𝑡), 𝑝(𝑡), 𝑡)

𝜕𝑞
, (2.5b)

which read

𝑞(𝑡) = 𝑇 ′(𝑝(𝑡)), (2.6a)

�̇�(𝑡) = −𝑉 ′(𝑞(𝑡))
∑︁

𝑛∈Z
𝛿 (𝑡− 𝑛) (2.6b)

for a kicked system, Eq. (2.1), with

𝑇 ′(𝑝) :=
𝜕𝑇 (𝑝)

𝜕𝑝
, (2.7a)

𝑉 ′(𝑞) :=
𝜕𝑉 (𝑝)

𝜕𝑞
. (2.7b)

Since such a map 𝑈 originate from a Hamiltonian time evolution it is area preserving.

Mappings 𝑈 for different initial times 𝑡0 are topologically equivalent. Even more they are all related

by a canonical transformation. We obtain the class of generalized half-free mappings by choosing

𝑡0 = 𝛿hf, which splits the external period into a free evolution for the time 1 − 𝛿hf, followed by the

kick, and a further free evolution which lasts for the time 𝛿hf until 𝑡 = 1 + 𝛿hf,

𝑞′ = 𝑞 + (1− 𝛿hf)𝑇
′(𝑝) + 𝛿hf𝑇

′ (︀𝑝− 𝑉 ′ (︀𝑞 + (1− 𝛿hf)𝑇
′(𝑝)
)︀)︀
, (2.8a)

𝑝′ = 𝑝− 𝑉 ′ (︀𝑞 + (1− 𝛿hf)𝑇
′(𝑝)
)︀
. (2.8b)

In the above equations 𝛿hf takes values in the interval [0, 1]. The class of generalized half-kick mappings

can be obtained by considering the 𝛿hk’s part of the kick, followed by the free evolution for one unit

of time and after that the remaining (1− 𝛿hk)’s part of the kick,

𝑞′ = 𝑞 + 𝑇 ′ (︀𝑝− 𝛿hk𝑉
′(𝑞)
)︀
, (2.9a)

𝑝′ = 𝑝− 𝛿hk𝑉
′(𝑞)− (1− 𝛿hk)𝑉

′ (︀𝑞 + 𝑇 ′ (︀𝑝− 𝛿hk𝑉
′(𝑞)
)︀)︀
. (2.9b)

Here, 𝛿hk also runs in [0, 1]. The three most common representations of the mapping 𝑈 are: (i) the
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after-kick map 𝛿hf = 0, (ii) the half-free map 𝛿hf = 1/2, and (iii) the half-kick map 𝛿hk = 1/2. When

discussing the standard map we will focus on its after-kick representation,

𝑞′ = 𝑞 + 𝑝, (2.10a)

𝑝′ = 𝑝+
𝜅

2𝜋
sin(2𝜋[𝑞 + 𝑝]). (2.10b)

For semiclassics it is important to define the action

𝒮(𝑞(𝑡0), 𝑝(𝑡0); 𝑡0, 𝑡0 + 1) :=

∫︁ 𝑡0+1

𝑡0

[𝑞(𝑡)𝑝(𝑡)−𝐻(𝑞(𝑡), 𝑝(𝑡), 𝑡)] d𝑡. (2.11)

For a time-discrete mapping 𝑈 , an orbit starting at (𝑞, 𝑝) acquires the action 𝒮𝑈 (𝑞, 𝑝). For the class

of generalized half-free mappings this results in

𝒮𝑈 (𝑞, 𝑝) = (1− 𝛿hf)
[︀
𝑝 𝑇 ′(𝑝)− 𝑇 (𝑝)

]︀
− 𝑉

(︀
𝑞 + (1− 𝛿hf)𝑇

′(𝑝)
)︀
+ 𝛿hf

[︀
𝑝′ 𝑇 ′(𝑝′)− 𝑇 (𝑝′)

]︀
(2.12)

with 𝑝′ = 𝑈mom(𝑞, 𝑝), Eq. (2.8b), while the class of generalized half-kick mappings has

𝒮𝑈 (𝑞, 𝑝) = −𝛿hk𝑉 (𝑞) +
[︀
(𝑝− 𝛿hk𝑉

′(𝑞))𝑇 ′(𝑝− 𝛿hk𝑉
′(𝑞))− 𝑇 (𝑝− 𝛿hk𝑉

′(𝑞))
]︀
− (1− 𝛿hk)𝑉 (𝑞′),

(2.13)

with 𝑞′ = 𝑈pos(𝑞, 𝑝), Eq. (2.9a). If one eliminates one of the initial coordinates (𝑞, 𝑝) by one of the final

coordinates (𝑞′, 𝑝′) using the mapping, Eqs. (2.8) in Eq. (2.12) or Eqs. (2.9) in Eq. (2.13) respectively,

the action 𝒮𝑈 becomes a generating function. The most common case of a generating function is

𝒮𝑈 (𝑞, 𝑞′) as a function of the initial and final position. For such a function one can show that the

following relations hold,

𝜕𝒮𝑈 (𝑞, 𝑞′)

𝜕𝑞
= −𝑝(𝑞, 𝑞′), (2.14a)

𝜕𝒮𝑈 (𝑞, 𝑞′)

𝜕𝑞′
= 𝑝′(𝑞, 𝑞′). (2.14b)

For the chosen after-kick representation of the standard map the corresponding action 𝒮𝑈 can be

written as such a generating function,

𝒮𝑈 (𝑞, 𝑞′) =
(𝑞 − 𝑞′)2

2
− 𝑉 (𝑞′). (2.15)

2.1.1. Cylindric and toric phase space

So far we have considered mappings on the unbound phase space R2. However, such a phase space

is numerically hard to access. It is convenient to exploit the intrinsic periodicity of 𝑈 and to restrict

the phase space to a cylinder or a torus, by applying periodic boundary conditions. For example, if
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the classical dynamics is 𝑀pos-periodic in position, i. e., ∀𝑟 ∈ Z ∃𝑘 ∈ Z, such that

𝑈pos(𝑞, 𝑝) = 𝑈pos(𝑞 + 𝑟𝑀pos, 𝑝) + 𝑘𝑀pos ∧ 𝑈mom(𝑞, 𝑝) = 𝑈mom(𝑞 + 𝑟𝑀pos, 𝑝) (2.16)

holds, it is meaningful to restrict the phase space of 𝑈 to a cylinder
(︀
R/(𝑞min +𝑀posZ)

)︀
× R, with

(𝑞′, 𝑝′) = ([(𝑈pos(𝑞, 𝑝)− 𝑞min) mod 𝑀pos] + 𝑞min, 𝑈mom(𝑞, 𝑝)) . (2.17)

For the standard map 𝑉 (𝑞), Eq. (2.3), is 𝑀pos = 1-periodic. Hence, the map 𝑈 , Eq. (2.10), satisfies

condition (2.16) and it is possible to consider the classical dynamics on a cylinder
(︀
R/Z

)︀
× R.

If the classical dynamics is 𝑀mom-periodic in momentum, i. e., ∀𝑠 ∈ Z ∃𝑙 ∈ Z, such that

𝑈pos(𝑞, 𝑝) = 𝑈pos(𝑞, 𝑝+ 𝑠𝑀mom) ∧ 𝑈mom(𝑞, 𝑝) = 𝑈mom(𝑞, 𝑝+ 𝑠𝑀mom) + 𝑙𝑀mom, (2.18)

holds, it is meaningful to restrict the phase space of 𝑈 to a cylinder R×
(︀
R/(𝑝min +𝑀momZ)

)︀
, with

(𝑞′, 𝑝′) =
(︀
𝑈𝑞′(𝑞, 𝑝),

[︀(︀
𝑈𝑝′(𝑞, 𝑝)− 𝑝min

)︀
mod 𝑀mom

]︀
+ 𝑝min

)︀
. (2.19)

Please note, that the classical dynamics of the standard map, Eqs. (2.10), cannot satisfy condi-

tion (2.18) for any𝑀mom. Therefore, the classical dynamics of the standard map cannot be considered

on the cylinder R×
(︀
R/(𝑝min +𝑀momZ)

)︀
. This has its origin in the fact that 𝑇 (𝑝), Eq. (2.2), is not

periodic for any𝑀mom. In case one considers the standard map on a cylinder R×
(︀
R/(𝑝min+𝑀momZ)

)︀

nevertheless, one implicitly assumes a modified kinetic energy,

𝑇 (𝑝) := 𝑇 ([(𝑝− 𝑝min) mod 𝑀mom] + 𝑝min), (2.20)

which is periodic in𝑀mom. The classical dynamics generated by 𝑇 (𝑝) does not differ from the dynamics

of the standard map as long as the momentum remains bound in [𝑝min, 𝑝min +𝑀mom). However, any

classical orbit which propagates beyond this interval shows deviating classical dynamics.

Finally, if the classical dynamics of 𝑈 is both 𝑀pos-periodic in position and 𝑀mom-periodic in

momentum, i. e., ∀𝑟, 𝑠 ∈ Z ∃𝑘, 𝑙 ∈ Z, such that

𝑈pos(𝑞, 𝑝) = 𝑈pos(𝑞 + 𝑟𝑀pos, 𝑝+ 𝑠𝑀mom) + 𝑘𝑀pos,

𝑈mom(𝑞, 𝑝) = 𝑈mom(𝑞 + 𝑟𝑀pos, 𝑝+ 𝑠𝑀mom) + 𝑙𝑀mom, (2.21)

it is meaningful to restrict the phase space of 𝑈 to a torus
(︀
R/(𝑞min+𝑀posZ)

)︀
×
(︀
R/(𝑝min+𝑀momZ)

)︀
,

with

(𝑞′, 𝑝′) = ([(𝑈pos(𝑞, 𝑝)− 𝑞min) mod 𝑀pos] + 𝑞min, [(𝑈mom(𝑞, 𝑝)− 𝑝min) mod 𝑀mom] + 𝑝min) .

(2.22)

Since the after-kick representation of the standard map, Eq. (2.10), satisfies condition (2.21) for
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𝑀pos =𝑀mom = 1 its dynamics can be considered on the torus
(︀
R/Z

)︀
×
(︀
R/(−0.5 + Z)

)︀
.

2.1.2. Mixed phase space

In the following we use the standard map on the torus to illuminate typical phase-space structures

of Hamiltonian systems. We start by introducing the notion of an orbit, which is a collection of

phase-space points

{𝑈𝑛(𝑞, 𝑝) : 𝑛 ∈ N} . (2.23)

Here, 𝑈𝑛 denotes the 𝑛-fold application of the map 𝑈 to a phase-space point (𝑞, 𝑝).

For 𝜅 = 0.0 the standard map is an integrable system for which all orbits show regular dynamics.

This dynamics is restricted to one-dimensional tori in phase space due to momentum conservation,

see Fig. 2.1(a). On the contrary the phase space of the standard map at sufficiently large 𝜅 typically

q

p

(a)

−0.5

0.0

0.5

0 1 q

(b)

0 1 q

(c)

0 1 q

(d)

0 1

Figure 2.1.: Phase space of the standard map for (a) 𝜅 = 0.0, (b) 𝜅 = 0.8, (c) 𝜅 = 3.5, and
(d) 𝜅 = 10.0. Red and orange lines depict tori of regular motion, with orange lines highlighting
non-linear resonance chains. Blue dots show orbits of chaotic motion, while black lines indicate a
partial barrier.

hosts chaotic orbits, which explore the whole two-dimensional phase space, see Fig. 2.1(d). However,

generic Hamiltonian systems have a mixed phase space in which orbits of regular and chaotic motion

coexist on dynamically disjoint phase-space regions, see Figs. 2.1(b, c). Such systems with a mixed

phase space can further be classified as weakly perturbed near-integrable or strongly perturbed non-

integrable systems. The near-integrable phase space appears in the standard map for small 𝜅. Here,

the integrable motion is weakly perturbed by the kick such that regular tori with sufficiently irrational

frequencies survive the perturbation and get deformed [85, 86], see red lines in Fig. 2.1(b), while tori

with rational frequencies break into chains of regular regions [87], see orange circles in Fig. 2.1(b),

around which thin layers of chaotic motion emerge, illustrated by the blue dots in Fig. 2.1(b). Finally,

for stronger perturbations at larger 𝜅 the standard map shows the typical non-integrable phase space

in which regular and chaotic regions are equally pronounced, see Fig. 2.1(c). In such non-integrable

systems regular phase-space regions embedded in a chaotic phase-space region are omnipresent, such

that regular-to-chaotic tunneling is ubiquitous in their quantum-mechanical counter part. Beyond
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the omnipresent regular–chaotic phase-space setting it is known that regular-to-chaotic tunneling in

non-integrable systems is further affected by non-linear resonance chains in the regular region [59, 60],

see orange circles in Fig. 2.1(c). Furthermore, the hierarchical region, which is the chaotic part of

phase space next to the regular region contains partial barriers. For an example see the black lines

in Fig. 2.1(c). Those barriers can trap a chaotic orbit close to the regular region for many iterations,

before it explores the part of the chaotic region beyond the partial barrier. This effect is illustrated

by the varying density of blue dots in Fig. 2.1(c).

2.1.3. Non-linear resonance chains and partial barriers

The goal of the upcoming discussion is to motivate why considering the standard map for 𝜅 = 2.9 is

optimal for the investigation of regular-to-chaotic tunneling.

In order to understand why this is an interesting question, note that in the regime 𝜅 ∈ [1, 4]

the standard map has a stable fixed-point at (𝑞, 𝑝) = (0.5, 0.0) which is encircled by tori of regular

motion. This regular region is further embedded in a connected chaotic phase-space region [88]. At

first glance the whole 𝜅-regime with 𝜅 ∈ [1, 4] thus seems equally ideal for studying regular-to-chaotic

tunneling. However, the secondary phase-space structures, comprising non-linear resonance chains

and partial transport barriers, vary considerably, which can add significant complexity to regular-

to-chaotic tunneling. Motivated by this fact, we order these classical phase-space structures for the

standard map in this section, i. e., we give an overview of these structures as a function of the kicking

strength 𝜅, see Figs. 2.3 and 2.4.

From the linearization of the standard map, Eq. (2.10), we compute the frequency of trajectories

in the vicinity of the elliptic fixed point (𝑞, 𝑝) = (0.5, 0.0),

𝜈 =
1

𝜋
arcsin

(︂√
𝜅

2

)︂
, (2.24)

where the angle 2𝜋𝜈 describes the clockwise rotation of an orbit in one time step. When increasing 𝜅

from zero to four, the frequency around the center rises from zero to 1/2. Accompanying this parameter

change, the regular orbits with lower frequency which were formerly close to the central fixed point get

shifted towards the regular-chaotic border region. Reminiscent of the near-integrable regime, orbits

with sufficiently irrational frequency form regular tori, while orbits with rational frequency,

𝜈 =
𝑠

𝑟
, 𝑠 ∈ Z, 𝑟 ∈ N (2.25)

form a non-linear 𝑟 : 𝑠 resonance chain. Such a resonance chain contains 𝑟 regular regions. Applying

𝑈 𝑟 times results in 𝑠 clockwise rotations around the fixed point, see the orange circles which show a

6 : 2 resonance in Fig. 2.1(c). According to Eqs. (2.24) and (2.25), an 𝑟 : 𝑠 resonance emerges from

the fixed point at 𝜅-values

𝜅 = 4 sin
(︁
𝜋
𝑠

𝑟

)︁2
. (2.26)
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With increasing 𝜅 this resonance is shifted towards the outside until the regular-chaotic border is

reached. There the resonance starts to dissolve in the chaotic region. Related to this non-linear reso-

nance chain, there are 𝑟 unstable periodic points, which are located between the regular regions along

the resonance chain. When the resonance enters the chaotic region, the stable and unstable manifolds

of these 𝑟 unstable periodic points give rise to partial barriers, which dominate the transport in the

hierarchical region around the regular phase-space region, see, e. g., black lines in Fig. 2.1(c). This

implies that non-linear resonance chains and partial barriers are related by changes of the parameter 𝜅.

Roughly speaking the relevance of non-linear resonances and partial barriers for regular-to-chaotic

tunneling decreases with rising order 𝑟 of the resonance. This allows for setting up a scheme for the

most relevant resonance frequencies which emerge from the fixed point of the standard map as 𝜅 rises

from one to four, Fig. 2.2. Due to the parity of the standard map this scheme contains resonances

with even order 𝑟 only. Using Eq. (2.26) we can compute the parameter value 𝜅 for which these

resonances emerge from the fixed point and trace it to the parameter value 𝜅 when the resonance

chain is roughly at the regular–chaotic border. Note that the resonance chain is destroyed at a larger

𝜅-parameter. This allows for assigning each 𝜅-value its most relevant resonance chain, see Fig. 2.3.

Beyond the 𝜅 parameter for which a resonance starts to dissolve in the chaotic region, we exploit the

stable and unstable manifolds of the 𝑟 unstable points of the resonance chain for constructing partial

barriers of the hierarchical region. For increasing 𝜅 these structures continue to exist and similar to

non-linear resonance chains a scheme of partial barrier in the chaotic region can be established, see

Fig. 2.4.

As explained later in this thesis, it is favorable for our investigations to consider a 𝜅 parameter

for which the dominating resonance has a high order 𝑟. From Fig. 2.3 this gives the regime 𝜅 ∈
[2.445 . . . , 2.618 . . . ] in which the 14 : 4 resonance dominates. However, there the 4 : 1 resonance is

still quite dominant, even though it localizes in the chaotic part of phase space already. This leaves

0.0

0.0 0.5ν

2 : 0 2 : 1
4 : 1

6 : 1 6 : 2

8 : 1 8 : 3

10 : 1 10 : 2 10 : 3 10 : 4

12 : 1 12 : 5

14 : 1 14 : 2 14 : 3 14 : 4 14 : 5 14 : 6

14 : 6

Figure 2.2.: Scheme of lowest order 𝑟 : 𝑠 resonances emerging from the fixed point (𝑞, 𝑝) = (0.5, 0.0)
of the standard map for 𝜅 ∈ [0, 4], where 𝜈 ∈ (0.0, 0.5).
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0.0
1.0 4.0κ

4 : 1
2.0 ≈ 2.3

6 : 1
1.0 ≈ 1.5

6 : 2
3.0 ≈ 3.6

8 : 3
3.414 . . . ≈ 4.0

10 : 2
1.382 . . . ≈ 2.0

10 : 3
2.618 . . . ≈ 3.3

14 : 4
2.445 . . . ≈ 3.1

0.0

Figure 2.3.: Overview giving the lowest order resonance of the regular region around the fixed
point (𝑞, 𝑝) = (0.5, 0.0) of the standard map as a function of the kicking strength 𝜅 ∈ [1, 4].

0.0
1.0 4.0κ

4 : 1≈ 2.3 ≈ 3.6

6 : 1≈ 1.5 ≈ 2.5
6 : 2≈ 3.6 ≈ 4.0

8 : 1≈ 1.2 ≈ 1.5

10 : 1≈ 1.0 ≈ 1.2
0.0

Figure 2.4.: Overview giving the partial barriers parametrically originating from the lowest order
𝑟 : 𝑠 resonances of the regular region around the fixed point (𝑞, 𝑝) = (0.5, 0.0) of the standard map
as a function of the kicking strength 𝜅 ∈ [1, 4].

the parameter ranges 𝜅 ∈ [1.5, 2.0] and 𝜅 ∈ [2.618 . . . , 3.0] as next natural choices for which the

10 : 2 and the 10 : 3 resonance are dominant, see Fig. 2.3. From experience it seems that the regime

𝜅 ∈ [1.5, 2.0] of the 10 : 2 resonance is still exposed to more partial barriers in the chaotic region,

and thus, we favor the regime 𝜅 ∈ [2.618 . . . , 3.0] of the 10 : 3 resonance in which the hierarchical

region is clearly dominated by the single partial barrier of the dissolved 4 : 1 resonance. Since there

is published tunneling data available already [62], we focus on the parameter 𝜅 = 2.9 in this thesis.

2.2. Quantization of the standard map

The quantum-mechanical counterpart of a kicked systems Hamilton function, Eq. (2.1), is given by

the operator

̂︀𝐻(𝑞, 𝑝, 𝑡) = 𝑇 (𝑝) + 𝑉 (𝑞)
∑︁

𝑛∈Z
𝛿(𝑡− 𝑛), (2.27)
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where 𝑝 and 𝑞 are the position and momentum operators which fulfill the standard commutation

relation,

[𝑞, 𝑝] = i~. (2.28)

Here, 2𝜋~ = ℎ ∈ R is the dimensionless effective Planck constant, which is a free parameter in our

studies. Note that ~ is called the reduced effective Planck constant.

Since ̂︀𝐻 is periodic in time,

̂︀𝐻(𝑞, 𝑝, 𝑡) = ̂︀𝐻(𝑞, 𝑝, 𝑡+ 1), (2.29)

it is convenient to apply Floquet theory [89, 90], which can be done by considering the time-evolution

operator ̂︀𝑈 over one period of the driving. This operator ̂︀𝑈 is the quantum-mechanical analog of the

classical map 𝑈 . Similar to the classical map there exist many representations of the time-evolution

operator. The analog of the generalized half-free representations, Eq. (2.8), is given by

̂︀𝑈 = exp

(︂
− i
~
𝛿hf𝑇 (𝑝)

)︂
exp

(︂
− i
~
𝑉 (𝑞)

)︂
exp

(︂
− i
~
(1− 𝛿hf)𝑇 (𝑝)

)︂
(2.30)

and the analog of the generalized half-kick, Eq. (2.9), representation by

̂︀𝑈 = exp

(︂
− i
~
(1− 𝛿hk)𝑉 (𝑞)

)︂
exp

(︂
− i
~
𝑇 (𝑝)

)︂
exp

(︂
− i
~
𝛿hk𝑉 (𝑞)

)︂
. (2.31)

In analogy to the classical part, we will consider the time-evolution operator ̂︀𝑈 of the standard map

in its after-kick representation,

̂︀𝑈 = exp

(︂
− i
~
𝑉 (𝑞)

)︂
exp

(︂
− i
~
𝑇 (𝑝)

)︂
. (2.32)

For numerical purposes it is convenient to deal with this operator in position representation, which

requires an evaluation of exp (i𝑇 (𝑝)/~) in Fourier space

⟨𝑞′|̂︀𝑈 |𝑞⟩ = exp

(︂
− i
~
𝑉 (𝑞′)

)︂
1

2𝜋~

∫︁

R
d𝑝 exp

(︂
− i
~
[︀
𝑇 (𝑝) + 𝑝(𝑞 − 𝑞′)

]︀)︂
. (2.33)

Since 𝑇 (𝑝) is quadratic, Eq. (2.2), we can compute the arising Gaussian integral analytically [91, 92],

⟨𝑞′|̂︀𝑈 |𝑞⟩ =
(︂

1

2𝜋~

)︂ 1
2

𝑒−i𝜋
4 exp

(︂
i
~

[︂
(𝑞 − 𝑞′)2

2
− 𝑉 (𝑞′)

]︂)︂
, (2.34)

which for the standard map results exactly in the shape of the general semiclassical propagator [91],

⟨𝑞′|̂︀𝑈 |𝑞⟩ =
(︂

i
2𝜋~

𝜕2𝒮𝑈 (𝑞, 𝑞′)

𝜕𝑞𝜕𝑞′

)︂ 1
2

exp

(︂
i
~
𝒮𝑈 (𝑞, 𝑞′)

)︂
. (2.35)
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This semiclassical propagator is composed from classical orbits that propagate from 𝑞 to 𝑞′, taking

their action 𝒮𝑈 , Eq. (2.15), and stability 𝜕𝑞𝜕𝑞′𝒮𝑈 into account.

2.2.1. Quantization on cylindric and toric phase spaces

Similar to the classical case, it is convenient for numerical purposes to consider a restriction of the

time-evolution operator ̂︀𝑈 to cylindric or toric phase space. To this end, we will now exploit the Bloch

theorem [93]. If the time-evolution operator ̂︀𝑈 is𝑀pos-periodic, i. e., it commutes with the translation

operator ̂︀𝑇𝑀pos

[̂︀𝑈, ̂︀𝑇𝑀pos ] = 0, (2.36)

with

̂︀𝑇𝑀pos := exp

(︂
− i
~
𝑀pos𝑝

)︂
, (2.37)

the Bloch theorem holds, such that the Hilbert space ℋ on which ̂︀𝑈 acts can be decomposed into

disjoint subsets ℋ(𝜃pos), which are determined by the Bloch phase 𝜃pos ∈ [0, 1). The states |Ψ⟩ within
ℋ(𝜃pos) are quasi-periodic,

̂︀𝑇𝑀pos |Ψ⟩ = exp (−i2𝜋𝜃pos) |Ψ⟩ , (2.38)

and can be represented on a complete set of basis states |𝑝𝑛⟩ which form a lattice

𝑝𝑛 :=
2𝜋~
𝑀pos

(𝑛+ 𝜃pos) (2.39)

with 𝑛 ∈ Z in momentum representation,

⟨𝑝|𝑝𝑛⟩ :=
√︃

2𝜋~
𝑀pos

𝛿(𝑝− 𝑝𝑛). (2.40)

In position space the same basis is a set of quasi-periodic functions,

⟨𝑞|𝑝𝑛⟩ =
1√︀
𝑀pos

exp

(︂
i
~
𝑝𝑛𝑞

)︂
. (2.41)

If we expand ̂︀𝑈 such that

̂︀𝑈 |𝑝𝑛⟩ =
∑︁

𝑝𝑘

⟨𝑝𝑘|̂︀𝑈 |𝑝𝑛⟩ |𝑝𝑘⟩ (2.42)

then ⟨𝑝𝑘|̂︀𝑈 |𝑝𝑛⟩ is the matrix representation of ̂︀𝑈 on the cylinder
(︀
R/(𝑞min +𝑀posZ)

)︀
× R. For the

standard map 𝑉 (𝑞), Eq. (2.3), is periodic with 𝑀pos = 1 such that ̂︀𝑈 commutes with ̂︀𝑇𝑀pos and is
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given by

⟨𝑝𝑘|̂︀𝑈 |𝑝𝑛⟩ =
𝑞min+1∫︁

𝑞min

d𝑞 exp

(︂
i2𝜋(𝑛− 𝑘)

𝑞

𝑀pos

)︂
exp

(︂
− i
~
𝑉 (𝑞)

)︂
exp

(︂
− i
~
𝑇 (𝑝𝑛)

)︂
(2.43a)

= i(𝑘−𝑛) 1

2𝜋

𝜋∫︁

−𝜋

d𝑥 exp

(︂
−i
[︂
(𝑘 − 𝑛)𝑥+

𝜅

(2𝜋)2~
sin(𝑥)

]︂)︂
exp

(︂
− i
~
𝑇 (𝑝𝑛)

)︂
(2.43b)

= i(𝑘−𝑛)J(𝑘−𝑛)

(︂
− 𝜅

(2𝜋)2~

)︂
exp

(︂
− i
~
𝑇 (𝑝𝑛)

)︂
(2.43c)

on the cylinder
(︀
R/Z

)︀
× R, with J(𝑘−𝑛)

(︀
−𝜅/[(2𝜋)2~]

)︀
being a Bessel function of the first kind.

Analogously, if ̂︀𝑈 commutes with the translation operator ̂︀𝑇𝑀mom ,

[̂︀𝑈, ̂︀𝑇𝑀mom ] = 0, (2.44)

with

̂︀𝑇𝑀mom := exp

(︂
i
~
𝑀mom𝑞

)︂
, (2.45)

the Hilbert space ℋ can be decomposed into disjoint subsets ℋ(𝜃mom), which are determined by the

Bloch phase 𝜃mom ∈ [0, 1). The states |Ψ⟩ within ℋ(𝜃mom) are quasi-periodic,

̂︀𝑇𝑀pos |Ψ⟩ = exp (i2𝜋𝜃mom) |Ψ⟩ , (2.46)

and can be represented on a complete set of basis states |𝑞𝑙⟩ which form a lattice

𝑞𝑙 :=
2𝜋~
𝑀mom

(𝑙 + 𝜃mom), (2.47)

with 𝑙 ∈ Z in position representation,

⟨𝑞|𝑞𝑙⟩ :=
√︂

2𝜋~
𝑀mom

𝛿(𝑞 − 𝑞𝑙). (2.48)

In momentum space the same basis is a set of quasi-periodic functions,

⟨𝑝|𝑞𝑙⟩ :=
1√

𝑀mom
exp

(︂
i
~
𝑞𝑙𝑝

)︂
. (2.49)

If we expand ̂︀𝑈 such that

̂︀𝑈 |𝑞𝑙⟩ =
∑︁

𝑞𝑘

⟨𝑞𝑘|̂︀𝑈 |𝑞𝑙⟩ |𝑞𝑘⟩ (2.50)

then ⟨𝑞𝑘|̂︀𝑈 |𝑞𝑙⟩ is the matrix representation of ̂︀𝑈 on the cylinder R ×
(︀
R/(𝑝min + 𝑀momZ)

)︀
. The



16 2.2 Quantization of the standard map

time-evolution operator ̂︀𝑈 of the standard map does not commute with ̂︀𝑇𝑀mom for any 𝑀mom, since

𝑇 (𝑝), Eq. (2.2), is not periodic with any 𝑀mom. Hence, the quantization of the standard map on the

cylinder R ×
(︀
R/(𝑝min +𝑀momZ)

)︀
is mathematically not defined. However, similar to the classical

case, it is physically justified that 𝑇 (𝑝) can be replaced by 𝑇 (𝑝), Eq. (2.20), if it is sufficient to describe

the eigenstates of ̂︀𝑈 between [𝑝min, 𝑝min+𝑀mom), which localize sufficiently far away from the border

regions. In that case ̂︀𝑈 and ̂︀𝑇𝑀mom commute such that ̂︀𝑈 is given by

⟨𝑞𝑘|̂︀𝑈 |𝑞𝑙⟩ = exp

(︂
− i
~
𝑉 (𝑞𝑘)

)︂ 𝑝min+1∫︁

𝑝min

d𝑝
𝑀mom

exp

(︂
−i2𝜋(𝑘 − 𝑙)

𝑝

𝑀mom

)︂
exp

(︂
− i
~
𝑇 (𝑝)

)︂
, (2.51)

which for 𝑝min = −1/2 and 𝑀mom = 1 gives

⟨𝑞𝑘|̂︀𝑈 |𝑞𝑙⟩ =exp

(︂
− i
~
𝑉 (𝑞𝑘)

)︂√︂
𝜋~
2i

exp
(︀
−i𝜋2~(𝑘 − 𝑙)

)︀
(2.52)

[︃
erf

(︃√︂
2~
i

[︂
1

2
+ 𝜋(𝑘 − 𝑙)

]︂)︃
− erf

(︃√︂
2~
i

[︂
−1

2
+ 𝜋(𝑘 − 𝑙)

]︂)︃]︃
, (2.53)

with erf being the error function.

Finally, if we consider an operator which commutes both with the translation operator in position

space, Eq. (2.36), and the translation operator in momentum space, Eq. (2.44), it is possible to

introduce a set of basis states on a torus
(︀
R/(𝑞min +𝑀posZ)

)︀
×
(︀
R/(𝑝min +𝑀momZ)

)︀
. In order to

allow for such states it is further required that the translation operators commute,

[ ̂︀𝑇𝑀pos , ̂︀𝑇𝑀mom ] = ̂︀𝑇𝑀pos
̂︀𝑇𝑀mom

[︂
1− exp

(︂
i2𝜋

𝑀pos𝑀mom

2𝜋~

)︂]︂
!
= 0, (2.54)

which restricts the allowed values of the effective Planck constant ℎ, see, e. g., Ref. [94, 95],

ℎ = 2𝜋~ =
𝑀pos𝑀mom

𝑁
with 𝑁 ∈ N. (2.55)

By Bloch’s theorem, the Hilbert space ℋ can now be decomposed into disjoint subsets ℋ(𝜃pos, 𝜃mom),

which are determined by the Bloch phases (𝜃pos, 𝜃mom) ∈ [0, 1) × [0, 1). The states |Ψ⟩ within

ℋ(𝜃pos, 𝜃mom) are quasi-periodic under translations both in position and momentum, Eqs. (2.40)

and (2.46), and therefore exist on lattices both in position and momentum representation, Eqs. (2.47)

and (2.39), simultaneously. Such states can either be decomposed into the basis |𝑞𝑙⟩ or the basis |𝑝𝑛⟩.
While states |𝑞𝑙⟩ have the position representation

⟨𝑞|𝑞𝑙⟩ :=
√︂
𝑀pos

𝑁
exp

(︂
i2𝜋𝜃pos

𝑞 − 𝑞𝑙
𝑀pos

)︂∑︁

𝑠∈Z
𝛿(𝑞 − 𝑞𝑙 − 𝑠𝑀pos), (2.56)
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the states |𝑝𝑛⟩ have the momentum representation

⟨𝑝|𝑝𝑛⟩ :=
√︂
𝑀mom

𝑁
exp

(︂
−i2𝜋𝜃mom

𝑝− 𝑝𝑛
𝑀mom

)︂∑︁

𝑟∈Z
𝛿(𝑝− 𝑝𝑛 − 𝑟𝑀mom). (2.57)

It is important to note that the periodicity along each lattice leaves only 𝑁 independent choices of 𝑞𝑙
or 𝑝𝑛, respectively, which implies that ℋ(𝜃pos, 𝜃mom) is 𝑁 -dimensional. In practice, we choose these

𝑞𝑙 or 𝑝𝑛 from the underlying torus
(︀
R/(𝑞min +𝑀posZ)

)︀
×
(︀
R/(𝑝min +𝑀momZ)

)︀
, as indicated by the

bar over the lattice indices. Finally, it can be shown that

⟨𝑝|𝑞𝑙⟩ =
∑︁

𝑝𝑛

1√
𝑁

exp

(︂
− i
~
𝑞𝑙𝑝𝑛

)︂
⟨𝑝|𝑝𝑛⟩ , (2.58a)

⟨𝑞|𝑝𝑛⟩ =
∑︁

𝑞𝑙

1√
𝑁

exp

(︂
i
~
𝑝𝑛𝑞𝑙

)︂
⟨𝑞|𝑞𝑙⟩ , (2.58b)

which means the basis states |𝑞𝑙⟩ and |𝑝𝑛⟩ are related by a lattice Fourier transformation. Expanding
̂︀𝑈 such that

̂︀𝑈 |𝑞𝑛⟩ =
∑︁

𝑞𝑘

⟨𝑞𝑘|̂︀𝑈 |𝑞𝑛⟩ |𝑞𝑘⟩ , (2.59)

⟨𝑞𝑘|̂︀𝑈 |𝑞𝑛⟩ is the matrix representation of ̂︀𝑈 on the torus
(︀
R/(𝑞min+𝑀posZ)

)︀
×
(︀
R/(𝑝min+𝑀momZ)

)︀
.

For the standard map, one can show that ̂︀𝑈 commutes both with ̂︀𝑇𝑀pos and ̂︀𝑇𝑀mom , if we choose

𝑀pos =𝑀mom = 1 together with either (i) 𝜃pos = 0 and 𝑁 being even or (ii) 𝜃pos = 0.5 and 𝑁 being

odd, see, e. g., Ref. [96]. The corresponding time-evolution operator on the torus is then given by [97]

⟨𝑞𝑘|̂︀𝑈 |𝑞𝑙⟩ = exp

(︂
− i
~
𝑉 (𝑞𝑘)

)︂∑︁

𝑝𝑛

1

𝑁
exp

(︂
i
~
𝑝𝑛(𝑞𝑘 − 𝑞𝑙)

)︂
exp

(︂
− i
~
𝑇 (𝑝𝑛)

)︂
(2.60)

when starting from Eqs. (2.32) and (2.56) and using lattice Fourier transforms, Eqs. (2.58). Alterna-

tively, one can start from Eqs. (2.34) and (2.56) giving the equivalent result

⟨𝑞𝑘|̂︀𝑈 |𝑞𝑙⟩ =
1

𝑁
1
2

𝑒−i𝜋
4 exp

(︂
i
~

[︂
(𝑞𝑙 − 𝑞𝑘)

2

2
− 𝑉 (𝑞𝑘)

]︂)︂
, (2.61)

which together with Eq. (2.15) gives

⟨𝑞𝑘|̂︀𝑈 |𝑞𝑙⟩ =
(︃

i
𝑁

𝜕2𝒮𝑈 (𝑞, 𝑞′)

𝜕𝑞𝜕𝑞′

⃒⃒
⃒⃒
𝑞=𝑞𝑙,𝑞

′=𝑞𝑘

)︃ 1
2

exp

(︂
i
~
𝒮𝑈 (𝑞𝑙, 𝑞𝑘)

)︂
. (2.62)

This expression has the advantage of being a discretized version of the semiclassical propagator,

Eq. (2.35), known from semiclassical quantization [94, 98–100].
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2.2.2. Quantum manifestations of the mixed phase space

In the following we examine basic manifestations of the mixed phase space in quantum mechanics by

discussing the Husimi representation [101] for eigenstates |𝑛⟩ of the standard map on the torus.

To this end, we solve the eigenvalue equation for the time-evolution operator ̂︀𝑈 of the standard

map on the torus,

̂︀𝑈 |𝑛⟩ = exp (i𝜑𝑛) |𝑛⟩ . (2.63)

Since ̂︀𝑈 is unitary 𝜑𝑛 are real eigenphases and the 𝑁 eigenstates |𝑛⟩ form an orthonormal basis. In

order to discuss the manifestations of classical phase-space structures, we project the eigenstates |𝑛⟩
onto coherent states |𝛼(𝑞, 𝑝)⟩ [102, 103], which have the position representation

⟨︀
𝑞′|𝛼(𝑞, 𝑝)

⟩︀
:=

1

(
√
2𝜋Δ𝑞)1/2

exp

(︂
−(𝑞 − 𝑞′)2

4(Δ𝑞)2
+ i

𝑝(𝑞′ − 𝑞)

~

)︂
(2.64)

with Δ𝑞 being a free parameter, which is typically fixed at
√
~. This allows for introducing the Husimi

phase-space density

H|𝑛⟩(𝑞, 𝑝) = |⟨𝛼(𝑞, 𝑝)|𝑛⟩|2 , (2.65)

which represents the state |𝑛⟩ in phase space. In agreement with the semiclassical eigenfunction

hypothesis [104–106] which predicts that quantum-mechanical eigenstates localize on phase-space

structures that a typical orbit explores in the long-time limit, we can classify the eigenstates of a

mixed system ̂︀𝑈 into regular and chaotic states, see, e. g., Fig. 2.5(b, c). For chaotic eigenstates this

implies that their Husimi density is spread completely across a connected chaotic region, see, e. g.,

Fig. 2.5(c), while regular states localize on invariant regular tori 𝒯𝑚, as, e. g., visulaized in Fig. 2.5(b).
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Figure 2.5.: Quantum manifestations of the mixed phase space in the eigenstates of the standard
map on the torus for 𝜅 = 2.9, ℎ = 1/50, and Bloch phases (𝜃pos, 𝜃mom) = (0, 0) in (b, c) and
(𝜃pos, 𝜃mom) = (0, 0.19328582) in (d). (a) Red lines depict regular tori, orange lines a 4 : 1 resonance,
and blue dots a chaotic orbit. (b–d) Same in gray. (b) The red density visualizes a regular state
which localizes on a black quantizing torus. (c) The blue density visualizes a chaotic state. (d) The
red density visualizes a hybrid state.
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According to the Bohr–Sommerfeld quantization, Refs. [107–109], in its improved form including

turning points, Refs. [15, 16, 19], these tori have a quantizing action

𝐼𝑚 :=
1

2𝜋

∮︁

𝒯𝑚
𝑝(𝑞)d𝑞 = ~

(︂
𝑚+

1

2

)︂
, (2.66)

and can be labeled by the semiclassical quantum number 𝑚. Since 2𝜋𝐼𝑚 is the area enclosed by the

quantizing torus 𝒯𝑚 it is possible to count the number of quantizing tori 𝑁reg hosted by a regular

region of size 𝐴reg. With ⌊·⌋ being the floor function, we get

𝑁reg =

⌊︂
𝐴reg

2𝜋~
+

1

2

⌋︂
, (2.67)

such that

𝑚 ∈ {0, . . . , 𝑁reg − 1}. (2.68)

It is important though to keep in mind that the semiclassical eigenfunction hypothesis only holds

in the limit ~ → 0. For finite ~ tunneling effects between the regular and the chaotic region can occur,

which implies that regular states always have tunneling admixtures of chaotic states and vice versa,

see, e. g., Fig. 2.5(d) for an extreme example. For completeness we mention that in systems with high

densities of chaotic states tunneling can cause regular states to disappear [56, 110], which is called

flooding.

2.2.3. Quantum manifestations of partial barriers and non-linear resonance chains

In the following we illustrate the influence of partial transport barriers on the structure of chaotic

states and demonstrate the hybridization effect between states of the regular region due to non-linear

resonance chains. To this end, we exploit the standard map at 𝜅 = 2.9 and 𝜅 = 3.5.

As discussed in Sect. 2.1.3, Fig. 2.4, we expect the stable and unstable manifolds from the dissolving

4 : 1 resonance to dominate the chaotic region for 𝜅 = 2.9 and 𝜅 = 3.5, respectively. More specifically

the stable manifolds (blue lines in Figs. 2.6(a) and 2.7(a)) emanate from the four unstable points (black

dots in Figs. 2.6(a) and 2.7(a)) and intersect with the unstable manifolds (red lines in Figs. 2.6(a)

and 2.7(a)). This gives rise to eight heteroclinic points. These manifolds divide the chaotic region

into the three chaotic subregions 𝒞1, 𝒞2, and 𝒞3. 𝒞1 denotes the chaotic phase-space region enclosed

by the inner partial barrier. This excludes the regular phase-space region. 𝒞2 denotes the chaotic

phase-space region between the inner and the outer partial barriers. 𝒞3 denotes the outer chaotic

phase-space region, see Figs. 2.6(a) and 2.7(a). The closed curves constructed from these manifolds

are not invariant under the classical mapping 𝑈 , such that a flux Φ is exchanged across them for

each application of 𝑈 . As shown in Ref. [111, 112] these partial barriers act as barriers to quantum

transport, if the classical flux Φ is more than ten times smaller than the effective Planck constant

Φ . ℎ/10, while being quantum mechanically transparent for values of the effective Planck constant
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Figure 2.6.: Quantum manifestations of partial barriers for the standard map at 𝜅 = 2.9, ℎ = 1/50,
and (𝜃pos, 𝜃mom) = (0.0, 0.0). The background shows the classical phase space in gray. (a) Blue stable
and red unstable manifolds emanating from the period four unstable orbit (black dots) are also shown
in (b–d) in gray. Husimi-densities of chaotic states associated with the chaotic regions (b) 𝒞1 in red,
(c) 𝒞2 in blue, and (d) 𝒞3 in blue.
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Figure 2.7.: Quantum manifestations of partial barriers for the standard map at 𝜅 = 3.5, ℎ = 1/50,
and (𝜃pos, 𝜃mom) = (0.0, 0.0). The background shows the classical phase space in gray. (a) Blue stable
and red unstable manifolds emanating from the period four unstable orbit (black dots) are also shown
in (b–d) in gray. Husimi-densities of chaotic states associated with the chaotic regions (b) 𝒞1 in red,
(c) 𝒞2 in blue, and (d) 𝒞3 in blue.

being ten times larger than the flux Φ & ℎ ·10. In between these ℎ-ranges a transition from barrierness

to transparency can be observed, with the transition point being at Φ = ℎ.

For our tunneling investigation the values of the effective Planck constants are typically in 1/ℎ ∈
[1, 100]. Therefore ℎ is much larger than the fluxes of the inside partial barriers for 𝜅 = 2.9 or

𝜅 = 3.5, respectively, i. e., the inner partial barrier is quantum mechanically closed. Since the chaotic

region 𝒞1 is small and shows motion which sticks to the regular region, this effectively leads to a

quantum enlargement of the area 𝐴reg of the regular phase-space region. This effect is visualized for

quasi-regular states (red) in Figs. 2.6(b) and 2.7(b), which localize on the chaotic region 𝒞1 inside the
partial barrier for 𝜅 = 2.9 and 𝜅 = 3.5, respectively. The fluxes Φ across the outer partial barriers

are comparable to ℎ values in the regime 1/ℎ ∈ [10, 100]. Hence, also the outer partial barrier is

quantum-mechanically active, which can be seen from chaotic states localizing in the regions 𝒞2 and

𝒞3, respectively, as visualized for 𝜅 = 2.9 in Figs. 2.6(c, d) and 𝜅 = 3.5 in Figs. 2.7(c, d).
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Figure 2.8.: Quantum manifestations of non-linear resonance chains for the standard map at (a)
𝜅 = 2.9, ℎ = 1/100, (𝜃pos, 𝜃mom) = (0.0, 0.0) and (b) 𝜅 = 3.5, ℎ = 1/47, (𝜃pos, 𝜃mom) = (0.5, 0.0).
Classical phase space including partial barriers is shown in gray and Husimi densities of hybridized
regular states are shown in red.

Finally let us examine the quantum-mechanical consequences of classical non-linear resonance

chains. As can be seen from Fig. 2.3 the 𝑟 : 𝑠 resonances 10 : 3 or 6 : 2 have the lowest resonance order

𝑟 for the standard map at 𝜅 = 2.9 or 𝜅 = 3.5, respectively. As, e. g., shown in Ref. [59, 60] this leads to

regular states which are a mixture of Bohr–Sommerfeld like states localizing on quantizing regular tori

which differ by integer multiples of the resonance order 𝑟 in their semiclassical quantum number 𝑚.

This effect defines resonance-assisted tunneling [59, 60]. As a consequence, the corresponding regular

state which predominantly localizes on the torus 𝒯𝑚 with action 𝐼𝑚 has resonance-assisted tunneling

admixtures of Bohr–Sommerfeld like states localizing on tori 𝒯𝑚+𝑟, . . . , 𝒯𝑚+𝑟·𝑛. This is visualized in

Fig. 2.8(a) for 𝜅 = 2.9, where the depicted regular state localizes on the quantizing tori 𝒯0 and 𝒯10,
while in Fig. 2.8(b) for 𝜅 = 3.5 the depicted regular state localizes on the quantizing tori 𝒯0 and 𝒯6.
Note that in both cases the torus 𝒯𝑚+𝑟 of the excited state is not hosted inside the regular region,

but exists on the effective extension of the regular region due to partial barriers.

In general the involved quantizing actions fulfill the relation

𝐼𝑚 < 𝐼𝑚+𝑟 < · · · < 𝐼𝑚+𝑟·𝑛 ≤ 𝐴reg

2𝜋
, (2.69)

with 𝐴reg being the area of the regular phase-space region. This allows for defining a resonance-free

regime in terms of ℎ [64],

0 ≤ 1

ℎ
≤ 𝑚+ 𝑟 + 1

2

𝐴reg
, (2.70)

for which resonance-assisted tunneling is irrelevant. Note that for the standard map this criterion is

typically true when using the effective area 𝐴reg enclosed by the inner partial barrier. Further note that

Eq. (2.70) together with Fig. 2.3 explains why considering the standard map for 𝜅 = 2.9, where the

lowest order 𝑟 : 𝑠 resonance has the relatively high order 𝑟 = 10, is an optimal choice for investigations

of regular-to-chaotic tunneling. This choice guarantees a large resonance-free 1/ℎ-regime, where the
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additional complexity of resonance-assisted tunneling can be neglected.



3. Regular-to-chaotic tunneling rates

In this chapter we review the quantum-mechanical foundations of regular-to-chaotic tunneling. In the

first part of this chapter we introduce regular-to-chaotic tunneling rates as decay rates of metastable

states and explain their numerical determination for the standard map. In the second part, we

discuss the influences of non-linear resonance chains and partial barriers on such numerical regular-

to-chaotic tunneling rates, and comment on their connection to chaos-assisted tunneling [27, 28]. In

the third part, we review the quantum-mechanical prediction of regular-to-chaotic tunneling rates

with the help of fictitious integrable systems [62, 65]. Most topics of this chapter are covered in

Refs. [62, 65]. However, we extend the material covered in these references by (i) a phenomenological

discussion of partial barriers and their influence on regular-to-chaotic tunneling rates, (ii) discussing

the Weyl quantization for fictitious integrable Hamiltonians, and (iii) introducing a generalization of

the fictitious integrable system approach.

3.1. Regular-to-chaotic tunneling rates as decay rates of metastable

states

It is intuitively clear that regular-to-chaotic tunneling refers to quantum-mechanical transitions be-

tween the regular and the chaotic phase-space region, which are forbidden in the classical system.

Nevertheless, it is a difficult (if not impossible) task to capture this intuitive notion of regular-to-

chaotic tunneling in a rigorous definition. This is due to Heisenberg’s uncertainty principle, which

forbids a precise simultaneous measurement of position and momentum, and thus, makes a quantum-

mechanical definition of regular and chaotic phase-space regions impossible. Therefore we take an

alternative view on the topic of regular-to-chaotic tunneling by considering physical quantities which

are doubtlessly affected by regular-to-chaotic tunneling.

Traditionally, such a quantity is the phase splittingΔ𝜑 between even and odd states on parity related

disjoint phase-space regions. This splitting is discussed in the context of chaos-assisted tunneling

[27, 28] which is experimentally relevant, e. g., for billiards [48] and ratchet experiments with cold

atoms [38–40]. The big disadvantage of tunnel splittings lies in the required symmetry, which might

not be present in general non-integrable systems with a mixed phase space. For this reason, we chose

to consider a different quantity in this thesis. Inspired by atoms, molecules, and optical microcavities,

we characterize regular-to-chaotic tunneling by the decay rates 𝛾 of metastable states |𝜓⟩. These states
localize on a regular phase-space region, and decay towards an unbound or leaky chaotic phase-space

region, due to tunneling, see Fig. 3.1. As a consequence the system is open, such that metastable states
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have eigenphases 𝜑 + i𝛾/2 with an imaginary part. This imaginary part describes the exponential

decay of the metastable state in time,

‖𝜓(𝑡)‖2 = ‖𝜓(0)‖2 · exp (−𝛾𝑡). (3.1)

Assuming that the transition from the regular to the chaotic phase-space region dominates over trans-

port through the chaotic phase-space region we call this decay rate 𝛾 a regular-to-chaotic tunneling

rate.

3.1.1. Numerical regular-to-chaotic tunneling rates for the standard map

In order to obtain a regular-to-chaotic tunneling rate 𝛾 for the standard map, we introduce an absorber

in the chaotic region, as sketched by the gray regions in Fig. 3.1. This is inspired by numerical

computations of decay rates for metastable states in molecular physics [113] or the leaky region in

optical microcavities. To this end, we consider the time-evolution operator of the standard map

⟨𝑞𝑘|̂︀𝑈 |𝑞𝑙⟩ on a cylinder R×
(︀
R/(−0.5+Z)

)︀
, Eq. (2.52), with 𝑞𝑘, 𝑞𝑙 ∈ [𝑞min, 𝑞max]. The complementary

region ℛabs := (−∞, 𝑞min) ∪ (𝑞max,∞) is an absorber which ignores transition-matrix elements from

and to these lattice points. With ̂︀𝑃abs being a projector onto the absorbing region, we can write the

time-evolution operator of the open system as

̂︀𝑈open = (1− ̂︀𝑃abs)̂︀𝑈(1− ̂︀𝑃abs). (3.2)

Note that typically absorbers require a smooth transition between the non-absorbing and the absorbing

reqion in order to avoid quantum reflections on waves traveling towards the absorbing region [114,

115]. In our case this is unnecessary, because regular-to-chaotic tunneling dominates 𝛾 such that the

subsequent absorption process in the chaotic region is expected to induce only small fluctuations on
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Figure 3.1.: Phase space of the standard map for 𝜅 = 2.9 (gray dots and lines) showing a (gray)
absorbing region and a (red) Husimi density (1/ℎ = 60) of a metastable state. Arrows indicate
regular-to-chaotic tunneling (green) and chaotic transport towards the absorber (gray).
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the tunneling rate, see arrows in Fig. 3.1.

The above absorbers give a finite-dimensional, sub-unitary operator ̂︀𝑈open which allows for a nu-

merical solution of their eigenvalue equation,

̂︀𝑈open |𝑚⟩ = (1− ̂︀𝑃abs)̂︀𝑈(1− ̂︀𝑃abs) |𝑚⟩ = 𝜆𝑚 |𝑚⟩ = exp
(︁
i
[︁
𝜑𝑚 + i

𝛾𝑚
2

]︁)︁
|𝑚⟩ . (3.3)

From the eigenvalue we extract 𝛾𝑚 according to

𝛾𝑚 = −2 log |𝜆𝑚|, (3.4)

which can be shown to describe the decay of the metastable state 𝑚,

‖ |𝑚(𝑡 = 𝑛)⟩ ‖2 = ‖ |𝑚(𝑡 = 0)⟩ ‖2 · exp (−𝛾𝑚 · 𝑛). (3.5)

Since the absorber is localized in the chaotic part of phase space one can expect that the regular

states of the closed system are only perturbed on the order of magnitude by which they couple

to the chaotic region. Hence, it is possible to order the index 𝑚 such that the states with index

𝑚 ≤ ⌊𝐴reg/(2𝜋~)− 1/2⌋ predominantly localize on the tori 𝒯𝑚 with quantizing action 𝐼𝑚, Eq. (2.66),

inside the regular region. As described above, we compute regular-to-chaotic tunneling rates for the

standard map at 𝜅 = 2.9 as a function of ~. Since we consider a cylindric phase space, we are free to

chose the effective Planck constant 2𝜋~. The Bloch phase 𝜃mom is fixed according to

𝜃mom =

(︂
𝑀mom

2𝜋~

(︂
𝑞min + 𝑞max

2

)︂
− 1

2

⌊︂
𝑀mom

2𝜋~
(𝑞max − 𝑞min)

⌋︂)︂
mod 𝑀mom, (3.6)

which ensures the symmetric configuration of the position lattice, for which the maximal number of

sites is in (𝑞min, 𝑞max).

Figure 3.2 shows numerically obtained regular-to-chaotic tunneling rates for 𝑚 = 0, 1, 2, 3 in their

resonance-free ℎ-regime, Eq. (2.70). Here, the absorber is chosen tangential to the last torus of

the regular region, see gray regions of insets in Fig. 3.2, with 𝑞min = 0.2843 and 𝑞max = 1 − 𝑞min.

We observe that the tunneling rates 𝛾𝑚 increase for larger semiclassical quantum numbers 𝑚. This

corresponds to the intuition that regular-to-chaotic tunneling should be faster for metastable states

of the regular phase-space region, which localize closer towards the regular–chaotic border region.

Furthermore, a clear exponential ℎ-scaling of the tunneling rates according to

𝛾𝑚 = exp

(︂
−𝐵𝑚

~

)︂
(3.7)

is observed. This behavior meets the semiclassical expectation that tunneling should get harder as we

approach the semiclassical limit, ℎ → 0. This exponential ℎ-scaling, of regular-to-chaotic tunneling

rates has often been observed for the resonance-free regime [40, 42, 43, 47, 50, 65], but lacks a

theoretical explanation so far. Among the goals of this thesis it is one task to provide a semiclassical

prediction for regular-to-chaotic tunneling rates and allow for a semiclassical understanding of this
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Figure 3.2.: Regular-to-chaotic tunneling rates (dots) versus inverse effective Planck constant for
metastable states in the standard map at 𝜅 = 2.9 (parameters described in the text). The insets
show corresponding Husimi densities (red, 1/ℎ = 60), absorbing regions (gray), and the classical
phase space (gray dots and lines).

exponential behavior.

Another, less important feature of the numerical tunneling rates are so-called quantization jumps,

see Fig. 3.2. They occur, when 1/ℎ takes the values

1

ℎ
=

𝑁

𝑀mom(𝑞max − 𝑞min)
with 𝑁 ∈ N, (3.8)

for which ̂︀𝑈open has to be quantized with 𝑁 + 1 instead of 𝑁 lattice points. These events are evenly-

spaced in 1/ℎ with distance 1/[𝑀mom(𝑞max − 𝑞min)] ≈ 2.318. Note that these quantization jumps did

not occur in Refs. [62, 64, 65, 116] since there the chosen resolution in 1/ℎ is not fine enough.

3.2. Discussion of regular-to-chaotic tunneling rates

Even though the main objective of this thesis is a semiclassical understanding of regular-to-chaotic

tunneling rates in the resonance-free regime, as previously presented in Sect. 3.1.1, it is illuminating

to shed light on tunneling rates in a wider context. To this end, we discuss the influence of non-linear

resonance chains and the role of partial barriers in the upcoming section, and make a connection to

phase splittings Δ𝜑 of chaos-assisted tunneling.
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3.2.1. Regular-to-chaotic tunneling rates and non-linear resonance chains

In order to illustrate the influence of non-linear resonance chains on regular-to-chaotic tunneling rates

Fig. 3.3 presents the numerically determined tunneling rate 𝛾0 on a larger range of Planck’s constant

20 . 1/ℎ . 125. In the resonance-free regime, 20 . 1/ℎ . 75, we observe the exponential decrease of

the regular-to-chaotic tunneling rate 𝛾0 which was previously discussed in Fig. 3.2. This exponential

decrease of 𝛾0 stops in the resonance-assisted tunneling regime, 75 . 1/ℎ, where 𝛾0 shows a plateau

and a peak.

As worked out in Ref. [64] the regular-to-chaotic tunneling rate in the resonance-free regime can

be understood in terms of a direct probability transfer from a metastable state localizing on the

quantizing torus 𝒯0 to the chaotic region. This is called direct regular-to-chaotic tunneling. When

entering the regime of resonance-assisted tunneling, an additional decay channel emerges. Similar to

Fig. 2.8 the metastable state which localizes on the quantizing torus 𝒯0 has admixtures of a Bohr–

Sommerfeld like state which localizes on the quantizing torus 𝒯10 due to the 10 : 3 resonance. From

there the metastable state decays such that this new decay channel eventually dominates over direct

regular-to-chaotic tunneling. Remarkably, the regime for which the decay of the metastable state is

dominated by resonance-assisted tunneling starts at 1/ℎ ≈ 75. Not only is this before the tenth regular

state starts to exist in the regular region (1/ℎ ≈ 95 as predicted from, Eq. (2.70) with 𝐴reg = 0.11),

but even before the tenth regular state exists on the union with the chaotic region 𝒞1, Fig. 2.6, which
is confined by the inner partial barrier (1/ℎ ≈ 91 as predicted from, Eq. (2.70) with 𝐴reg = 0.115).

Please note that typically direct regular-to-chaotic tunneling rates in the resonance-free regime are

1/h
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Figure 3.3.: Regular-to-chaotic tunneling rate 𝛾0 of the standard map at 𝜅 = 2.9 versus the inverse
effective Planck constant 1/ℎ. The inset shows the Husimi representation (red, 1/ℎ = 60) of the
corresponding metastable state, (gray) absorbing regions, and the classical phase space (gray dots
and lines).
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several orders of magnitude larger than tunneling rates in the regime of resonance-assisted tunneling.

Therefore direct regular-to-chaotic tunneling is experimentally more relevant, which justifies the focus

of this thesis on direct regular-to-chaotic tunneling rates.

3.2.2. Regular-to-chaotic tunneling rates and partial barriers

In the following the influence of partial barriers on regular-to-chaotic tunneling rates is investigated

numerically. Before starting, we recall Fig. 2.6 which shows how the chaotic phase-space region

of the standard map is divided into three weakly coupled subregions 𝒞1, 𝒞2, and 𝒞3, with classical

fluxes Φ12 between 𝒞1 and 𝒞2 and Φ23 between 𝒞2 and 𝒞3. As worked out in ref. [111, 112] a partial

barrier opens up for 1/ℎ increasing in [1/(10Φ), 10/Φ] with the transition point at ℎ = Φ. Since

Φ12 is extremely small, the partial barrier separating the chaotic phase-space regions 𝒞1 and 𝒞2, as
introduced in Fig. 2.6, is quantum mechanically closed in our numerical studies. Since the confined

area (𝐴𝒞1 ≈ 0.005) of the region 𝒞1 is very small too, we consider 𝒞1 as an extension of the regular

region for the relevant values of Planck’s constant, 20 . 1/ℎ . 125. Furthermore, with Φ23 ≈ 0.0126

[111, 112], the transition point of the partial barrier between the chaotic phase-space regions 𝒞2 and 𝒞3,
as introduced in Fig. 2.6, is at 1/ℎ ≈ 80. Hence, also the outer partial barrier is quantum mechanically

active in the considered regime of Planck’s constant, 20 . 1/ℎ . 125.

We start our discussion with Fig. 3.4, which shows the tunneling rate 𝛾0 of the standard map at
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Figure 3.4.: Numerically determined regular-to-chaotic tunneling rates 𝛾0 of the standard map at
𝜅 = 2.9 are shown as a function of the inverse effective Planck constant 1/ℎ by dots for different
locations of the absorber 𝑞min = 0.0, 0.04858777, 0.09717554, and 0.14576331. These locations are
depicted in the inset by shaded regions colored corresponding to the data. The insets further show
the (red) Husimi representation of the corresponding metastable state and the classical phase space
(gray dots and lines).
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Figure 3.5.: Numerically determined regular-to-chaotic tunneling rates 𝛾0 of the standard map at
𝜅 = 2.9 are shown as a function of the inverse effective Planck constant 1/ℎ by dots for different
locations of the absorber 𝑞min = 0.0, 0.17384221, 0.2019211, 0.23. These locations are depicted in
the inset by shaded regions colored corresponding to the data. The insets further show the (red)
Husimi representation of the corresponding metastable state and the classical phase space (gray dots
and lines).

𝜅 = 2.9 on the cylinder R ×
(︀
R/(−0.5 + Z)

)︀
for absorbing regions, which are entirely located in the

chaotic region outside the outer partial barrier (𝑞min = 0.0, 0.04858777, 0.09717554, and 0.14576331

and 𝑞max = 1 − 𝑞min). Shifting the absorber in that region leaves the tunneling rate 𝛾0 invariant

up to small variations. On top of the the exponential ℎ-scaling of the tunneling rate in the regime

20 . 1/ℎ . 50 and the plateau and peak of the 10 : 3 resonance in the regime 50 . 1/ℎ . 125, the

tunneling rate 𝛾0 shows fluctuations which produce peak-like structures, with peak spacings in the

inverse effective Planck constant ≈ 10. The origin of these peaks is not entirely understood. However,

a connection to resonance-assisted tunneling via the 4 : 1 resonance mediated by the partial barrier

is likely [117].

We proceed with Fig. 3.5 which presents the numerical tunneling rate 𝛾0 for absorbing regions

which intersect the outer partial barrier and penetrate into the chaotic subregion 𝒞2, but at the same

time do not affect the remnants of the 4 : 1 resonance (𝑞min = 0.17384221, 0.2019211, 0.23 with

𝑞max = 1 − 𝑞min). As can be seen in Fig. 3.5, the tunneling rate 𝛾0 still keeps the same order of

magnitude. However, the peak-like fluctuations of Fig. 3.4 are washed out the more the absorber is

shifted towards the 4 : 1 resonance.

We finalize our phenomenological investigation by considering Fig. 3.6, which shows numerically

obtained tunneling rates for absorbers (𝑞min = 0.271286 and 𝑞min = 0.2843 with 𝑞max = 1 − 𝑞min)

which are tangential to the inner partial barrier and the last torus of the regular region, respectively.

In contrast to the tunneling rates obtained for 𝑞min = 0.0, 𝑞max = 1.0 (gray data in Fig. 3.6) the
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Figure 3.6.: Numerically determined regular-to-chaotic tunneling rates 𝛾0 of the standard map at
𝜅 = 2.9 are shown as a function of the inverse effective Planck constant 1/ℎ by dots for different
locations of the absorber 𝑞min = 0.0 (gray data) and 𝑞min = 0.271286 and 0.2843. The last two
locations are depicted in the inset by shaded regions colored corresponding to the data. The insets
further show the (red) Husimi representation of the corresponding metastable state and the classical
phase space (gray dots and lines).

tunneling rates from absorbers close to the regular region are up to four orders of magnitude larger.

We summarize this discussion with the following conclusions: (1) The location of the absorber has a

profound impact on the regular-to-chaotic tunneling rate 𝛾𝑚. (2) The tunneling rate seems stable for

absorbing regions beyond the last partial barrier. In this thesis we focus on experimental situations

for which the absorber is close to the regular region, i. e., the complexity of tunneling rates induced

by the hierarchical region is ignored and has to be investigated in the future.

3.2.3. Regular-to-chaotic tunneling rates and chaos-assisted tunneling

In this section, we make a connection between regular-to-chaotic tunneling rates 𝛾 and the tradi-

tionally established phase splittings Δ𝜑 of chaos-assisted tunneling. In chaos-assisted tunneling two

parity related regular phase-space regions 𝑟, 𝑙 are separated by a chaotic phase-space region. Due to

symmetry, these two regular regions host equivalent Bohr–Sommerfeld like states |𝑟⟩ and |𝑙⟩. Here,

we restrict the presentation to one such state per region. They are related by the parity operator P̂,
according to |𝑙⟩ = P̂ |𝑟⟩ and |𝑟⟩ = P̂ |𝑙⟩. Due to symmetry, the eigenstates of such a system are the

symmetric and antisymmetric combinations |±⟩ = (|𝑟⟩± |𝑙⟩)/
√
2, which have the eigenphases 𝜑+ and

𝜑−. Due to tunneling, these eigenphases are not degenerate and have a small splittingΔ𝜑 = |𝜑−−𝜑+|,
which determines the oscillation period 𝑇 = 2𝜋/Δ𝜑 of a complete probability transfer from the regular

phase-space region 𝑟 to the regular phase-space region 𝑙 and back (|𝑟⟩ → |𝑙⟩ → |𝑟⟩).
For the standard map, a determination of such splittings Δ𝜑 is possible by using its quantization on
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the cylinders
(︀
R/(𝑞min +𝑀posZ)

)︀
×R with 𝑀pos = 2 where the phase space hosts two parity-related

regular regions. Equivalently, one can consider the quantization of the standard map on the cylinder(︀
R/(𝑞min +𝑀posZ)

)︀
× R with 𝑀pos = 1 and measure the splitting between regular states with the

same semiclassical quantum number 𝑚 on the regular region for the two Bloch-phase configurations

𝜃mom = 0.0, 0.5 [72], see gray crosses in Fig. (3.7) for Δ𝜑0

According to Ref. [65] regular-to-chaotic tunneling rates 𝛾 and chaos-assisted tunnel splittings Δ𝜑

are related according to

⟨Δ𝜑𝑚⟩ = 𝛾𝑚. (3.9)

Here, ⟨·⟩ denotes an ensemble average which assumes random-matrix statistics for the states associated

with the chaotic phase-space region. For the standard map the question whether Eq. (3.9) is applicable

arises immediately. This is due to partial barriers in the chaotic region, which on the one hand violate

the random matrix assumption behind Eq. (3.9) and on the other hand give tunneling rates which

depend on the absorber positions 𝑞min, 𝑞max. At least numerically we observe that (3.9) is roughly

fulfilled, when using the tunneling rates 𝛾0 obtained with absorber positions beyond the last partial

barrier, e. g., 𝑞min = 0.0, 𝑞max = 1.0, see purple dots in Fig. (3.7) and comparing them to Δ𝜑0.

In contrast to the statement made in Ref. [65] not only phase splittings but also the tunneling

rates can be strongly fluctuating quantities, see Fig. (3.7). For chaos-assisted phase splittings these

fluctuations can be understood from avoided crossings between regular states with spectrally fluctu-

1/h

γ0,∆φ0

10−14

10−12

10−10

10−8

10−6

10−4

20 40 60 80 100

q

p

Figure 3.7.: Comparison of regular-to-chaotic the tunneling rates 𝛾0 for 𝑞min = 0.0 and 𝑞max =
1.0 (magenta dots) and chaos-assisted phase splittings Δ𝜑0 (gray crosses) of the standard map at
𝜅 = 2.9 as a function of the inverse effective Planck constant 1/ℎ. The inset shows the (red) Husimi
representation of the corresponding regular state and the classical phase space (gray dots and lines)
with (magenta) absorbing regions.
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ating chaotic states [27, 28]. We conjecture that a similar mechanism causes the fluctuations of the

tunneling rates.

3.3. Predicting regular-to-chaotic tunneling rates using an improved

fictitious integrable system approach

In this section a quantum-mechanical prediction for regular-to-chaotic tunneling rates 𝛾𝑚 is derived,

resulting in an improved version of the fictitious integrable system approach of Refs. [62, 65]. Its

application to the standard map is demonstrated.

3.3.1. Derivation of the improved fictitious integrable system approach

In the following we derive a prediction of regular-to-chaotic tunneling rates. While keeping the basic

idea of Refs. [62, 65] the presented derivation results in a prediction which can account for the depen-

dence of regular-to-chaotic tunneling rates on the absorbing phase-space region ℛabs. Furthermore,

the presented derivation points out the errors which occur in approximating numerical regular-to-

chaotic tunneling rates 𝛾𝑚 by fictitious integrable system predictions.

The starting point of our derivation is Eq. (3.5) for 𝑛 = 1,

⟨𝑚|𝑚⟩ · exp (−𝛾𝑚) = ⟨𝑚|̂︀𝑈 †
open

̂︀𝑈open|𝑚⟩, (3.10)

which we consider as a definition of the tunneling rate 𝛾𝑚. Here, |𝑚⟩ is the metastable eigenstate

of the open system ̂︀𝑈open, which localizes on the torus of 𝑈 corresponding to the quantizing action

𝐼𝑚. We recall the definition of ̂︀𝑈open, Eq. (3.2), which is obtained from sandwiching the unitary

time-evolution operator ̂︀𝑈 of the closed non-integrable system between the projector (1− ̂︀𝑃abs). Here,
̂︀𝑃abs is a projector on the absorbing region ℛabs.

The derivation proceeds by using the unitarity of ̂︀𝑈 , which gives

⟨𝑚|𝑚⟩ = ⟨𝑚|̂︀𝑈 † ̂︀𝑈 |𝑚⟩. (3.11)

Subtracting Eq. (3.10) from Eq. (3.11) we get

⟨𝑚|𝑚⟩ (1− exp (−𝛾𝑚)) = ⟨𝑚|̂︀𝑈 † ̂︀𝑈 |𝑚⟩ − ⟨𝑚|(1− ̂︀𝑃abs)̂︀𝑈 †(1− ̂︀𝑃abs)̂︀𝑈(1− ̂︀𝑃abs)|𝑚⟩ (3.12)

where the projector properties (1− ̂︀𝑃abs) = (1− ̂︀𝑃abs)2 and (1− ̂︀𝑃abs) = (1− ̂︀𝑃abs)† were used. Since
|𝑚⟩ is an eigenstate of ̂︀𝑈open, Eq. (3.2), we conclude that

(1− ̂︀𝑃abs) |𝑚⟩ = |𝑚⟩ , (3.13)
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such that |𝑚⟩ can be normalized

⟨𝑚|𝑚⟩ = 1. (3.14)

Combining Eqs. (3.12), (3.13), and (3.14) with ̂︀𝑃abs = ̂︀𝑃 2
abs and ̂︀𝑃abs = ̂︀𝑃 †

abs gives

1− exp (−𝛾𝑚) = ‖ ̂︀𝑃abs ̂︀𝑈 |𝑚⟩ ‖2, (3.15)

which assuming that 𝛾𝑚 ≪ 1 is

𝛾𝑚 = ‖ ̂︀𝑃abs ̂︀𝑈 |𝑚⟩ ‖2. (3.16)

This relation allows for interpreting the tunneling rate as the probability transfer from the normalized

metastable state |𝑚⟩ into the absorber, via the time-evolution operator ̂︀𝑈 of the closed system. For

small tunneling rates, this relation is exact. If a semiclassical theory for metastable eigenstates of

the open system ̂︀𝑈open was available, Eq. (3.16) would provide an ideal starting point for further

semiclassical investigations. However, to the best knowledge of this thesis’ author, such a theory

does not exist. Therefore, we proceed by approximating the metastable state |𝑚⟩ by an approximate

regular basis state
⃒⃒
𝜓𝑚
reg

⟩︀
in the following. To this end we define the difference

|𝑑⟩ := |𝑚⟩ −
⃒⃒
𝜓𝑚
reg

⟩︀
(3.17)

between the metastable state |𝑚⟩ and the regular basis state
⃒⃒
𝜓𝑚
reg

⟩︀
, and obtain

𝛾𝑚 = ‖ ̂︀𝑃abs ̂︀𝑈
⃒⃒
𝜓𝑚
reg

⟩︀
‖2 + ⟨𝜓𝑚

reg|̂︀𝑈 † ̂︀𝑃abs ̂︀𝑈 |𝑑⟩+ ⟨𝑑|̂︀𝑈 † ̂︀𝑃abs ̂︀𝑈 |𝜓𝑚
reg⟩+ ⟨𝑑|̂︀𝑈 † ̂︀𝑃abs ̂︀𝑈 |𝑑⟩. (3.18)

This concludes our derivation. Our final quantum-mechanical prediction for regular-to-chaotic tun-

neling rates 𝛾𝑚 is given by

𝛾𝑚 = ‖ ̂︀𝑃abs ̂︀𝑈
⃒⃒
𝜓𝑚
reg

⟩︀
‖2. (3.19)

It is valid up to the error terms provided by

Δ𝛾𝑚 := ⟨𝜓𝑚
reg|̂︀𝑈 † ̂︀𝑃abs ̂︀𝑈 |𝑑⟩+ ⟨𝑑|̂︀𝑈 † ̂︀𝑃abs ̂︀𝑈 |𝜓𝑚

reg⟩+ ⟨𝑑|̂︀𝑈 † ̂︀𝑃abs ̂︀𝑈 |𝑑⟩. (3.20)

Using the triangle inequality, together with the Cauchy–Schwarz inequality, the operator norms

‖ ̂︀𝑃abs‖ = 1, ‖̂︀𝑈‖ = 1, and the normalization
⟨︀
𝜓𝑚
reg|𝜓𝑚

reg

⟩︀
= 1 we can provide the error bound

|Δ𝛾𝑚| ≤ 2‖𝑑‖+ ‖𝑑‖2, (3.21)

which shows that the validity of prediction (3.19) is guaranteed, for regular basis states which ap-
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proximate the metastable eigenstate on the order of the tunneling rate

‖𝑑‖ = ‖ |𝑚⟩ −
⃒⃒
𝜓𝑚
reg

⟩︀
‖ . 𝒪(𝛾𝑚). (3.22)

Note that constructing a regular basis state which approximates the metastable eigenstate of the open

system on the order of the tunneling rate is an extremely challenging task. Hence, condition (3.22) is

typically not fulfilled in practical implementations of Eq. (3.19), and thus, only serves as a theoretical

argument in the derivation of Eq. (3.19) which is not further exploited in this thesis.

If we assume that the transport through the chaotic phase-space region is fast, i. e., there are no

significant partial barriers, we can additionally approximate the projector ̂︀𝑃abs on the absorbing region
by the projector ̂︀𝑃ch on the whole chaotic phase-space region. This results in the prediction of the

fictitious integrable system approach,

𝛾𝑚 = ‖ ̂︀𝑃ch ̂︀𝑈
⃒⃒
𝜓𝑚
reg

⟩︀
‖2, (3.23)

as previously introduced in Refs. [62, 65]. Note that the practical advantage of Eq. (3.19) over

Eq. (3.23) lies in its ability to predict regular-to-chaotic tunneling rates 𝛾𝑚 for varying absorbing

regions ℛabs. This is important, if regular-to-chaotic tunneling rates depend sensitively on the ab-

sorbing region, as, e. g., discussed in Sect. 3.2.2 on partial barriers. On the other hand, the advantage

of Eq. (3.23) is its intuitive understanding of regular-to-chaotic tunneling as the probability transfer

from a state of the regular phase-space region to the chaotic phase-space region.

Having arrived at this result, the remaining challenge lies in providing the regular basis states⃒⃒
𝜓𝑚
reg

⟩︀
. As demonstrated in Refs. [62, 65] such basis states can be provided by using the eigenstates

of a fictitious integrable system 𝐻reg(𝑞, 𝑝). The details of this procedure, are described in Sects. 3.3.2

and 3.3.3 with results for the standard map presented in Sect. 3.3.4. However, before describing

these details, we work out an alternative to Eq. (3.19), which allows for WKB-like predictions for

regular-to-chaotic tunneling rates.

Towards a WKB-like prediction for regular-to-chaotic tunneling rates

The following derivation aims at deriving a quantum-mechanical prediction for regular-to-chaotic

tunneling rates, which semiclassically give WKB-like predictions using the regular basis state
⃒⃒
𝜓𝑚
reg

⟩︀
.

It has been worked out in collaboration with Martin Körber, who pointed out that alternatively

to solving the eigenvalue equation, Eq. (3.3), for the numerical determination of regular-to-chaotic

tunneling rates, it is possible to solve the eigenvalue equation

̂︀𝑈(1− ̂︀𝑃abs) |𝑚⟩ = 𝜆𝑚 |𝑚⟩ = exp
(︁
i
[︁
𝜑𝑚 + i

𝛾𝑚
2

]︁)︁
|𝑚⟩ . (3.24)

Applying (1− ̂︀𝑃abs) from the left and using that (1− ̂︀𝑃abs) = (1− ̂︀𝑃abs)2, we recover Eq. (3.3). In that

we verify that the operators ̂︀𝑈(1 − ̂︀𝑃abs) and (1 − ̂︀𝑃abs)̂︀𝑈(1 − ̂︀𝑃abs) have the same spectrum [118],

while the corresponding metastable eigenstates |𝑚⟩ and |𝑚⟩, with |𝑚⟩ as in Eq. (3.3), are related
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according to

|𝑚⟩ = (1− ̂︀𝑃abs) |𝑚⟩ . (3.25)

Applying the time-evolution operator of the closed systems ̂︀𝑈 from the left, and using Eq. (3.24) we

can deduce the inverted relation

|𝑚⟩ =
̂︀𝑈 |𝑚⟩
𝜆𝑚

, (3.26)

which shows that |𝑚⟩ is essentially the time-evolved version of |𝑚⟩. In contrast to |𝑚⟩ which has

no contributions in the absorbing region, Eq. (3.25), |𝑚⟩ also exists on the absorbing region. As a

consequence of Eq. (3.26) |𝑚⟩ is normalizable, if |𝑚⟩ is normalizable. From Eq. (3.24) it is straight

forward to show that

exp (−𝛾𝑚) =
‖̂︀𝑈(1− ̂︀𝑃abs) |𝑚⟩ ‖2

‖ |𝑚⟩ ‖2 = 1− ‖ ̂︀𝑃abs |𝑚⟩ ‖2
‖ |𝑚⟩ ‖2 , (3.27)

where the second step exploits the unitarity of ̂︀𝑈 . Assuming ‖ |𝑚⟩ ‖2 = 1 and 𝛾𝑚 ≪ 1, we get

𝛾𝑚 = ‖ ̂︀𝑃abs |𝑚⟩ ‖2, (3.28)

i. e., the regular-to-chaotic tunneling rate is given by the norm of the metastable state |𝑚⟩ in the

absorbing region. Note that Eqs. (3.16) and (3.28) are seemingly different due to the missing time-

evolution operator in Eq. (3.28). However, both equations are actually the same. This can be seen

from Eq. (3.26) which reveals that the time-evolution operator ̂︀𝑈 of Eq. (3.16) is simply hidden in

the metastable eigenstate |𝑚⟩ for Eq. (3.28).

We now proceed along the lines of the previous derivation. However, this time we approximate

the time-evolved version of |𝑚⟩, namely the state |𝑚⟩ by a regular basis state |𝜓𝑚
reg⟩. To this end we

define the difference state

|𝑑⟩ := |𝑚⟩ − |𝜓𝑚
reg⟩, (3.29)

and get

𝛾𝑚 = ‖ ̂︀𝑃abs
⃒⃒
𝜓𝑚
reg

⟩︀
‖2 + ⟨𝜓𝑚

reg| ̂︀𝑃abs|𝑑⟩+ ⟨𝑑| ̂︀𝑃abs|𝜓𝑚
reg⟩+ ⟨𝑑| ̂︀𝑃abs|𝑑⟩. (3.30)

This gives the regular-to-chaotic tunneling rate 𝛾𝑚 according to

𝛾𝑚 = ‖ ̂︀𝑃abs
⃒⃒
𝜓𝑚
reg

⟩︀
‖2, (3.31)
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which is valid up to errors

Δ𝛾𝑚 := ⟨𝜓𝑚
reg| ̂︀𝑃abs|𝑑⟩+ ⟨𝑑| ̂︀𝑃abs|𝜓𝑚

reg⟩+ ⟨𝑑| ̂︀𝑃abs|𝑑⟩. (3.32)

Similar as before we can provide the error bound

|Δ𝛾𝑚| ≤ 2‖𝑑‖+ ‖𝑑‖2, (3.33)

which shows that the validity of prediction (3.31) is guaranteed, for regular basis states which ap-

proximate the metastable eigenstate on the order of the tunneling rate

‖𝑑‖ = ‖ |𝑚⟩ −
⃒⃒
𝜓𝑚
reg

⟩︀
‖ . 𝒪(𝛾𝑚). (3.34)

Similar to the previous derivation, it is an extremely challenging task to construct a regular basis

state which approximates the metastable eigenstate |𝑚⟩ on the order of the tunneling rate, such that,

condition (3.34) is typically not fulfilled in practical implementations of Eq. (3.31). Hence, in this

thesis Eq. (3.34) remains only a theoretical argument we use for deriving Eq. (3.31).

In contrast to Eq. (3.19) the new prediction, Eq. (3.31), does not contain the time-evolution op-

erator ̂︀𝑈 any more. Therefore, assuming that ̂︀𝑃abs projects onto position space and
⃒⃒
𝜓𝑚
reg

⟩︀
can be

constructed within a semiclassical WKB-approach, Eq. (3.31) is a quantum-mechanical precursor of

a WKB-prediction for 𝛾𝑚. For practical implementations though, Eq. (3.19) is typically favorable

over Eq. (3.31). This is especially striking for maps with strongly mixing chaotic regions, as, e. g.,

discussed in Refs. [62, 65]. For such maps pulling the absorbing region away from the regular phase-

space region gives numerically stable tunneling rates. The same is true, when applying Eq. (3.19)

together with a basis state which concentrates in the regular phase-space region while decreasing ex-

ponentially towards the chaotic phase-space region. In contrast, using Eq. (3.31) together with such

a basis state gives exponentially decreasing tunneling rates when pulling the absorbing regions away

from the regular phase-space regions [119].

3.3.2. Constructing a fictitious integrable system for the standard map

As worked out in the previous sections, a prediction of regular-to-chaotic tunneling rates requires basis

states
⃒⃒
𝜓𝑚
reg

⟩︀
, which approximate the metastable eigenstates of an opened system ̂︀𝑈open. As discussed

in Refs. [62, 65], one possible way to construct such basis states is provided by using eigenstates of

a fictitious integrable system 𝐻reg. This fictitious integrable system 𝐻reg has to resemble the regular

tori of 𝑈 as closely as possible, while extending the torus structure of the regular region beyond its

boundary, see Fig. 3.8. In this section we show how such an integrable approximation 𝐻reg for the

standard map 𝑈 is obtained, based on the analysis of fundamental frequencies [120] for the regular

region. In that, we follow the presentation of Ref. [65].

The algorithm starts by defining a curve in phase space which parametrizes the tori of the regular

phase-space region in terms of a curve parameter 𝛼 ∈ [0, 1]. For the standard map at 𝜅 = 2.9 we
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Figure 3.8.: (a) Phase space of the standard map at 𝜅 = 2.9 with regular tori (lines) and a chaotic
orbit (dots), (c) in the action–angle coordinates of 𝐻reg. (b) Phase space of 𝐻reg, (d) in action–angle
coordinates. The boundary torus 𝐼 ′b is marked by a black line.

choose the curve

(𝑞(𝛼), 𝑝(𝛼)) := (0.5 + 0.1 · 𝛼, 0.0), (3.35)

connecting the central fixed point (𝑞, 𝑝) = (0.5, 0.0) with the boundary of the regular phase-space

region. Subsequently, we choose values of 𝛼 according to

0 ≤ 𝛼0 ≤ · · · ≤ 𝛼𝑖 ≤ · · · ≤ 𝛼𝑖max ≤ 1 with 𝑖 = 0, . . . , 𝑖max, (3.36)

which defines initial conditions (𝑞(𝛼𝑖), 𝑝(𝛼𝑖)) along the curve Eq. (3.35). From these initial conditions

(𝑞(𝛼𝑖), 𝑝(𝛼𝑖)) we compute orbits

(𝑞𝑖,𝑛, 𝑝𝑖,𝑛) = 𝑈𝑛(𝑞(𝛼𝑖), 𝑝(𝛼𝑖)) with 𝑛 = 0, . . . , 𝑛max (3.37)

with 𝑈𝑛 denoting the 𝑛-fold application of the map 𝑈 . Using the numerical analysis of fundamental

frequencies [120], we determine the frequency 𝜔𝑖 of each orbit. Furthermore, an action 𝐼𝑖 is assigned

to each orbit according to 𝐼𝑖 = 𝐴𝑖/(2𝜋), with 𝐴𝑖 being the numerically computed phase-space area

enclosed by the 𝑖th orbit. For the standard map we typically choose 𝛼𝑖 = ([𝑖 + 1/2]/𝑖max)
1/2 and

exclude values of 𝛼, for which (𝑞(𝛼𝑖), 𝑝(𝛼𝑖)) is too close to a non-linear resonance chain, i. e., we

exclude orbits for which 𝜔𝑖/(2𝜋) is rational.

Consecutively, we fit a polynomial of order 𝑅,

𝜔(𝐼) := 𝜔center +

𝑅∑︁

𝑟=1

𝑐𝑟𝐼
𝑟, (3.38)

to the numerically obtained data 𝜔𝑖, 𝐼𝑖. Here, 𝜔center is the frequency of the regular phase-space

region around the central fixed point, which for the standard map is given by, Eq. (2.24), with

𝜔center = 𝜈/(2𝜋). For the above polynomial we typically use orders 3 ≤ 𝑅 ≤ 5. Subsequently we
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integrate Eq. (3.38),

𝐸(𝐼) :=

∫︁ 𝐼

0
𝜔(𝐼 ′) d𝐼 ′ = 𝜔center𝐼 +

𝑅∑︁

𝑟=1

𝑐𝑟
𝑟 + 1

𝐼𝑟+1, (3.39)

which allows for assigning energies 𝐸𝑖 := 𝐸(𝐼𝑖) to all points of the regular orbit starting in (𝑞𝑖, 𝑝𝑖).

In that we define energies for the non-resonant points of the regular phase-space region. In order to

obtain the integrable system 𝐻reg, which approximates the tori of the regular phase-space region and

provides an extension of regular tori to the chaotic region, we fit the function

𝐻reg(𝑞, 𝑝) =
𝐾∑︁

𝑘=−𝐾

𝐿∑︁

𝑙=−𝐿

ℎ𝑘,𝑙 exp (2𝜋i [𝑘𝑞 + 𝑙𝑝]) (3.40)

to the above energy landscape 𝐸𝑖 at (𝑞𝑖,𝑛, 𝑝𝑖,𝑛) of the regular region. Choosing an appropriate order

𝐾,𝐿 in this last fitting step, which on the one hand ensures a good approximation of tori inside the

regular region of 𝑈 , while providing a suitable extension of regular tori towards the chaotic phase-

space region is typically an act of trial and error, which does not allow for many variations. For the

standard map at 𝜅 = 2.9 we use an 𝐻reg(𝑞, 𝑝) according to Eq. (3.40) with 𝐾 = 2, 𝐿 = 2 together

with the coefficients ℎ𝑘,𝑙 of Tab. 3.1. Note that the parity which is present in the standard map, is

not imposed on the above Hamiltonian. However, the weakly broken parity of 𝐻reg does not appear

too striking in the following discussions.

3.3.3. Weyl quantization of an integrable system

In this section we show how to quantize the classical Hamilton function 𝐻reg(𝑞, 𝑝) obtained in the

previous section, using the Weyl quantization [121].

Within the Weyl quantization scheme the operator ̂︀𝐻reg is given by

̂︀𝐻reg(𝑞, 𝑝) :=
1

(2𝜋)2

∫︁

R
d𝜉
∫︁

R
d𝜂
∫︁

R
d𝑞
∫︁

R
d𝑝 𝐻reg(𝑞, 𝑝) exp (−i [𝜉(𝑞 − 𝑞) + 𝜂(𝑝− 𝑝)]). (3.41)

Here, 𝑞 and 𝑝 are the position and momentum operators which fulfill the usual commutation relation

[𝑞, 𝑝] = i~. Using the Baker–Campbell–Hausdorff formula [122, 123] it is convenient to split the

exponential into two parts, such that

̂︀𝐻reg =
1

(2𝜋)2

∫︁

R
d𝜉
∫︁

R
d𝜂
∫︁

R
d𝑞
∫︁

R
d𝑝 𝐻reg(𝑞, 𝑝) exp (−i𝜉(𝑞 − 𝑞)) exp (−i𝜂(𝑝− 𝑝)) exp

(︂
i~
2
𝜉𝜂

)︂
.

(3.42)

Computing the position representation of this operator gives

⟨︀
𝑞′
⃒⃒ ̂︀𝐻reg |𝑞⟩ =

1

2𝜋~

∫︁

R

d𝑝𝐻reg

(︂
𝑞 + 𝑞′

2
, 𝑝

)︂
exp

(︂
− i
~
𝑝(𝑞 − 𝑞′)

)︂
. (3.43)
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𝑘 𝑙 ℎ𝑘,𝑙
−2 −2 −0.00354402080947 + i · 0.000223128338845
−2 −1 −0.00732397492445− i · 0.000127286868468
−2 0 −0.00331407736367− i · 5.66429043182 · 10−05

−2 1 −0.000230553400738− i · 7.91885605796 · 10−05

−2 2 0.000463741567981− i · 3.21015504093 · 10−05

−1 −2 0.00493726436345 + i · 0.000471199917317
−1 −1 0.0062671306568 + i · 0.000278024303203
−1 0 0.0154371570277− i · 0.000404998467013
−1 1 −0.00122593699659− i · 0.00028978687544
−1 2 0.00287198380122− i · 0.000186151345082
0 −2 0.00765549922097 + i · 0.000388234368692
0 −1 −0.00280480280752 + i · 0.000636073701545
0 0 0.0748060409176− i · 7.67538562065 · 10−14

0 1 −0.00280480280472− i · 0.000636073701415
0 2 0.00765549922031− i · 0.000388234368717
1 −2 0.00287198380169 + i · 0.000186151345055
1 −1 −0.00122593699741 + i · 0.000289786875538
1 0 0.0154371570258 + i · 0.000404998466916
1 1 0.00626713065914− i · 0.000278024303132
1 2 0.00493726436331− i · 0.000471199917323
2 −2 0.000463741568062 + i · 3.21015504001 · 10−05

2 −1 −0.000230553400642 + i · 7.91885606052 · 10−05

2 0 −0.00331407736444 + i · 5.66429042975 · 10−05

2 1 −0.00732397492399 + i · 0.000127286868481
2 2 −0.00354402080933− i · 0.000223128338844

Table 3.1.: Coefficients of the integrable approximation, Eq. (3.40), to the regular phase-space
region of the standard map at 𝜅 = 2.9.

As we consider Hamilton functions 𝐻reg(𝑞, 𝑝) which are 𝑀mom-periodic in momentum space,

𝐻reg(𝑞, 𝑝) = 𝐻reg(𝑞, 𝑝+𝑀mom) ∀𝑞, 𝑝 ∈ R, (3.44)

we can show that ̂︀𝐻reg commutes with the translation operator ̂︀𝑇𝑀mom , introduced in Eq. (2.45),

[ ̂︀𝐻reg, ̂︀𝑇𝑀mom ] = 0. (3.45)

Hence, we can consider the matrix representation of ̂︀𝐻reg on the cylinder R×
(︀
R/(𝑝min +𝑀momZ)

)︀
,

⟨𝑞𝑘| ̂︀𝐻reg|𝑞𝑙⟩ =
𝑝min+𝑀mom∫︁

𝑝min

d𝑝
𝑀mom

𝐻reg

(︂
𝑞𝑘 + 𝑞𝑙

2
, 𝑝

)︂
exp

(︂
2𝜋i(𝑘 − 𝑛)

𝑝

𝑀mom

)︂
. (3.46)

Here, 𝑞𝑙 are the sites of the position lattice, Eq. (2.47). Since we further consider Hamilton functions
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𝐻reg(𝑞, 𝑝) which are 𝑀pos-periodic in position space,

𝐻reg(𝑞 +𝑀pos, 𝑝) = 𝐻reg(𝑞, 𝑝) ∀𝑞, 𝑝 ∈ R, (3.47)

we can additionally show that ̂︀𝐻reg commutes with the translation operator ̂︀𝑇𝑀pos , introduced in

Eq. (2.37),

[ ̂︀𝐻reg, ̂︀𝑇𝑀pos ] = 0. (3.48)

Hence, we can even consider the matrix representation of ̂︀𝐻reg on the torus T :=
(︀
R/(𝑞min+𝑀posZ)

)︀
×(︀

R/(𝑝min +𝑀momZ)
)︀
,

⟨𝑞𝑘| ̂︀𝐻reg|𝑞𝑙⟩ =
∑︁

𝑝 𝑟
2
∈T
𝑒
i
~ (𝑞𝑘−𝑞𝑙)𝑝 𝑟

2
1

2𝑁

[︂
𝐻reg

(︂
𝑞𝑘 + 𝑞𝑛

2
, 𝑝 𝑟

2

)︂
+ (−1)𝑟𝐻reg

(︂
𝑞𝑘 + 𝑞𝑙

2
+
𝑀pos

2
, 𝑝 𝑟

2

)︂]︂
.

(3.49)

Here, 𝑝 𝑟
2
are momentum sites on the torus

(︀
R/(𝑞min +𝑀posZ)

)︀
×
(︀
R/(𝑝min +𝑀momZ)

)︀
. They are

given as in Eq. (2.39). However, the indices 𝑟/2 run in the half integers Z/2 thereby belonging to the

Wigner phase-space lattice [95], which is twice as fine as the original momentum lattice. The same

is true for the position sites (𝑞𝑘 + 𝑞𝑙)/2 = 𝑞[𝑘+𝑙]/2, (𝑞𝑘 + 𝑞𝑙 +𝑀pos)/2 = 𝑞[𝑘+𝑙]/2 +𝑀pos, which also

belong to the Wigner phase-space lattice, which is twice as fine as the position lattice, Eq. (2.47).

3.3.4. Results for the standard map

In the following we, discuss the predictions of regular-to-chaotic tunneling rates for the standard map

according to Eqs. (3.19), (3.31), and (3.23).

We start by constructing ̂︀𝐻reg on the torus
(︀
R/Z

)︀
×
(︀
R/(−0.5 + Z)

)︀
, Eq. (3.49), as introduced in

Sects. 3.3.2 and 3.3.3. This gives a finite-dimensional matrix, whose eigenvalue equation,

̂︀𝐻reg |𝐼𝑛⟩ = 𝐸𝑛 |𝐼𝑛⟩ , (3.50)

is solved numerically. Its eigenstates |𝐼𝑛⟩ can be grouped into regular basis states
⃒⃒
𝜓𝑚
reg

⟩︀
≡ |𝐼𝑚⟩ for

quantizing actions 𝐼𝑚 smaller than the regular–chaotic boundary action 𝐼 ′b and chaotic basis states

|𝜓𝑐ℎ⟩ ≡ |𝐼𝑐ℎ⟩ for actions 𝐼𝑐ℎ ≥ 𝐼 ′b. If 𝐻reg was a perfect approximation to the tori of 𝑈 the action

𝐼 ′b would be given by the area 𝐴reg of the regular region 𝐼 ′b = 𝐴reg/(2𝜋). However, the tori of 𝐻reg

coincide with the tori of 𝑈 on an approximate level only. Therefore, we choose 𝐼 ′b = 0.1223/(2𝜋)

as the action corresponding to the torus of 𝐻reg which encloses the regular phase-space region of 𝑈

and has minimal action, see black line in Fig. 3.8(a). Since 𝐼 ′b is chosen from a classical criterion, it

only coincides with a quantizing action for specific values of ~. Numerically, the sorting of states is

implemented by ordering the basis states according to their localization properties from the inside to

the outside of the central phase-space region of 𝐻reg. While the first 𝑁reg = ⌊𝐼 ′b/~+ 1/2⌋ states with
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𝑚 ∈ {0, . . . , 𝑁reg − 1} are regular according to Bohr–Sommerfeld quantization, all other states are

labeled as chaotic basis states. As discussed in Refs. [62, 65] the advantage of basis states
⃒⃒
𝜓𝑚
reg

⟩︀
and

|𝜓𝑐ℎ⟩ over eigenstates of the mixed system ̂︀𝑈 , is that eigenstates of ̂︀𝑈 already have admixtures in the

opposite phase-space region. In contrast the basis states localize maximally in one phase-space region

while decaying as fast as possible towards the opposite phase-space region, see, e. g., Fig. 3.9.

Using the above basis states together with the time-evolution operator ̂︀𝑈 of the standard map,

Eq. (2.61), on the torus
(︀
R/Z

)︀
×
(︀
R/(−0.5 + Z)

)︀
, we now evaluate Eqs. (3.19), (3.31), and (3.23).

We start by discussing the results for Eq. (3.19), where ̂︀𝑃abs is defined according to

̂︀𝑃abs =
∑︁

𝑞𝑙∈ℛabs

|𝑞𝑙⟩ ⟨𝑞𝑙| (3.51)

from the states of the position lattice, which localize in the absorbing region ℛabs = (−∞, 𝑞min) ∪
(𝑞max,∞), with 𝑞min = 0.2843 and 𝑞max = 1 − 𝑞min tangential to the regular region. The predicted

tunneling rates are shown as diamonds connected by lines in Fig. 3.10, while numerical rates, Eq. (3.3),

are shown as dots. Gray and colored dots further distinguish between numerical rates obtained

from solving Eq. (3.3) for opening ̂︀𝑈 on the cylinder R ×
(︀
R/(−0.5 + Z)

)︀
, Eq. (2.52), or the torus(︀

R/Z
)︀
×
(︀
R/(−0.5 + Z)

)︀
, Eq. (2.61), respectively. The agreement between predicted and numerical

rates is satisfactory.

We continue with Fig. 3.11, which shows predictions obtained from Eq. (3.31) by diamonds con-

nected by lines, i. e., in contrast to the prediction of the previous plot, the time evolution operator was

omitted such that the weight of the basis state in the absorbing region provides the tunneling rate.

The numerical rates, Eq. (3.3), are shown as dots again, with gray dots obtained from opening ̂︀𝑈 on

the cylinder R×
(︀
R/(−0.5 + Z)

)︀
, Eq. (2.52), and colored dots obtained from opening ̂︀𝑈 on the torus(︀

R/Z
)︀
×
(︀
R/(−0.5 + Z)

)︀
, Eq. (2.61), respectively. The agreement between predicted and numerical

rates is slightly enhanced, as compared to Fig. 3.10.

In order to illustrate the advantage of the improved fictitious integrable system approach over its
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Figure 3.9.: Husimi representation of (a) an eigenstate of ̂︀𝑈 versus (b) a regular and (c) a chaotic
basis state at 1/ℎ = 50. White lines present corresponding quantizing tori while the phase space of
𝑈 is shown in gray.
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Figure 3.10.: Regular-to-chaotic tunneling rates 𝛾𝑚 versus inverse effective Planck constant 1/ℎ of
the standard map at 𝜅 = 2.9 for 𝑚 = 0, 1, 2, 3 (bottom to top). Numerical rates (dots) are obtained

from Eq. (3.3) using ̂︀𝑃abs as in Eq. (3.51) and ̂︀𝑈 on the cylinder (gray dots) or the torus (colored
dots), respectively. The predicted rates (diamonds connected by lines) are obtained from Eq. (3.19)

with the same ̂︀𝑃abs.
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Figure 3.11.: Regular-to-chaotic tunneling rates 𝛾𝑚 versus inverse effective Planck constant 1/ℎ of
the standard map at 𝜅 = 2.9 for 𝑚 = 0, 1, 2, 3 (bottom to top). Numerical rates (dots) are obtained

from Eq. (3.3) using ̂︀𝑃abs as in Eq. (3.51) and ̂︀𝑈 on the cylinder (gray dots) or the torus (colored
dots), respectively. The predicted rates (diamonds connected by lines) are obtained from Eq. (3.31)

with the same ̂︀𝑃abs.
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previous version, as introduced in Refs. [62, 65], we now evaluate Eq. (3.23). The required projector
̂︀𝑃ch is constructed according to

̂︀𝑃abs =
∑︁

𝐼′
b
<𝐼𝑐ℎ

|𝜓𝑐ℎ ≡ 𝐼𝑐ℎ⟩ ⟨𝜓𝑐ℎ ≡ 𝐼𝑐ℎ| , (3.52)

from the eigenstates |𝜓𝑐ℎ⟩ of 𝐻reg, which localize in the chaotic phase-space region. The resulting

prediction of the tunneling rates is shown as diamonds connected by lines in Fig. 3.12. The nu-

merical rates obtained from Eq. (3.3), are shown by dots. Comparing these results to the results of

Figs. 3.10 and 3.11, the agreement between numerical and predicted rates has decreased. Especially

the quantization jumps appear at different values of ℎ for numerical and predicted rates. As discussed

in the text around Eq. (3.8), the quantization jumps in the numerical rates occur due to a growing

number of lattice points in the quantization of ̂︀𝑈open. On the other hand, quantization jumps pre-

dicted by the fictitious integrable system approach, Eq. (3.23), occur due to the chaotic basis state

|𝜓𝑐ℎ⟩ ≡ |𝐼𝑐ℎ⟩, which localizes just beyond the regular–chaotic border, i. e., 𝐼 ′b ≤ 𝐼𝑐ℎ < 𝐼 ′b + ~, and
carries the dominant contribution to Eq. (3.23). Exactly at values

1

ℎ
=
𝑐ℎ+ 1

2

2𝜋𝐼 ′b
(3.53)

with 𝑐ℎ from N, this state |𝐼𝑐ℎ⟩ is relabeled from being a chaotic to being a regular basis state, such
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Figure 3.12.: Regular-to-chaotic tunneling rates 𝛾𝑚 versus inverse effective Planck constant 1/ℎ of
the standard map at 𝜅 = 2.9 for 𝑚 = 0, 1, 2, 3 (bottom to top). Numerical rates (dots) are obtained

from Eq. (3.3) using ̂︀𝑃abs as in Eq. (3.51) and ̂︀𝑈 on the cylinder (gray dots) or the torus (colored
dots), respectively. The predicted rates (diamonds connected by lines) are obtained from Eq. (3.23)

with ̂︀𝑃ch as in Eq. (3.52).
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that it is removed from the projector ̂︀𝑃ch, Eq. (3.52), and its contribution is removed from Eq. (3.23).

This causes the quantization jump of the tunneling rates.

Finally, let us mention that within the improved fictitious integrable system approach, Eq. (3.19),

it is of cause meaningful to predict regular-to-chaotic tunneling rates according to Eq. (3.23), if the

numerical rates are obtained from Eq. (3.3), with ̂︀𝑃abs = ̂︀𝑃ch, and ̂︀𝑃ch defined as in Eq. (3.52).

The results for these numerical and predicted data is presented in Fig. 3.13, by dots and diamonds

respectively. In that case, the agreement between numerical and predicted data is again completely

satisfactory. This result underlines that the essential point of using the improved fictitious integrable

system approach, Eq. (3.19), instead of the original approach, Eq. (3.23), for predicting regular-to-

chaotic tunneling rates is merely the unified use of ̂︀𝑃abs in the numerical determination of tunneling

rates and their quantum-mechanical prediction.

3.3.5. Discussion and open problems – resonance chains, partial barriers, and regular

basis states

So far, we have only presented predictions for regular-to-chaotic tunneling rates in the resonance-

free ℎ-regime of direct regular-to-chaotic tunneling. In addition only absorbing phase-space regions

ℛabs close to the regular–chaotic phase-space border were considered. Beyond these constraints,

a prediction of regular-to-chaotic tunneling rates within the improved fictitious integrable system

approach was so far impossible.

In order to understand the origin of this restriction let us recall that our prediction, Eq. (3.19),

1/h

γm

10−7

10−5

10−3

20 40 60 80

Figure 3.13.: Regular-to-chaotic tunneling rates 𝛾𝑚 versus inverse effective Planck constant 1/ℎ of
the standard map at 𝜅 = 2.9 for 𝑚 = 0, 1, 2, 3 (bottom to top). Numerical rates (dots) are obtained

from Eq. (3.3) using ̂︀𝑃abs = ̂︀𝑃ch as in Eq. (3.52) and predicted rates (diamonds connected by lines)

are obtained from Eq. (3.19) or (equivalently Eq. (3.23)) with ̂︀𝑃abs = ̂︀𝑃ch.



3.4 Summary on quantum-mechanical regular-to-chaotic tunneling rates 45

evaluates the exact predictions (3.16), by approximating the corresponding metastable eigenstates

|𝑚⟩ in terms of a regular basis state
⃒⃒
𝜓𝑚
reg

⟩︀
. In order to guarantee the validity of this approximation,

we require the basis state
⃒⃒
𝜓𝑚
reg

⟩︀
to agree with the metastable eigenstates |𝑚⟩ within errors which are

smaller than the predicted tunneling rate 𝛾𝑚, see the sufficient condition in Eq. (3.22).

Hence, the future challenge in predicting effects of resonance-assisted tunneling on regular-to-chaotic

tunneling rates 𝛾𝑚 in terms of Eq. (3.19) requires basis states
⃒⃒
𝜓𝑚
reg

⟩︀
which describe the localization

of the metastable eigenstate |𝑚⟩ not only on the 𝑚th quantizing torus but also its 𝑟 : 𝑠 resonance-

induced admixtures on the higher excited quantizing tori 𝑚 + 𝑛 · 𝑟. Note that this is already the

central idea, behind the perturbation theory applied in Ref. [64]. Analogously, the future challenge in

predicting effects of partial barriers on regular-to-chaotic tunneling rates 𝛾𝑚 in terms of Eq. (3.19),

requires basis states
⃒⃒
𝜓𝑚
reg

⟩︀
which describe the localization properties of the metastable eigenstate |𝑚⟩

on the hierarchical phase-space region. Note that a more direct prediction of 𝛾𝑚 in terms of the exact

Equation (3.16) would be favorable, if an analytic theory for metastable eigenstates |𝑚⟩, e. g., in terms

of semiclassical expressions, was known. Since this is not the case, the detour of replacing |𝑚⟩ by an

approximate regular basis state
⃒⃒
𝜓𝑚
reg

⟩︀
and evaluating Eq. (3.19) instead is so far the best foundation

for constructing a semiclassical theory.

Finally, we point out that the prediction of regular-to-chaotic tunneling rates according to Eq. (3.19)

possesses error terms which are controlled by Eq. (3.20) or the stronger sufficient condition Eq. (3.22).

So far these equations only served as a theoretical justification for approximating metastable eigen-

states |𝑚⟩ in terms of a regular basis states
⃒⃒
𝜓𝑚
reg

⟩︀
. In the future it seems reasonable to exploit these

equations as benchmarks for regular basis states
⃒⃒
𝜓𝑚
reg

⟩︀
and the underlying fictitious integrable systems

𝐻reg. In the same way, the WKB-like prediction for regular-to-chaotic tunneling rates, Eq. (3.31), its

error terms Eq. (3.32) or its sufficient condition Eq. (3.34) deserve a more intense investigation.

3.4. Summary on quantum-mechanical regular-to-chaotic tunneling

rates

In this chapter we introduced the notion of regular-to-chaotic tunneling rates 𝛾 as a key quantity

for characterizing regular-to-chaotic tunneling. A numerical determination of such tunneling rates

as decay rates of metastable states was presented. The influence of non-linear resonance chains on

regular-to-chaotic tunneling rates was discussed, which lead to a distinction of two ℎ-regimes: (i) The

resonance-free ℎ-regime of direct regular-to-chaotic tunneling. Here, the metastable eigenstates of
̂︀𝑈open semiclassically localize on a single quantizing torus of the regular region. (ii) The ℎ-regime of

resonance-assisted regular-to-chaotic tunneling. Here, the metastable eigenstates of ̂︀𝑈open predomi-

nantly localize on a specific quantizing torus, but also have resonance-induced tunneling admixtures

which localize on higher exited quantizing tori of the regular phase-space region, and thus, assist the

tunneling process. Subsequently, we demonstrated that regular-to-chaotic tunneling rates depend on

the choice of the absorbing region ℛabs. A phenomenological connection between the absorbing re-

gion ℛabs and partial barriers in the hierarchical region was considered. Finally, the relation between
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tunneling rates and phase splittings of chaos-assisted tunneling [27] was discussed.

In the second part of this chapter, we derived an improved fictitious integrable system approach

[62, 65], which allows for predicting regular-to-chaotic tunneling rates quantum-mechanically. Its

application to the standard map was demonstrated. Finally, we concluded with the open problem of

predicting effects of non-linear resonance chains and partial transport barriers on regular-to-chaotic

tunneling rates 𝛾𝑚 within the fictitious integrable system approach.



4. Complex paths for regular-to-chaotic

tunneling rates

In this chapter we develop a complex-path approach for regular-to-chaotic tunneling rates. In Sect. 4.1,

this approach is derived by combining the fictitious integrable system approach, Refs. [62, 65], in

its improved version, Eq. (3.19) of Sect. 3.3, with the semiclassical complex-path method of Shudo

and Ikeda, Refs. [76–82]. This gives a semiclassical prediction for regular-to-chaotic tunneling rates,

Eq. (4.14), which is the main result of this thesis. In Sect. 4.2 we illustrate how the required complex

paths for our semiclassical approach can be constructed. An explicit construction of these paths for

the standard map is demonstrated. In Sect. 4.3, we present and discuss the successful semiclassical

predictions of our complex-path approach for regular-to-chaotic tunneling rates for the standard map.

We close this chapter by discussing the embedding of our complex paths into the complexified phase

space of the standard map in Sect. 4.4. In that we establish the essential geometric picture of our

complex-path approach. The results presented in this chapter are an extended version of Ref. [116].

4.1. Semiclassical predictions for regular-to-chaotic tunneling rates

In this section, we derive a semiclassical prediction, Eq. (4.14), for regular-to-chaotic tunneling rates

of time-periodic open systems (1− ̂︀𝑃abs)̂︀𝑈(1− ̂︀𝑃abs). Here, the classical analog of the corresponding

unitary time-evolution operator ̂︀𝑈 is a stroboscopic, symplectic map 𝑈 on a two-dimensional phase

space. The derivation of Eq. (4.14) is based on a combination of the improved fictitious integrable

system approach, Eq. (3.19) of Sect. 3.3, and the semiclassical complex-path method of Shudo and

Ikeda, Refs. [76–82].

This section is organized as follows: In Sect. 4.1.1, we reformulate the quantum-mechanical predic-

tions for regular-to-chaotic tunneling rates, Eq. (3.19), in terms of quantum-mechanical tunneling-

matrix elements. Subsequently, these tunneling-matrix elements are expressed in terms of a semiclassi-

cal propagator as introduced in Refs. [76–82]. In Sect. 4.1.3 this results in a semiclassical prediction for

regular-to-chaotic tunneling rates, Eq. (4.8), which is further simplified to our main result, Eq. (4.14).
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4.1.1. Regular-to-chaotic tunneling rates from regular-to-chaotic tunneling-matrix

elements

We start our derivation of semiclassical regular-to-chaotic tunneling rates from the quantum-mechanical

prediction of Eq. (3.19). This prediction is a sum of quantum-mechanical transition probabilities,

𝛾𝑚 =
∑︁

𝑐ℎ

|⟨𝜓𝑐ℎ
abs|̂︀𝑈 |𝜓𝑚

reg⟩|2. (4.1)

These transitions take place between the regular basis state |𝜓𝑚
reg⟩, localizing on the regular phase-

space region, and chaotic basis states |𝜓𝑐ℎ
abs⟩, localizing on the absorbing region ℛabs in the chaotic

part of phase space. In contrast to Eq. (3.19), Eq. (4.1) explicitly assumes that the projector ̂︀𝑃abs
on the absorber in the chaotic phase-space region is representable as a projector sum on orthonormal

chaotic basis states

̂︀𝑃abs =
∑︁

𝑐ℎ

|𝜓𝑐ℎ
abs⟩⟨𝜓𝑐ℎ

abs|. (4.2)

Note that the corresponding projectors, discussed in Chap. 3 for the standard map, Eqs. (3.51) and

(3.52), have exactly this shape.

As previously discussed in Sect. 3.3 the basis states |𝜓𝑚
reg⟩ are not the eigenstates of the time-

evolution operator ̂︀𝑈 , but rather originate from an integrable approximation to the regular phase-

space region, e. g., in terms of a fictitious integrable system 𝐻reg. For the upcoming derivation it is

convenient to stress that this gives rise to a canonical transformation,

(𝑞, 𝑝) = 𝒦reg(𝐼, 𝜃), (4.3)

which provides the points (𝑞, 𝑝) in phase space in terms of the action–angle coordinates of the integrable

approximation. This allows for labeling the regular basis states |𝜓𝑚
reg⟩ in terms of quantizing actions

𝐼𝑚, according to |𝜓𝑚
reg⟩ = |𝐼𝑚⟩. For the upcoming derivation it is further convenient to assume there

is also a fictitious integrable structure which describes the absorber in the chaotic phase-space region.

This structure gives rise to another canonical transformation,

(𝑞′, 𝑝′) = 𝒦abs(𝐼
′, 𝜃′). (4.4)

It represents the points (𝑞′, 𝑝′) of the absorbing phase-space region ℛabs by classical action–angle

coordinates (𝐼 ′, 𝜃′) ∈ ℛabs × [0, 2𝜋). This allows for labeling the basis states |𝜓𝑐ℎ
abs⟩ in terms of

quantizing actions 𝐼 ′𝑐ℎ, according to |𝜓𝑐ℎ
abs⟩ = |𝐼 ′𝑐ℎ⟩. In order to emphasize their localization in the

chaotic phase-space region, we denote their semiclassical quantum number by 𝑐ℎ. Note that the

projectors discussed for the standard map in Chap. 3 are determined from such integrable structures.

For ̂︀𝑃abs, Eq. (3.52), this is due to its origin from a fictitious integrable system 𝐻reg. Here, ℛabs =

[𝐼 ′b,∞). Analogously, for ̂︀𝑃abs, Eq. (3.51), this is due to its origin from the fictitious integrable system
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𝐻reg(𝑞, 𝑝) = 𝑞. Considering this system on a phase space with period 𝑀mom = 1 in momentum

direction allows for identifying the quantizing actions with the sites of the position lattice, Eq. (2.47),

according to 𝐼 ′𝑐ℎ = 𝑞𝑙=𝑐ℎ/(2𝜋) such that ℛabs = (−∞, 𝑞min/(2𝜋)) ∪ (𝑞max/(2𝜋),∞).

After introducing the relabeled basis states the quantum-mechanical prediction of regular-to-chaotic

tunneling rates of Eq. (4.1) becomes

𝛾𝑚 =
∑︁

𝐼′𝑐ℎ∈ℛabs

|⟨𝐼 ′𝑐ℎ|̂︀𝑈 |𝐼𝑚⟩|2. (4.5)

This prediction is still quantum mechanical in nature. However, the notation already hints the

semiclassical picture behind regular-to-chaotic tunneling rates, which are semiclassically given by

complex paths between the approximate quantizing tori 𝐼𝑚 of the regular phase-space region and the

fictitious quantizing absorber tori 𝐼 ′𝑐ℎ which localize in the chaotic phase-space region. Note that the

imprint of the improved fictitious integrable system approach on Eq. (4.5) lies in using regular basis

states |𝐼𝑚⟩ and chaotic basis states |𝐼 ′𝑐ℎ⟩ for the absorbing region, which originate from different sets

of action–angle coordinates, i. e., 𝒦abs ̸= 𝒦reg. Nevertheless, Eq. (4.5) also describes the fictitious

integrable system approach of Refs. [62, 65], according to Eq. (3.23), if the tori 𝐼𝑚 and 𝐼 ′𝑐ℎ are

provided by a single canonical transformation 𝒦abs = 𝒦reg. We further point out that upon replacing

the time-evolution operator ̂︀𝑈 by the identity operator, Eq. (4.5) represents the WKB-like prediction

of Eq. (3.31).

4.1.2. Complex paths for regular-to-chaotic tunneling-matrix elements

Based on standard semiclassical methods [91, 92] we evaluate the regular-to-chaotic tunneling-matrix

elements, ⟨𝐼 ′𝑐ℎ|̂︀𝑈 |𝐼𝑚⟩, of Eq. (4.5) semiclassically, see Appendix B for details. This results in a semi-

classical propagator for regular-to-chaotic tunneling-matrix elements,

⟨𝐼 ′𝑐ℎ|̂︀𝑈 |𝐼𝑚⟩ =
∑︁

𝜈

√︃
~
2𝜋

𝜕2𝒮𝜈(𝐼 ′𝑐ℎ, 𝐼𝑚)

𝜕𝐼 ′𝑐ℎ 𝜕𝐼𝑚
exp

(︂
i
𝒮𝜈(𝐼

′
𝑐ℎ, 𝐼𝑚)

~
+ i𝜑𝜈

)︂
. (4.6)

This propagator is the familiar one-step version of the propagator used in Ref. [81]. Similar versions

are discussed in Refs. [76–82]. The above propagator is evaluated from the action

𝒮𝜈(𝐼
′
𝑐ℎ, 𝐼𝑚) =

∫︁

𝒞𝑚,𝜈

𝑝(𝑞, 𝐼𝑚)d𝑞 + 𝒮𝑈
𝜈 (𝑞′𝜈 , 𝑞𝜈) +

∫︁

𝒞𝑐ℎ,𝜈

𝑝′(𝐼 ′𝑐ℎ, 𝑞
′)d𝑞′ (4.7)

of paths 𝜈, which connect the approximate integrable tori 𝐼𝑚 of the regular phase-space region to the

tori 𝐼 ′𝑐ℎ of the absorber in the chaotic phase-space region. The construction of such paths requires to

find the points (𝑞𝜈 , 𝑝𝜈) on the complexified torus 𝐼𝑚 which map to points (𝑞′𝜈 , 𝑝
′
𝜈) on the complexified

torus 𝐼 ′𝑐ℎ via the complexified map 𝑈 . These points give rise to three path segments, see Fig. 4.1,

(S1–S3):

(S1) The first WKB-like segment originates from the regular basis states |𝐼𝑚⟩. It corresponds to
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the curve 𝒞𝑚,𝜈 on the complexified initial torus 𝐼𝑚. This curve connects a reference point (𝑞𝑚, 𝑝𝑚)

on the real torus 𝐼𝑚 to the point (𝑞𝜈 , 𝑝𝜈). Along this curve we compute the WKB-like contribution∫︀
𝒞𝑚,𝜈

𝑝(𝑞, 𝐼𝑚)d𝑞 to Eq. (4.7). (S2) The second segment originates from the semiclassical propagator

corresponding to ̂︀𝑈 . This time-evolution segment is obtained by applying the complexified map 𝑈 of

the non-integrable system. It has to connect (𝑞𝜈 , 𝑝𝜈) on the initial complexified torus 𝐼𝑚 to a point

(𝑞′𝜈 , 𝑝
′
𝜈) on the final complexified torus 𝐼 ′𝑐ℎ. This requirement also defines the possible end points

(𝑞𝜈 , 𝑝𝜈) of the first segment. Note that this time-evolution segment can only exist, if 𝐼𝑚 is not an

invariant torus of 𝑈 . This demonstrates the importance of using approximate tori 𝐼𝑚, e. g., from

a fictitious integrable system in our approach. The time-evolution segment contributes the action

𝒮𝑈
𝜈 (𝑞′𝜈 , 𝑞𝜈) to Eq. (4.7). (S3) The final WKB-like segment originates from the chaotic basis state |𝐼 ′𝑐ℎ⟩

in the absorbing phase-space region. It is the curve 𝒞𝑐ℎ,𝜈 along the analytic continuation of the final

torus 𝐼 ′𝑐ℎ. This curve connects the end point of the time-evolution segment (𝑞′𝜈 , 𝑝
′
𝜈) on the complexified

torus 𝐼 ′𝑐ℎ to a reference point (𝑞′𝑐ℎ, 𝑝
′
𝑐ℎ) of the real torus 𝐼

′
𝑐ℎ. Along this curve we compute the WKB-

like contribution
∫︀
𝒞𝑐ℎ,𝜈 𝑝

′(𝐼 ′𝑐ℎ, 𝑞
′)d𝑞′ to Eq. (4.7). Finally, the Maslov phase 𝜑𝜈 in Eq. (4.6) accounts

for phase shifts between distinct paths 𝜈 due to turning points. For a sketch of the complex paths,

see, e. g., Fig. 4.1.

4.1.3. Semiclassical regular-to-chaotic tunneling rates

Combining Eqs. (4.5) and (4.6), we obtain a semiclassical prediction for regular-to-chaotic tunneling

rates,

𝛾𝑚 =
∑︁

𝐼′𝑐ℎ∈ℛabs

⃒⃒
⃒⃒∑︁

𝜈

√︃
~
2𝜋

𝜕2𝒮𝜈(𝐼 ′𝑐ℎ, 𝐼𝑚)

𝜕𝐼 ′𝑐ℎ 𝜕𝐼𝑚
exp

(︂
i
𝒮𝜈(𝐼

′
𝑐ℎ, 𝐼𝑚)

~
+ i𝜑𝜈

)︂⃒⃒
⃒⃒
2

. (4.8)

Unfortunately, the evaluation of the above expression requires a determination of new complex paths

for each quantizing torus 𝐼 ′𝑐ℎ of the absorbing phase-space region. Moreover, each path 𝜈 requires

a determination of the Maslov phase 𝜑𝜈 , in order to describe interference between distinct paths

correctly.

Diagonal approximation

In order to derive a semiclassical prediction which is easier to evaluate, we simplify Eq. (4.8) in terms

of a diagonal approximation,

𝛾𝑚 =
∑︁

𝐼′𝑐ℎ∈ℛabs

∑︁

𝜈

~
2𝜋

⃒⃒
⃒⃒𝜕

2𝒮𝜈(𝐼
′
𝑐ℎ, 𝐼𝑚)

𝜕𝐼 ′𝑐ℎ 𝜕𝐼𝑚

⃒⃒
⃒⃒ exp

(︂
−2 Im𝒮𝜈(𝐼

′
𝑐ℎ, 𝐼𝑚)

~

)︂
. (4.9)

This approximation is exact, if only a single path contributes to the path summation (
∑︀

𝜈) in Eq. (4.8).

In contrast, if a finite number (𝜈max+1) of equally contributing paths dominate the path summation

(
∑︀

𝜈) in Eq. (4.8), we assume that random interference between these dominant paths cancels the
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cross terms, giving the diagonal approximation of Eq. (4.8). A more rigorous statement can be made

using Jensen’s inequality,

⃒⃒
⃒⃒∑︁

𝜈

√︃
~
2𝜋

𝜕2𝒮𝜈(𝐼 ′𝑐ℎ, 𝐼𝑚)

𝜕𝐼 ′𝑐ℎ 𝜕𝐼𝑚
exp

(︂
i
𝒮𝜈(𝐼

′
𝑐ℎ, 𝐼𝑚)

~
+ i𝜑𝜈

)︂⃒⃒
⃒⃒
2

≤ (𝜈max + 1)
∑︁

𝜈

~
2𝜋

⃒⃒
⃒⃒𝜕

2𝒮𝜈(𝐼
′
𝑐ℎ, 𝐼𝑚)

𝜕𝐼 ′𝑐ℎ 𝜕𝐼𝑚

⃒⃒
⃒⃒ exp

(︂
−2 Im𝒮𝜈(𝐼

′
𝑐ℎ, 𝐼𝑚)

~

)︂
, (4.10)

which means that the tunneling rate of Eq. (4.8) is at most (𝜈max +1) times larger than the diagonal

approximation of Eq. (4.9). On the other hand uncontrolled errors can arise from the diagonal

approximation, if destructive interference of different paths in Eq. (4.8) leads to tunneling rates,

which are significantly overestimated by the diagonal approximation of Eq. (4.9). For our predictions

errors due to this diagonal approximation are expected to vanish in the semiclassical limit. In this

limit the single path with the smallest imaginary action dominates the paths summation (
∑︀

𝜈) in

Eq. (4.8), such that the diagonal approximation becomes exact.

Edge contribution

Summing the diagonal terms in Eq. (4.9) over the quantizing actions 𝐼 ′𝑐ℎ still requires to determine new

complex paths for each quantizing torus 𝐼 ′𝑐ℎ. This effort can be drastically reduced by approximating

the sum over discrete quantizing actions 𝐼 ′𝑐ℎ by an integral over continuous actions 𝐼 ′,

𝛾𝑚 =
∑︁

𝜈

∫︁

𝐼′∈ℛabs

d𝐼 ′
1

2𝜋

⃒⃒
⃒⃒𝜕

2𝒮𝜈(𝐼
′, 𝐼𝑚)

𝜕𝐼 ′ 𝜕𝐼𝑚

⃒⃒
⃒⃒ exp

(︂
−2 Im𝒮𝜈(𝐼

′, 𝐼𝑚)

~

)︂
. (4.11)

Numerically we observe that the most important contributions to Eq. (4.11), originate from the

(possibly multiple) boundaries of the absorbing phase-space region 𝜕ℛabs, where 𝐼 ′ = 𝐼 ′b, see, e. g.,

Fig. 4.4. Hence, the integrals in Eq. (4.11) are dominated by the corresponding integrands at the

boundaries 𝐼 ′b, rather than by saddle points along the integration contour. Under this assumption we

expand the actions 𝒮𝜈(𝐼
′, 𝐼𝑚) to first order in the exponential in the vicinity of 𝐼 ′b,

𝒮𝜈(𝐼
′, 𝐼𝑚) ≈ 𝒮𝜈(𝐼

′
b, 𝐼𝑚) +

𝜕𝒮𝜈(𝐼
′, 𝐼𝑚)

𝜕𝐼 ′

⃒⃒
⃒⃒
𝐼′=𝐼′

b

(𝐼 ′ − 𝐼 ′b). (4.12)

From now on using the notation

𝜕𝒮𝜈(𝐼
′, 𝐼𝑚)

𝜕𝐼 ′

⃒⃒
⃒⃒
𝐼′=𝐼′

b

=
𝜕𝒮𝜈(𝐼

′
b, 𝐼𝑚)

𝜕𝐼 ′b
, (4.13)

we evaluate the contribution of the integral at the boundaries, 𝐼 ′b ∈ 𝜕ℛabs, of the absorbing region. In

contrast to Eq. (4.8) this results in a prediction which only requires paths that connect the complexified

torus 𝐼𝑚 to the complexified boundary torus 𝐼 ′b. This gives the main semiclassical result for regular-
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to-chaotic tunneling rates,

𝛾𝑚 =
∑︁

𝜈

∑︁

𝐼′
b
∈𝜕ℛabs

~
2𝜋

⃒⃒
⃒𝜕

2𝒮𝜈(𝐼′b,𝐼𝑚)

𝜕𝐼′
b
𝜕𝐼𝑚

⃒⃒
⃒

⃒⃒
⃒2 Im 𝜕𝒮𝜈(𝐼′b,𝐼𝑚)

𝜕𝐼′
b

⃒⃒
⃒
exp

(︂
−2 Im𝒮𝜈(𝐼

′
b, 𝐼𝑚)

~

)︂
. (4.14)

It predicts regular-to-chaotic tunneling rates from the complex action 𝒮𝜈(𝐼
′
b, 𝐼𝑚), Eq. (4.7), of complex

paths 𝜈, which connect the WKB-like segments (S1) and (S3) on the complexified tori 𝐼𝑚 and 𝐼𝑐ℎ via

a time-evolution segment (S2) of the non-integrable system 𝑈 , see Fig. 4.1.

Discussion

The main advance of the presented complex-path approach is that here the required complex paths for

regular-to-chaotic tunneling rates can be constructed. In that we show that a semiclassical prediction

of regular-to-chaotic tunneling rates in non-integrable systems with a mixed phase space is possible.

In contrast to WKB-like approaches this is facilitated within our complex-path approach due to the

use of approximate tori 𝐼𝑚 for the regular region. The analytic continuation of such tori can be

extended beyond the natural boundary of the corresponding invariant tori. This allows for extending

the WKB-segment (S1) sufficiently deep into the complexified phase space in order to provide a time-

evolution segment (S2) which maps to the quantizing absorber tori 𝐼 ′b in the chaotic phase space.

This would not be possible with the corresponding invariant tori of the non-integrable system 𝑈 ,

because there the WKB-segment (S1) can only be extended up to the natural boundary such that the

time-evolution segment (S2) would remain on 𝐼𝑚. For a deeper discussion of this geometric picture

see Sect. 4.4. Note that for WKB-like paths in near-integrable systems similar ideas to overcome

natural boundaries were used [59, 71, 73, 75].

Furthermore, our main result, Eq. (4.14), formally resembles the WKB-prediction for integrable

systems, Eq. (1.1). In that it provides a semiclassical justification for the long-conjectured, Ref. [83],

and often-observed, Refs. [40, 42, 43, 47, 50, 65], exponential scaling of direct regular-to-chaotic

tunneling rates 𝛾𝑚 with effective Planck’s constant ℎ.

For applying our prediction, Eq. (4.14), one has to (A) construct the complexified tori 𝐼𝑚 and 𝐼 ′b,

e. g., by using a fictitious integrable system 𝐻reg, (B) find the complex paths 𝜈 between 𝐼𝑚 and 𝐼 ′b
giving rise to the segments (S1–S3), and (C) compute their action 𝒮𝜈 according to Eq. (4.7) and

select the dominant paths, which have the smallest positive imaginary action. How this is done is

demonstrated in the following section.

4.2. Constructing regular-to-chaotic complex paths

In this section we describe how a semiclassical evaluation of regular-to-chaotic tunneling rates ac-

cording to Eq. (4.14) is implemented. To this end, we implement steps (A–C): (A) We complexify

the tori 𝐼𝑚 and 𝐼 ′𝑐ℎ corresponding to the regular and the chaotic phase-space region, respectively.

(B) We search for the complex paths, connecting these tori in complexified phase space. This gives
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the time-evolution segment (S2) connecting the WKB-segments (S1) and (S3) along the tori 𝐼𝑚 and

𝐼 ′b, respectively. (C) From Eq. (4.7) we compute the action of each path, using the dominant ones

with the smallest positive imaginary action for evaluating Eq. (4.14). A similar procedure would apply

for evaluating regular-to-chaotic tunneling-matrix elements, Eq. (4.6), or regular-to-chaotic tunneling

rates from Eq. (4.8).

The following implementation of (A–C) is given from the point of view that the canonical trans-

formations, 𝒦reg and 𝒦abs, which generate the approximate tori of the regular and the absorbing

phase-space region, are not given explicitly. Instead they are given implicitly by fictitious integrable

systems 𝐻reg and 𝐻abs. In order to illustrate the method, each step (A–C) is specified for the standard

map, focusing on the case 𝐻reg = 𝐻abs, with 𝐻reg provided by Eq. (3.40) and Tab. 3.1 of Sect. 3.3.2.

Prior to implementing steps (A–C), we identify reference points, (𝑞𝑚, 𝑝𝑚) and (𝑞′b, 𝑝
′
b), on the

tori 𝐼𝑚 of 𝐻reg and 𝐼 ′b of 𝐻abs, respectively. Subsequently, we determine the round-trip frequencies,

𝜔𝑚 and 𝜔′
b, and the energies, 𝐸𝑚 and 𝐸′

b, of 𝐼𝑚 and 𝐼 ′b, respectively. For the example of the

standard map with 𝐻reg = 𝐻abs, this is implemented by parametrizing the tori of 𝐻reg by a curve

of reference points (𝑞(𝛼), 𝑝(𝛼)) = (0.5 + 𝛼, 0.0). Along this curve we determine (𝑞𝑚, 𝑝𝑚) and (𝑞′b, 𝑝
′
b)

by numerical optimization, i. e., we shift 𝛼 until a numerical integration of Hamilton’s equations

gives closed orbits which encircle the areas 2𝜋𝐼𝑚 or 2𝜋𝐼 ′b, respectively. The corresponding round-

trip frequencies, 𝜔𝑚 = 2𝜋/𝑇𝑚 and 𝜔′
b = 2𝜋/𝑇 ′

b, are obtained by numerically integrating Hamilton’s

equations from the reference points (𝑞𝑚, 𝑝𝑚) and (𝑞′b, 𝑝
′
b) up to periods 𝑇𝑚 and 𝑇 ′

b respectively, for

which the numerical trajectories first revisit the corresponding reference points. The energies of the

tori 𝐼𝑚 and 𝐼 ′b are computed as 𝐸𝑚 = 𝐻reg(𝑞𝑚, 𝑝𝑚) and 𝐸′
b = 𝐻abs(𝑞

′
b, 𝑝

′
b), respectively.

Constructing complexified tori of 𝐻reg

In construction step (A) we provide the complexified tori corresponding to 𝐼𝑚 and 𝐼 ′b. If the canonical

transformations 𝒦reg and 𝒦abs were explicitly known, the complex positions and complex momenta

of the complexified tori,

𝑇𝐼𝑚 :=
{︀(︀
𝑞(𝐼𝑚, 𝜃), 𝑝(𝐼𝑚, 𝜃)

)︀
= 𝒦reg(𝐼𝑚, 𝜃) ∈ C2 : 𝜃 ∈

(︀
[0, 2𝜋) + iR

)︀}︀
, (4.15)

𝑇𝐼′
b
:=
{︀(︀
𝑞′(𝐼 ′b, 𝜃

′), 𝑝′(𝐼 ′b, 𝜃
′)
)︀
= 𝒦abs(𝐼

′
b, 𝜃

′) ∈ C2 : 𝜃′ ∈
(︀
[0, 2𝜋) + iR

)︀}︀
, (4.16)

can be determined from the action–angle coordinates, respectively, with fixed action and complex

angle.

Here, the canonical transformations are not known explicitly. In order to provide the complexified

torus 𝐼𝑚 of𝐻reg we exploit that the time-evolution along the torus 𝐼𝑚 is given by 𝜃(𝑡) = 𝜔𝑚𝑡, in action–

angle coordinates. Hence, a numerical integration of Hamilton’s equations starting from the reference

point (𝑞𝑚, 𝑝𝑚) = 𝒦reg(𝐼𝑚, 0) up to complex times 𝑡 = 𝜃/𝜔𝑚 gives the point (𝑞(𝐼𝑚, 𝜃), 𝑝(𝐼𝑚, 𝜃)) =

𝒦reg(𝐼𝑚, 𝜃 = 𝜔𝑚𝑡) on the complexified torus 𝐼𝑚, Eq. (4.15). Since this torus may have singularities

at complex angles 𝜃, we set branch cuts by first integrating in real and then in imaginary time.

Analogously we obtain the points on the complexification of the torus 𝐼 ′b, Eq. (4.16). An example of
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the resulting tori for 𝐻reg is illustrated by red and blue surfaces in Fig. 4.1. Figure 4.2 presents the

same tori in action–angle coordinates. Note that constructing complexified tori of 𝐻reg by the method

of real and imaginary time evolution only works for systems with a two-dimensional phase space.

A shooting algorithm for finding time-evolution segments

In construction step (B) we search for points (𝑞𝜈 , 𝑝𝜈) on the complexified torus 𝐼𝑚 which map to a

point (𝑞′𝜈 , 𝑝
′
𝜈) on the complexified torus 𝐼 ′b. This gives the segments (S1–S3) of the complex path 𝜈,

see, e. g., the green arrows in Figs. 4.1 and 4.2.

In order to find these points we apply a shooting algorithm, i. e., we map the initial complexified

torus 𝐼𝑚, Eq. (4.15), giving 𝑈(𝑞(𝐼𝑚, 𝜃), 𝑝(𝐼𝑚, 𝜃)) and search for intersections of these mapped points

with the complexified final torus 𝐼 ′b, Eq. (4.16). This amounts to finding the intersection points of two

real manifolds of dimension two in a four-dimensional phase space. In order to find these intersection

ν = 0

ν = 1
ν = 2

ν = 3

Re q0 1

Re p

−0.5

0.0

0.5

Im θ

Figure 4.1.: Dominant complex paths (green arrows) for the tunneling rate 𝛾1 of the standard map
at 𝜅 = 2.9 and ℎ = 1/50 with 𝐻reg = 𝐻abs. The complexified torus 𝐼1 is shown as a projection in
red while the complexified torus 𝐼 ′b is shown as a projection in blue. The visualization is simplified
by shifting the angle of the end points of segment (S2) by −𝜔b along 𝐼 ′b. Furthermore, only the
complex parts of segments (S1) and (S3) are shown. The natural boundary of the corresponding
invariant torus of 𝑈 is shown as a projection (white line) on the initial torus.
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ν = 0

ν = 1
ν = 2

ν = 3

0

Re I

I1

Ib

Re θ

0

π

Im θ

Figure 4.2.: Dominant complex paths (green arrows) for the tunneling rate 𝛾1 of the standard
map at 𝜅 = 2.9 and ℎ = 1/50 in action–angle representation with 𝐻reg = 𝐻abs. The planes are the
complexified torus 𝐼1 and the complexified torus 𝐼

′
b of 𝐻reg. White dots represent points on 𝐼1 which

map onto 𝐼 ′b. They are at the intersection of the gray lines (M-set) with the boundary between red
and blue regions. The visualization is simplified by shifting the angle of the end points of segment
(S2) by −𝜔b along 𝐼 ′b. Furthermore, only the complex parts of segments (S1) and (S3) are shown.
The natural boundary is shown as a projection (white line) on the initial torus.

points we exploit that the mapped points of 𝐼𝑚 are only on 𝐼 ′b, if their final energy is equal to the

energy 𝐸′
b of the boundary torus 𝐼 ′b. Therefore, we apply a numerical root search on

�̃�(𝜃) := 𝐻abs(𝑈(𝑞(𝐼𝑚, 𝜃), 𝑝(𝐼𝑚, 𝜃)))− 𝐸′
b, (4.17)

giving the angles 𝜃𝜈 . In order to find a good initial guess for 𝜃𝜈 we visualize �̃�(𝜃) by plotting the

𝜃-curves where Im �̃�(𝜃) = 0. These curves are called M-set as first introduced in Refs. [76, 77].

Since real energies correspond to tori of 𝐻abs with real action, the M-set indicates locations on the

complexified torus 𝐼𝑚, that map to tori of 𝐻abs with real action. For the standard map the M-set is

shown by gray lines in Fig. 4.2. In this figure we further mark the different phase-space regions the

points on the M-set are mapped to. This is achieved by representing points on the complex 𝜃-plane

of 𝐼𝑚 in red, if Re �̃�(𝜃) < 0 or blue, if Re �̃�(𝜃) > 0, respectively. This indicates final tori in the

regular and the chaotic phase-space region, respectively. The intersections of the gray M-set lines

with the blue–red border provide the roots 𝜃𝜈 of �̃�(𝜃), see dots in Fig. 4.2, and thus, the sought for

initial points (𝑞𝜈 , 𝑝𝜈) = (𝑞(𝐼𝑚, 𝜃𝜈), 𝑝(𝐼𝑚, 𝜃𝜈)) and end points (𝑞′𝜈 , 𝑝
′
𝜈) = 𝑈(𝑞𝜈 , 𝑝𝜈) of the time-evolution
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segment (S2).

In order to complete construction step (B) we determine the curve 𝒞b,𝜈 which connects (𝑞′𝜈 , 𝑝
′
𝜈) to

the reference point (𝑞′b, 𝑝
′
b) along the final complexified torus 𝐼 ′b. To this end, we numerically integrate

Hamilton’s equations backward in imaginary time up to the value −Im 𝑡′𝜈 , giving a curve along the

complexified torus 𝐼 ′b starting from (𝑞′𝜈 , 𝑝
′
𝜈) back to real phase space. From the end point of this curve

we integrate Hamilton’s equations backward in real time, up to the value −Re 𝑡′𝜈 . This gives a curve

along the real torus back to the reference point (𝑞′b, 𝑝
′
b). This involves two optimization procedures

giving the integration times which provide the complex angle according to 𝜃′𝜈 = 𝑡′𝜈/(2𝜋).

This finalizes the construction of segments (S1–S3). The WKB-like segment (S1) is the curve 𝒞𝑚,𝜈

on the complexification of 𝐼𝑚 connecting the reference point (𝑞𝑚, 𝑝𝑚) to the point (𝑞𝜈 , 𝑝𝜈) according

to the numerical integration of Hamilton’s equations. The time-evolution segment (S2) connects the

points (𝑞𝜈 , 𝑝𝜈) and (𝑞′𝜈 , 𝑝
′
𝜈) on the complexification of 𝐼𝑚 and 𝐼 ′b, respectively, via the complexified map

𝑈 . The WKB-like segment (S3) is the curve 𝒞b,𝜈 on the complexification of 𝐼 ′b connecting the point

(𝑞′𝜈 , 𝑝
′
𝜈) to the reference point (𝑞

′
b, 𝑝

′
b) according to the numerical integration of Hamilton’s equations.

Evaluating actions and selecting dominant paths

In construction step (C) we compute the action 𝒮𝜈(𝐼
′
b, 𝐼𝑚) of the paths 𝜈 according to Eq. (4.7).

The first and the last contribution originate from the WKB-like segments (S1) and (S3) and can be

computed by numerical integration along the curves 𝒞𝑚,𝜈 and 𝒞b,𝜈 , respectively. The time-evolution

segment (S2) contributes the action 𝒮𝑈
𝜈 (𝑞𝜈 , 𝑝𝜈) to Eq. (4.7) which is obtained from the map 𝑈 . For

the standard map this contribution is given by Eq. (2.15) with Eq. (2.3).

We further evaluate the action of all paths 𝜈 which have a small imaginary angle 𝜃𝜈 , see dots in

Fig. 4.2. We exclude paths which are close to so-called Laputa flowers [76–78], where the M-set forms

petal-like clusters. From the evaluated actions, we exclude paths with negative imaginary action as

these paths give rise to unphysical transition probabilities. Subsequently, we select the paths with

the smallest imaginary action that dominate Eqs. (4.6), (4.8), and (4.14), see, e. g., green arrows in

Figs. 4.2 and 4.1. Note, that this is sufficient for our purposes, while in general a Stokes analysis

[66, 67, 77, 124] is required.

Steps (A–C) can also be implemented for regular-to-chaotic tunneling rates from the improved

fictitious integrable system approach. To this end, we consider the standard map at 𝜅 = 2.9 with

𝐻reg as before (Eq. (3.40) and Tab. 3.1 of Sect. 3.3.2) and 𝐻abs(𝑞, 𝑝) = 𝑞 = 𝐼 ′/(2𝜋). The boundary

tori are 𝑞min = 0.2843 and 𝑞max = 1− 𝑞min. The resulting complex paths are shown in Fig. 4.3.

We emphasize that the essential point which allows for constructing regular-to-chaotic complex

paths for Eq. (4.14) is our use of approximate complexified tori 𝐼𝑚 and 𝐼 ′b. In contrast to the invariant

tori of 𝑈 these tori do not have natural boundaries such that the WKB-segment (S1) can be extended

sufficiently deep into complexified phase space to provide a time-evolution segment (S2) which maps

to 𝐼 ′b. This important fact is illustrated in Figs. 4.1, 4.2, and 4.3, where the natural boundary

of the corresponding invariant torus of 𝑈 is indicated by a white line. Clearly, the time-evolution

segments (S2) emanate from parts of the initial torus 𝐼𝑚 which are above the natural boundary. For



4.3 Results for the standard map 57

Re q0 1qmin qmax

Re p

−0.5

0.0

0.5

Im θ

Figure 4.3.: Dominant complex paths (green arrows) for the tunneling rate 𝛾1 of the standard map
at 𝜅 = 2.9 and ℎ = 1/50 with 𝐻reg as in Eq. (3.40) and 𝐻abs(𝑞, 𝑝) = 𝑞. The complexified torus 𝐼1 is
shown as a projection in red while the complexified boundary tori 𝑞min = 0.2843 and 𝑞max = 1−𝑞min

are shown as a projection (depicting Im 𝑝 instead of Im 𝜃) in blue. Note that only the complex parts
of segments (S1) and (S3) are shown. The natural boundary is shown as a projection (white line)
on the initial torus.

WKB-like paths in near-integrable systems similar ideas to overcome natural boundaries were used

[59, 71, 73, 75].

4.3. Results for the standard map

In this section we show semiclassically predicted regular-to-chaotic tunneling rates 𝛾𝑚 for the standard

map at 𝜅 = 2.9. The required paths are constructed according to steps (A–C) as previously described

in Sect. 4.2.

4.3.1. Fictitious integrable system approach

We start by considering the semiclassical analog of the fictitious integrable system approach of

Refs. [62, 65] with 𝐻reg = 𝐻abs given by Eq. (3.40) and Tab. 3.1 of Sect. 3.3.2.
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Regular-to-chaotic tunneling-matrix elements

The first semiclassical result we consider are the regular-to-chaotic tunneling-matrix elements of

Eq. (4.6) for the example of 1/ℎ = 50. We construct each matrix element ⟨𝐼0|̂︀𝑈 |𝐼𝑛⟩ from four

dominant paths connecting 𝐼0 and 𝐼𝑛 in complexified phase space. For each final action 𝐼𝑛 these four

paths are qualitatively similar to the paths presented in Figs. 4.1 and 4.2. Due to the parity of the

standard map 𝑈 and the fictitious integrable system 𝐻reg each of the four paths 𝜈 has a symmetry

partner. We account for these symmetry partners by doubling the contribution of each path 𝜈 in

Eq. (4.6). It can further be shown that the interference between symmetry partners semiclassically

implements the quantum-mechanical selection rule for the tunneling-matrix elements. We account for

this effect by considering only tunneling-matrix elements ⟨𝐼0|̂︀𝑈 |𝐼2𝑛⟩ between states of the same parity

class.

The results are presented in Fig. 4.4 by big black diamonds connected by a black line. The con-

tributions of the four individual paths are presented by the gray underlined small colored diamonds.

In order to obtain these results we use Maslov phases 𝜑𝜈 = 0. The agreement to quantum data

(red circles connected by a red line), numerically obtained by representing the time-evolution oper-

ator ̂︀𝑈 of the standard map in the eigenbasis |𝐼𝑛⟩ of ̂︀𝐻reg, Eq. (3.50), is acceptable. We observe

that the regular-to-chaotic tunneling probabilities decrease with increasing 𝐼𝑛. This behavior is even
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Figure 4.4.: Tunneling probabilities |⟨𝐼2𝑛|̂︀𝑈 |𝐼0⟩|2 versus action 2𝜋𝐼𝑛 of the final torus for the stan-
dard map at 𝜅 = 2.9 and 1/ℎ = 50. Numerical tunneling probabilities (red circles connected by a

thick red line) are obtained from ̂︀𝑈 on toric phase space, represented in the eigenbasis |𝐼𝑛⟩ of 𝐻reg,
Eq. (3.50). Semiclassical tunneling probabilities (big diamonds connected by a thick line) are ob-
tained by using Eq. (4.6) together with four dominant paths 𝜈, similar to paths presented in Figs. 4.1
and 4.2. Semiclassical tunneling probabilities corresponding to a single path are presented by small,
colored diamonds connected via thin gray lines. The dashed line at 2𝜋𝐼 ′b = 0.1223 distinguishes
regular-to-regular from regular-to-chaotic tunneling probabilities.
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more pronounced for the individual contributions, which decrease roughly exponentially for rising

𝐼𝑛. Therefore the regular-to-chaotic tunneling probability just beyond the boundary of the absorbing

region 𝐼 ′b is typically the dominant contribution in Eq. (4.8). This justifies the edge approximation

leading to Eq. (4.14). For the presented example in Fig. 4.4 this dominant regular-to-chaotic tunneling

probability locates at 2𝜋𝐼𝑛 = 0.13. It requires the combination of all four paths to achieve satisfactory

agreement to the numerical result. This is the authors motivation for keeping even the less dominant

paths 𝜈 = 0, 1 in the following semiclassical prediction of regular-to-chaotic tunneling rates 𝛾𝑚.

Regular-to-chaotic tunneling rates from summing tunneling-matrix elements

We now take precisely such semiclassical regular-to-chaotic tunneling-matrix elements and sum the

resulting tunneling probabilities over all quantizing actions 𝐼 ′𝑐ℎ > 𝐼 ′b = 0.1223/(2𝜋) in the chaotic

phase-space region. This gives the semiclassical regular-to-chaotic tunneling rate 𝛾𝑚 according to

Eq. (4.8). Note that this corresponds to a semiclassical prediction of regular-to-chaotic tunneling

rates according to the fictitious integrable system approach of Refs. [62, 65]. The required matrix

elements ⟨𝐼𝑚|̂︀𝑈 |𝐼 ′𝑐ℎ⟩ are semiclassically constructed from four dominant paths connecting 𝐼𝑚 and 𝐼 ′𝑐ℎ.

These paths are qualitatively similar to the paths of Figs. 4.1 and 4.2. As previously discussed the

symmetry partners are accounted for by doubling the contribution of each of the paths 𝜈 = 0, 1, 2, 3 for

tunneling-matrix elements between states of the same symmetry class. This introduces an additional

factor of four in our semiclassical prediction of regular-to-chaotic tunneling rates, Eq.(4.8), where due

to parity the summation is restricted to contributions from 𝐼𝑚 to 𝐼 ′𝑐ℎ with 𝑐ℎ = 𝑚+ 2𝑛.

The semiclassical regular-to-chaotic tunneling rates of Eq. (4.8) (underlined diamonds) are presented

in Fig. 4.5. They are compared to the corresponding numerical tunneling rates (dots) obtained from

Eq. (3.3), with ̂︀𝑃abs constructed from ̂︀𝐻reg as in Eq. (3.52). Comparing Fig. 4.5 to its quantum-

mechanical counterpart, Fig. 3.13, the presented semiclassical predictions are adequate in most regimes

of Planck’s constant, while being poor especially in the quantum regime, 1/ℎ ≈ 25. The author

suspects that these deviation are due to insufficient knowledge on the Maslov phase 𝜑𝜈 which would

be required in order to describe the interference between distinct paths correctly. Here we set 𝜑𝜈 = 0.

Regular-to-chaotic tunneling rates from edge contributions

We now consider our favored predictions of regular-to-chaotic tunneling rates according to Eq. (4.14),

which does not require any Maslov phase. The required semiclassical expressions are constructed from

four dominant paths connecting 𝐼𝑚 to the boundary torus 𝐼 ′b = 0.1223/(2𝜋). An example of such

paths for 𝐼𝑚 = 𝐼1 at 1/ℎ = 50 is shown in Figs. 4.1 and 4.2. We implement the parity of 𝑈 and 𝐻reg

in Eq. (4.14) by considering only the paths 𝜈 without symmetry partners and multiplying the results

of Eq. (4.14) with a factor of two. This originates from the following line of reasoning. Accounting for

symmetry partners doubles the contribution of each path 𝜈 to the regular-to-chaotic tunneling-matrix

elements. This gives a factor of four, when summing transition probabilities. Considering that half

of these transitions are forbidden by selection rules gives the final factor of two in Eq. (4.14).

The results (lines) are presented in Fig. 4.6. They are compared to the corresponding numerical
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Figure 4.5.: Regular-to-chaotic tunneling rates 𝛾𝑚 of the standard map at 𝜅 = 2.9 for 𝑚 = 0, 1, 2, 3
(bottom to top) versus the inverse effective Planck constant 1/ℎ. Numerical rates (dots) are obtained

from Eq. (3.3) with ̂︀𝑈open (3.2) using ̂︀𝑃abs as in Eq. (3.52). Semiclassical rates (diamonds connected
by lines) are obtained from Eq. (4.8) using four paths 𝜈, as, e. g., presented in Figs. 4.1 and 4.2 for
each required transition from 𝐼𝑚 to 𝐼 ′𝑐ℎ > 𝐼 ′b = 0.1223/(2𝜋).

1/h

γm

10−7

10−5

10−3

20 40 60 80

Figure 4.6.: Regular-to-chaotic tunneling rates 𝛾𝑚 of the standard map at 𝜅 = 2.9 versus inverse
effective Planck constant 1/ℎ for 𝑚 = 0, 1, 2, 3 (bottom to top). Numerical rates (dots) are as
in Fig. 4.5. Semiclassical rates (lines) are obtained from Eq. (4.14) using four paths 𝜈, as, e. g.,
presented in Figs. 4.1 and 4.2 for each required transition from 𝐼𝑚 to 𝐼 ′b = 0.1223/(2𝜋).
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tunneling rates (dots) obtained from Eq. (3.3), with ̂︀𝑃abs constructed from ̂︀𝐻reg as in Eq. (3.52).

The semiclassical prediction clearly reproduces the exponential decrease of the numerical regular-to-

chaotic tunneling rates 𝛾𝑚 for increasing 1/ℎ. In contrast to Eq. (4.8), Eq. (4.14) fails to reproduce the

quantization jumps of the numerical tunneling rates. This is due to approximating the semiclassical

information of complex paths 𝜈 to each quantizing torus 𝐼 ′𝑐ℎ by the reduced information of complex

paths 𝜈 to a single boundary torus 𝐼 ′b. Given that this drastically reduces the effort of predicting 𝛾𝑚,

clearly outweighs the loss of quantization jumps and makes Eq. (4.14) favorable over Eq. (4.8) for

practical use.

The single-path prediction

Considering that the results of Fig. 4.6 have contributions of four paths, it is an interesting question to

understand how much each of these paths contributes to the final result. To this end, we consider the

relative contribution of each path 𝛾𝑚,𝜈 to the tunneling rate 𝛾𝑚 in Fig. 4.7. This plot clearly reveals

that the tunneling rates 𝛾𝑚 are semiclassically dominated by the path 𝜈 = 3. Furthermore, Fig. 4.7

shows that especially the path 𝜈 = 0 but also the path 𝜈 = 1 have a minor impact on the tunneling

rates 𝛾𝑚. In contrast, the path 𝜈 = 2 dominates in the quantum regime of the tunneling rates 𝛾1, 𝛾2,

and 𝛾3. Nevertheless, a prediction of regular-to-chaotic tunneling rates according to Eq. (4.14) using

only the dominant path 𝜈 = 3 gives reasonable results, as can be seen from Fig. 4.8. This allows for

the conclusion that Eq. (4.14) represents a generalization of the WKB-like prediction for integrable

systems, Eq. (1.1), to non-integrable systems. In that it provides a semiclassical understanding for
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Figure 4.7.: Relative contributions of the paths 𝜈 = 0, 1, 2, 3 to the semiclassically predicted regular-
to-chaotic tunneling rates 𝛾𝑚, Eq. (4.14), of Fig. 4.6, for 𝑚 = 0, 1, 2, 3. For an example of the paths
𝜈, see, e. g., Figs. 4.1 and 4.2.
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Figure 4.8.: Regular-to-chaotic tunneling rates 𝛾𝑚 of the standard map at 𝜅 = 2.9 versus inverse
effective Planck constant 1/ℎ for 𝑚 = 0, 1, 2, 3 (bottom to top). Numerical rates are illustrated as
in Fig. 4.6. In contrast, the semiclassical rates (lines) are obtained from Eq. (4.14) using only the
semiclassically dominant path 𝜈 = 3 from 𝐼𝑚 to 𝐼 ′b = 0.1223/(2𝜋). An example of this path is shown
in Figs. 4.1 and 4.2.

the exponential decrease of direct regular-to-chaotic tunneling rates with decreasing effective Planck

constant ℎ.

4.3.2. Improved fictitious integrable system approach

We now consider semiclassical predictions of regular-to-chaotic tunneling rates of the standard map at

𝜅 = 2.9 corresponding to the improved fictitious integrable system approach of Sect. 3.3. To this end,

we keep 𝐻reg according to Eq. (3.40) and Tab. 3.1 of Sect. 3.3.2 but replace the fictitious integrable

system for the tori of the absorbing region by 𝐻abs(𝑞, 𝑝) = 𝑞.

In order to provide this prediction we evaluate Eq. (4.14) using the single dominant complex path

𝜈 = 0 which propagates from 𝐼𝑚 to the right boundary torus 𝑞max = 1.0 − 𝑞min with 𝑞min = 0.2843,

see, e. g., Fig. 4.3. Its symmetry partner going to 𝑞min is accounted for by doubling the contribution

of the path 𝜈 = 0 in Eq. (4.14). The results (lines) are presented in Fig. 4.9. They are compared

to the corresponding numerical tunneling rates (dots) obtained from Eq. (3.3), with ̂︀𝑃abs constructed
from states of the position lattice, Eq. (2.47) according to Eq. (3.52). The agreement between nu-

merical rates and semiclassical predictions is given within a factor of three. Again the exponential

decrease of these direct regular-to-chaotic tunneling rates for decreasing ℎ is semiclassically explained

by Eq. (4.14).

Finally we show that Eq. (4.14) can at least predict regular-to-chaotic tunneling rates for absorbing

regions just beyond the inner partial barrier. Please see Fig. 3.6 to recall the precise setup. In order
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Figure 4.9.: Regular-to-chaotic tunneling rates 𝛾𝑚 of the standard map at 𝜅 = 2.9 versus inverse
effective Planck constant 1/ℎ. Numerical rates (dots) are obtained from Eq. (3.3) with ̂︀𝑈open,

Eq. (3.2), using ̂︀𝑃abs as in Eq. (3.51). Semiclassical rates (lines) are obtained from Eq. (4.14)using
only the dominant path 𝜈 to 𝑞max as, e. g., in Fig. 4.3, for each required transition from 𝐼𝑚 to
𝑞min = 0.2843 and 𝑞max = 1.0− 𝑞min, respectively.

to predict semiclassical tunneling rates for this absorbing region, ℛabs = (−∞, 𝑞min)∪ (𝑞max,∞) with

𝑞min = 0.271286 and 𝑞max = 1 − 𝑞min, we evaluate Eq. (4.14) using the single complex path going to

the boundary of the absorbing region at 𝑞max. We account for the symmetry partner going to 𝑞min by

doubling the contribution of the path to 𝑞max. These paths are similar to the paths in Fig. 4.3. The

results (lines) are presented in Fig. 4.10. Similar as before the agreement between numerical rates and

semiclassical predictions is within a factor of three. Also for these tunneling rates, using the single

dominant path in Eq. (4.14) semiclassically explains the exponential dependence of direct regular-to-

chaotic tunneling rates on the effective Planck constant ℎ. Note that accounting for absorbing regions

beyond the outer partial barrier is so far neither quantum-mechanically nor semiclassically possible

within the (improved) fictitious integrable system approach. As discussed in Sect. 3.3.5, this problem

has to be solved for quantum predictions before meaningful semiclassical results can be expected.

Towards a WKB-like prediction for regular-to-chaotic tunneling rates

A semiclassical version of Eq. (3.31) giving the quantum-mechanical predictions of Fig. 3.11 was not

further pursued in this thesis. Nevertheless, we point out that its semiclassical counterpart is encoded

in Eq. (4.14) by replacing the time-evolution operator 𝑈 with the identity map and deleting the corre-

sponding action term in Eq. (4.7). Furthermore, constructing the projector in position representation

space, cancels the third action term in Eq. (4.7). In that the semiclassical analog of Eq. (3.31), would

be provided by a simple WKB-like action in Eq. (4.14) which is obtained by integrating along a WKB-
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Figure 4.10.: Regular-to-chaotic tunneling rates 𝛾𝑚 of the standard map at 𝜅 = 2.9 versus inverse
effective Planck constant 1/ℎ for 𝑚 = 0, 1, 2, 3 (bottom to top). Numerical rates (dots) are obtained

from Eq. (3.3) with ̂︀𝑈open, Eq. (3.2), using ̂︀𝑃abs as in Eq. (3.51). Semiclassical rates (lines) are
obtained from Eq. (4.14) using only the dominant path 𝜈 to 𝑞max, as, e. g., in Fig. 4.3, for each
required transition from 𝐼𝑚 to 𝑞min = 0.271286 and 𝑞max = 1.0− 𝑞min, respectively.

like segment on the complexified torus 𝐼𝑚 up to the boundary of the absorbing region. Pursuing such

simple WKB-like predictions is worth investigating in the future.

4.3.3. Discussion

In successfully applying our approach to the direct regular-to-chaotic tunneling rates of the standard

map we demonstrate that our semiclassical complex-path approach gives meaningful results. Espe-

cially, in showing that Eq. (4.14) can predict regular-to-chaotic tunneling rates based on a single

complex path, provides a semiclassical explanation for the exponential decrease of direct regular-to-

chaotic tunneling rates with decreasing ℎ.

Despite its success, our approach does not allow for describing effects of resonance-assisted tunnel-

ing, yet. Furthermore, it is so far only possible to successfully predict tunneling rates for absorbing

regions close to the regular phase-space region. As discussed in detail in Sect. 3.3.5, overcoming

these limitations requires regular basis states, which mimic the corresponding metastable eigenstate

of the open system. Therefore, including effects of resonance-assisted tunneling requires regular basis

states, which mimic the localization properties of metastable eigenstates on multiple quantizing tori.

Furthermore, describing tunneling rates for absorbing regions far away from the regular phase-space

region within a semiclassical version of the fictitious integrable system approach, requires regular basis

states which mimic localization properties of metastable eigenstates on the hierarchical phase-space

region. Both tasks are challenging and must be solved for quantum predictions, before a semiclassical
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prediction is feasible.

In contrast, open problems of the current semiclassical approach include the correct determination

of Maslov phases 𝜑𝜈 and a more careful consideration of the Stokes phenomenon. Furthermore,

it remains an open question whether the presented complex paths hint at an invariant, classical

structure which controls regular-to-chaotic tunneling in non-integrable systems with a mixed phase

space. For tunneling in integrable systems such an invariant structure is the complexified torus

connecting disconnected regions of the real phase space in complexified phase space. For regular-to-

chaotic tunneling it is suggested in Refs. [80–82] that such a structure is provided by the complexified

stable and unstable manifolds of the complexified chaotic phase-space region. However, a connection

of our tunneling paths to these structures has not been investigated yet. In the future this is a project

worth investigating.

4.4. Tunneling paths in complexified phase space

In this section, we construct the invariant tori of the non-integrable system 𝑈 and compare them to

the corresponding tori of the fictitious integrable system 𝐻reg. This comparison confirms the essential

geometrical picture behind our complex-path approach, namely that the approximate tori of 𝐻reg

extend beyond the natural boundary of the corresponding invariant tori of the non-integrable system.

In that the WKB-like segment (S1) of our complex paths can be extended sufficiently deep into

complexified phase space in order to find a time-evolution segment (S2) which maps to a complexified

torus of the absorbing region.

In contrast to the first implementation of complexified tori by Green and Percival, who parametrized

the real tori by analytic functions and considered the analytic continuation of these functions into

complexified phase space, Refs. [24, 25], we construct the complexified regular tori from the dynamics

of the complexified map, similar to Ref. [60, Appendix. B]. For a more general introduction to the

complexified phase space, we refer the reader to Refs. [79–82, 125], which also discuss the embedding

of tunneling paths in complexified phase space. Furthermore, Refs. [126–129] which make rigorous

mathematical statements on the complexified phase space of polynomial maps are recommended. Note

that the work presented here is based on results and numerical implementations of my co-workers

Konstantin Clauß, Ref. [130], and Arnd Bäcker.

Definition of complexified tori

According to Refs. [24, 25], a complexified torus 𝑇𝜔 of the standard map is a two-dimensional manifold,

which is parametrized by a complex angle 𝜃,

𝑇𝜔 :=
{︀(︀
𝑞𝜔(𝜃), 𝑝𝜔(𝜃)

)︀
∈ C2 : 𝜃 = 𝜃r + i𝜃i ∈

(︀
[0, 2𝜋) + i(−𝜃i,𝜔, 𝜃i,𝜔)

)︀}︀
, (4.18)

up to the imaginary angle 𝜃i,𝜔 corresponding to the natural boundary at which the analyticity of the

functions 𝑞𝜔(𝜃) and 𝑝𝜔(𝜃) breaks along a dense line of singularities. This torus is invariant under
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the dynamics of the complexified map 𝑈 . More specifically, applying 𝑈 to a point on the torus is

equivalent to shifting the corresponding complex angle by the real number 𝜔, Refs. [24, 25],

𝑈(𝑞𝜔(𝜃), 𝑝𝜔(𝜃)) = (𝑞𝜔(𝜃 + 𝜔), 𝑝𝜔(𝜃 + 𝜔)). (4.19)

Hence, the complexified torus 𝑇𝜔 is a collection of one-dimensional invariant curves parametrized by

the real angle coordinate 𝜃r at fixed imaginary angle 𝜃i according to

𝑂𝜔,𝜃i(𝜃r) :=
{︀(︀
𝑞𝜔(𝜃r + i𝜃i), 𝑝𝜔(𝜃r + i𝜃i)

)︀
∈ C2 : 𝜃r ∈ [0, 2𝜋)

}︀
. (4.20)

Along these curves the orbits of 𝑈 wind with frequency 𝜔. If 𝜔/(2𝜋) is irrational, 𝑂𝜔,𝜃i(𝜃r) is explored

densely by any orbit of 𝑈 . Note that each of these invariant curves is determined by the choice of the

imaginary angle 𝜃i, which indicates its depth along the complexified torus 𝑇𝜔 in complexified phase

space. For later reference, recall that the curve defined by fixing 𝜃r = 0,

𝐶𝜔(𝜃i) :=
{︀(︀
𝑞𝜔(i𝜃i), 𝑝𝜔(i𝜃i)

)︀
∈ C2 : 𝜃i ∈ (−𝜃i,𝜔, 𝜃i,𝜔)

}︀
, (4.21)

parametrizes the invariant curves of the complexified torus in terms of the complex angle 𝜃i.

Symmetrized standard map

In order to construct the complexified tori of the standard map, we now switch from its after-kick to

its half-free representation,

𝑞′ = 𝑞 + 𝑝+
𝜅

4𝜋
sin
(︁
2𝜋
[︁
𝑞 +

𝑝

2

]︁)︁
, (4.22a)

𝑝′ = 𝑝+
𝜅

4𝜋
sin
(︁
2𝜋
[︁
𝑞 +

𝑝

2

]︁)︁
. (4.22b)

This is convenient, since the symmetries of the standard map become easier accessible, i. e., the

half-free representation has real tori which have a mirror symmetry along the line 𝑝 = 0, see real

phase-space plane in Fig. 4.11. Given that 𝜃 is defined such that the point 𝑞𝜔(𝜃 = 0) and 𝑝𝜔(𝜃 = 0)

is on that symmetry line, the real tori fulfill

𝑞𝜔(𝜃) = 𝑞𝜔(−𝜃), (4.23)

𝑝𝜔(𝜃) = −𝑝𝜔(−𝜃), (4.24)

respectively. Hence, assuming 𝑞𝜔(𝜃) and 𝑝𝜔(𝜃) are analytic functions of the angle, the general form

of their power-series expansion reads

𝑞𝜔(𝐼, 𝜃) =
∑︁

𝑛∈N
𝑎𝑛𝜃

2𝑛, (4.25)

𝑝𝜔(𝐼, 𝜃) =
∑︁

𝑛∈N
𝑏𝑛𝜃

2𝑛+1. (4.26)
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From these relations we infer that the curve 𝐶𝜔(𝜃i), Eq. (4.21), which parametrizes the invariant

curves of the complexified torus 𝑇𝜔 has purely real positions and purely imaginary momenta. Hence,

the intersection of each complexified torus with the two-dimensional plane

𝑃 := {𝑞, 𝑝 : Im 𝑞 = 0,Re 𝑝 = 0}, (4.27)

is a one-dimensional line. Note that this property follows from the symmetry of the standard map,

and is specific for the plane 𝑃 . In contrast an arbitrary two-dimensional plane in the four-dimensional

complexified phase space typically intersects a two-dimensional complexified torus in points.

Survival times of the complex 𝑃 -plane

In order to identify the curves 𝐶𝜔(𝜃i) ⊂ 𝑃 we study the survival times of orbits originating from the

complex 𝑃 -plane. To this end we define a survival box around the central fixed point,

(Re 𝑞, Im 𝑞,Re 𝑝, Im 𝑝) ∈ [0.0, 1.0]× [−0.5, 0.5]× [−0.5, 0.5]× [−0.5, 0.5]. (4.28)

Subsequently, we iterate the points (𝑞, 𝑝) of the complex 𝑃 -plane and determine the time 𝑛max(𝑞, 𝑝)

which the corresponding orbit 𝑈𝑛(𝑞, 𝑝), survives in the above box. The results are presented in

Figs. 4.11 and 4.12(a), respectively. Here, we show points on 𝑃 in red if they survive for 2000

iterations. On the other hand, points which exit the survival box, Eq. (4.28), are colored in blue, with

dark blue indicating short survival times 𝑛max and light blue indicating survival times 𝑛max almost

up to 2000 iterations.

The blue-colored points of 𝑃 numerically approximate the intersection of 𝑃 with the forward Fatou

set 𝐹+, consisting of points which are transported to infinity forward in time. On the other hand, the

red-colored points of 𝑃 numerically approximate the intersection of 𝑃 with the forward filled Julia set

𝐾+, consisting of points which remain bounded under the complexified time-evolution of 𝑈 . Here, the

notation is chosen as in Refs. [80–82]. By definition the curves 𝐶𝜔(𝜃i) on 𝑃 give rise to orbits along

the invariant curves 𝑂𝜔,𝜃i(𝜃r) on the torus 𝑇𝜔. Hence, these curves are also a subset of the filled Julia

set 𝐶𝜔(𝜃i) ⊂ 𝑃 ∩𝐾+ and should be contained in the red region of the survival time plot in Fig. 4.11.

A magnification of this region is shown in Fig. 4.12(a). A projection of an example orbit along an

invariant curve 𝑂𝜔,𝜃i(𝜃r) emanating from 𝐶𝜔(𝜃i) on 𝑃 ∩𝐾+ is shown by a gray line in Fig. 4.11. This

illustrates that while the curve 𝐶𝜔(𝜃i) parametrizing the invariant curves 𝑂𝜔,𝜃i(𝜃r) of 𝑇𝜔 is embedded

in 𝑃 , the orbits initiated from 𝐶𝜔(𝜃i) map along 𝑂𝜔,𝜃i(𝜃r), and thus, explore the parts of 𝑇𝜔 which

are not on 𝑃 .

Constructing complexified tori

In order to construct the tori 𝑇𝜔 from the dynamics of 𝑈 , we now group the initial points on 𝑃 which

belong to the trapped orbits of 𝐾+ according to their frequency 𝜔. In order to numerically obtain

this frequency for each point (𝑞, 𝑝) ∈ 𝑃 ∩𝐾+ we use the analysis of fundamental frequencies [120] on
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Figure 4.11.: Phase space of the complexified standard map, Eq. (4.22), at 𝜅 = 2.9. Real plane
showing the real phase space. Survival times of points on the complex 𝑃 -plane (Re 𝑝 = 0, Im 𝑞 = 0)
are shown in red for bound orbits and blue for escaping orbits, with dark blue indicating short and
light blue long survival times, respectively. An example orbit (gray line) is shown as a projection.
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Figure 4.12.: Magnified region of the complex 𝑃 -plane of Fig. 4.11. (a) Survival times of points on
𝑃 (Re 𝑝 = 0, Im 𝑞 = 0). Red regions indicate initial conditions of bound orbits while blue indicates
initial conditions for escaping orbits, with dark blue indicating short and light blue long survival
times, respectively. (b) Frequencies 𝜔 of the surviving orbits of (a).
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the real phase-space coordinates of the corresponding orbit 𝑈𝑛(𝑞, 𝑝). A preliminary overview of the

frequencies of orbits initiated on 𝑃 ∩𝐾+ is shown in Fig. 4.12(b). These frequencies are presented

by a color map. Additional contour lines indicate the curves 𝐶𝜔(𝜃i), connecting from the real phase

space Im 𝑝 = 0 up to the natural boundary where 𝐶𝜔(𝜃i) ends. Note that 𝑃 ∩𝐾+ is interspersed with

white channels in Fig. 4.12 indicating the fractal structure of the set 𝑃 ∩𝐾+, and thus, the erratic

fluctuations of the depth up to which a curve 𝐶𝜔(𝜃i) extends into complexified phase space.

We now give a precise construction of complexified tori. The presented algorithm essentially follows

the implementation of Ref. [60, Appendix. B]. We start by determining the real torus of 𝑈 correspond-

ing to a specific action 𝐼, e. g., the action 𝐼1 at 1/ℎ = 50. Using the numerical analysis of fundamental

frequencies [120], we determine its frequency 𝜔(𝐼). Starting from the intersection point of this real

torus with 𝑃 we ascend into complexified phase space along the curve 𝐶𝜔(𝐼)(𝜃i). Since this curve is

not known, we ascend into complexified phase space along 𝑃 by first increasing the coordinate Im 𝑝

by a small amount. At this value we fix Im 𝑝 and determine the corresponding coordinate Re 𝑞 on

𝐶𝜔(𝐼)(𝜃i) by numerically searching for the initial condition (Im 𝑝, Re 𝑝) on 𝑃 , which gives rise to the

orbit with frequency 𝜔(𝐼). By repeating this procedure we successively obtain points along the curve

𝐶𝜔(𝐼)(𝜃i). Using these points as initial conditions for the complexified map gives orbits along the

corresponding invariant curve 𝑂𝜔(𝐼),𝜃i(𝜃r). The collection of these curves represents the torus 𝑇𝜔(𝐼).

The complexified torus 𝐼1 at 1/ℎ = 50 of the standard map at 𝜅 = 2.9 is presented in Fig. 4.13.

Here, we visualize the torus, Eq. (4.18), by plotting

(Re 𝑞𝜔(𝐼)(𝜃),Re 𝑝𝜔(𝐼)(𝜃), Im 𝑝𝜔(𝐼)(𝜃i)). (4.29)

This visualization is convenient since it assigns each invariant curve along the complexified torus a

uniform depth in complexified phase space. Especially, the depth up to which the analytic continuation

of a torus extends is intuitively visualized by the numerical approximation of the natural boundary,

see the gray line in Fig. 4.13. Furthermore, this presentation gives meaningful connections both to the

survival time plot in the plane 𝑃 and to the real phase space. Therefore, the red colored region of the

survival plot nicely indicates how deep the continuation of neighboring tori extends into complexified

phase space.

Tunneling paths in complexified phase space

Finally, we compare the complexified torus of Fig. 4.13 to the corresponding torus of 𝐻reg presented

in Fig. 4.1. To this end, we symmetrize all data of Fig. 4.1 by mapping points (𝑞, 𝑝) to points (𝑞 +

𝑝/2, 𝑝). Furthermore, the imaginary angle coordinates of Fig. 4.1 are transformed to the corresponding

imaginary momenta according to the function Im 𝑝(𝐼1, 𝜃i) which describes the intersection of the plane

𝑃 with the symmetrized approximate torus 𝐼1 of𝐻reg. The result is presented in Fig. 4.14. This picture

shows the generic embedding of tunneling paths according to the presented semiclassical complex-path

approach in complexified phase space. In using complexified tori of a fictitious integrable system (light

red), we suitably approximate the corresponding tori of the non-integrable map 𝑈 (lighter red) up to
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Figure 4.13.: Complexified quantizing torus 𝐼1 of the standard map, Eq. (4.22), at 𝜅 = 2.9 and
ℎ = 1/50. The quantizing torus (light red) is presented according to Eq. (4.29), see text for details.
The gray line illustrates its natural boundary. Real plane showing the real phase space. Survival
times of points on the complex 𝑃 -plane (Re 𝑝 = 0, Im 𝑞 = 0) are shown in red for bound orbits
and blue for escaping orbits, with dark blue indicating short and light blue long survival times,
respectively.

the natural boundary (gray line). These integrable approximations of the original tori do not have

a natural boundary, and thus, extend beyond the natural boundary of the corresponding torus of 𝑈 .

In that they extend beyond the regular region of complexified phase space into the chaotic region of

complexified phase space. This fact allows for extending the WKB-segment (S1) of our complex paths

sufficiently deep into complexified phase space such that the time-evolution segment (S2) can map

to a fictitious complexified torus of the absorber in the chaotic phase-space region. This geometrical

picture completes our chapter on complex paths for regular-to-chaotic tunneling rates.
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Figure 4.14.: Embedding of complex tunneling paths (green arrows) into the complexified phase
space of the standard map, at 𝜅 = 2.9 and ℎ = 1/50. The projection of the complexified quantizing
torus 𝐼1 (short, light red) and its natural boundary (gray line) is compared to the corresponding
torus of 𝐻reg (longer, slightly darker light red). The real plane shows the real phase space. Survival
times of points on the complex 𝑃 -plane (Re 𝑝 = 0, Im 𝑞 = 0) are shown in red for bound orbits
and blue for escaping orbits, with dark blue indicating short and light blue long survival times,
respectively.





5. Summary and outlook

In this thesis we have developed a semiclassical complex-path approach for regular-to-chaotic tun-

neling rates. It combines the quantum-mechanical predictions of the fictitious integrable system ap-

proach [62, 65] with the semiclassical time-evolution method of complex tunneling paths [76–82]. In

that it brings together two important research lines on regular-to-chaotic tunneling in non-integrable

systems. The main result of our complex-path approach is Eq. (4.14), which predicts direct regular-to-

chaotic tunneling rates semiclassically. The fundamental accomplishment, and thus, the success of our

complex-path approach is the existence of the required complex paths. The essential ingredient which

allows for their construction is the use of approximate regular tori, e. g., from a fictitious integrable

system𝐻reg. In contrast to the invariant regular tori of non-integrable systems, these approximate tori

do not have natural boundaries. This allows for extending WKB-like segments along the approximate

regular torus into the chaotic region of the complexified phase space, such that a subsequent time-

evolution can reach the absorber which is embedded in the complexified chaotic phase-space region.

While this thesis represents the first implementation of such an idea for non-integrable systems, sim-

ilar ways to overcome natural boundaries were used in near-integrable systems before [59, 71, 73, 75].

Remarkably, Eq. (4.14) also gives a semiclassical justification for the long-conjectured [83] and often-

observed [40, 42, 43, 47, 50, 65], exponential ℎ-scaling of direct regular-to-chaotic tunneling rates.

Finally, this thesis demonstrates the applicability of the presented complex-path approach by suc-

cessfully predicting regular-to-chaotic tunneling rates of the standard map from a single complex

path.

Our results lead to several open questions: The current complex-path approach can so far not ac-

count for the enhancement of regular-to-chaotic tunneling rates due to resonance-assisted tunneling

[59–61, 63]. Therefore, it is applicable only in the quantum regime where Planck’s constant is compa-

rable to the size of the regular phase-space region, ℎ . 𝐴reg. Including resonance-assisted tunneling

into the discussed complex-path approach seems feasible by constructing integrable systems 𝐻reg

which include nonlinear-resonance chains. A subsequent semiclassical treatment of such 𝐻reg similar

to Refs. [60, App. C] and [63, 131] should allow for including resonance-assisted tunneling into the

presented complex-path approach.

The current complex-path approach does further not include the effects of partial transport barriers

[27, 111, 112] in the hierarchical phase-space region on regular-to-chaotic tunneling rates. Therefore,

our semiclassical predictions are only applicable for regular-to-chaotic tunneling rates of systems

where the hierarchical phase-space region is either negligible or contained in the absorbing region.

As discussed in detail in Sect. 3.3.5 this problem already exists for the quantum-mechanical predic-

tions of regular-to-chaotic tunneling rates. Its solution within the fictitious integrable system approach



74 Chapter 5. Summary and outlook

requires a construction of regular basis states which mimic localization properties of metastable eigen-

states on the hierarchical phase-space region. In the eyes of the author this is a challenging task.

Even though we expect the presented complex-path approach to apply not only to the standard map,

but also to experimentally relevant systems, such as microwave billiards [47–50], optical microcavities

[42–46], or atoms and molecules [32, 34, 36, 38–40], an implementation of our method for these systems

is still an open problem. For billiards and microcavities it seems most promising to implement our

complex-path approach by exploiting the corresponding boundary map of these systems. This map is

two-dimensional, and thus, highly analogous to the standard map. On the other hand, an extension of

the presented complex-path approach to higher-dimensional systems is required. For such systems we

believe that the tunneling rate is still given by complex paths from an approximate torus of the regular

region to tori of the absorbing region. This would follow from a generalization of Eq. (4.8) with the

prefactor replaced by the determinant of the stability matrix. However, several new challenges arise:

(i) Regular regions are formed by a collection of regular tori interwoven with threads of the Arnold

web [84, 132, 133]. Even when ignoring the complications due to the Arnold web, the boundary of the

regular region is now given by a family of boundary tori. (ii) The construction of approximate tori

requires new methods. (iii) The search algorithm for complex paths has to be generalized to higher

dimensions. (iv) It is not clear, if a simplification analogous to Eq. (4.14) is possible.

Despite its successful use for predictions of regular-to-chaotic tunneling rates of quantum maps

[62, 64, 65, 116], billiards [50], and optical microcavities [43] it remains an open question to establish

precise criteria, which guarantee the applicability of the fictitious integrable system approach. For

the presented complex-path approach this leads to the puzzling effect that two distinct integrable

approximations of the regular phase-space region in terms of two different integrable systems 𝐻reg can

give results of similar quality, using tunneling paths with entirely different locations in the complexified

phase space. One possible way to solve this problem within our complex-path approach might be the

use of local approximations to the invariant torus of the regular region, e. g., in terms of a Fourier

expansion as presented in Refs. [24, 25]. This would provide a more controllable approximation

process. Inevitably, the above discussion leads to the most important question of regular-to-chaotic

tunneling, namely: Which invariant classical structure of the complexified phase space governs regular-

to-chaotic tunneling rates? In view of the presented results this question remains open. As argued by

Shudo and Ikeda in Refs. [80–82] this structure is provided by the complexified stable and unstable

manifolds of the chaotic phase-space region. A connection of these structures to our complex tunneling

paths is not obvious and requires a detailed investigation.

As a closing remark of this thesis we point out that the presented complex-path approach to

regular-to-chaotic tunneling rates is so far conceptually constructed from the properties of a closed

system. However, regular-to-chaotic tunneling rates are defined for an open system. In the future it

is worth investigating, if using properties of such open systems allows for accessing tunneling rates

more easily. A first idea in this direction was discussed in Sect. 3.3 by showing that regular-to-chaotic

tunneling rates can quantum mechanically be evaluated from the time evolution of the corresponding

metastable eigenstates, Eq. (3.16). This prediction does not require approximate regular basis states
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and includes both the effects of resonance-assisted tunneling and partial transport barriers. Therefore,

if a semiclassical expression for metastable eigenstates was known, it would provide the ideal starting

point for a semiclassical evaluation of regular-to-chaotic tunneling rates.





Appendix

A. The method of steepest descent

The method of steepest descent is a powerful mathematical tool which is widely used in semiclassi-

cal physics. This appendix aims at giving a short and intuitive introduction to this method for a

reader who never used a saddle-point approximation before. The presentation essentially follows the

presentation in Ref. [92].

A.1. The method of steepest descent in one dimension

In the following let us consider integrals of the form

∫︁

𝒞
d𝑥 exp

(︂
𝑓(𝑥)

~

)︂
, (A.1)

where the contour 𝒞 is such that 𝑥 is a real integration variable in the interval [𝑥min, 𝑥max] and 𝑓 is

an analytic real-valued function. It is the goal to approximate this integral in the limit that ~ → 0.

Hence, we can consider its analytic continuation as a function of the complex coordinate 𝑧 := 𝑥+ i𝑦

and split 𝑓 into its real and its complex part

𝑓(𝑥+ i𝑦) := 𝑢(𝑥, 𝑦) + i𝑣(𝑥, 𝑦). (A.2)

Due to the analyticity of 𝑓 it is possible to show that both 𝑢 and 𝑣 are harmonic functions, i. e.,

Δ𝑢 = 0, Δ𝑣 = 0. Hence, 𝑢 and 𝑣 exhibit a saddle-point structure in the neighborhood of a stationary

point 𝑧𝜇, which fulfills

d𝑓(𝑧𝜇)
d𝑧

= 0. (A.3)

Furthermore, it follows from the analyticity of 𝑓 that the level sets of 𝑣 are the lines of steepest descent

or ascent in 𝑢 and vice versa [92].

In order to exploit these facts we split the integrand in Eq. (A.1) in two exponentials which describe

its modulus and its phase separately,

∫︁

𝒞
d𝑥 exp

(︂
𝑢(𝑥, 𝑦)

~

)︂
exp

(︂
i
𝑣(𝑥, 𝑦)

~

)︂
. (A.4)

From 𝑢(𝑥, 𝑦) being a harmonic function, we conclude that the modulus of the integrand exp (𝑢(𝑥, 𝑦)/~)
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can be visualized as a landscape over the complex plane that never shows a local maximum or

minimum, but only saddle points. Subsequently, we assume we can deform the contour 𝒞 into a

new contour 𝒞′ such that 𝒞′ passes through a subset of saddle points 𝑧𝜈 of 𝑢(𝑥, 𝑦) along the level

sets of constant 𝑣(𝑥, 𝑦). In that, 𝒞′ follows the path of steepest descent of exp (𝑢(𝑥, 𝑦)/~) into the

valleys on both sides of a saddle point 𝑧𝜈 . If no singularities of 𝑓(𝑧) have been passed during the

transformation, we have

∫︁

𝒞
d𝑥 exp

(︂
𝑓(𝑥)

~

)︂
=

∫︁

𝒞′
d𝑧 exp

(︂
𝑢(𝑥, 𝑦)

~

)︂
exp

(︂
i
𝑣(𝑥, 𝑦)

~

)︂
(A.5)

by Cauchy’s theorem.

Finally, we come to the actual approximation in the method of steepest descent, which is sometimes

also called saddle-point approximation. To this end, we need to realize that the most important

contributions to the integral in Eq. (A.5) along 𝒞′ originate from the neighborhood of those saddle

points 𝑧𝜈 through which the contour 𝒞′ passes. This is the case because along 𝒞′ the modulus of the

integrand exp (𝑢(𝑥, 𝑦)/~) has a local maximum at 𝑧𝜈 , while exp (i𝑣(𝑥, 𝑦)/~) gives a constant phase

integrating along 𝒞′. In the limit ~ → 0 the local maximum of exp (𝑢(𝑥, 𝑦)/~) becomes more and

more amplified, such that significant contributions originate from an ever smaller neighborhood of the

saddle point 𝑧𝜈 . To evaluate this contribution approximately, one expands the function 𝑓(𝑧) around

this saddle point,

𝑓(𝑧) ≈ 𝑓(𝑧𝜈) +
1

2

d2𝑓
d𝑧2

(𝑧𝜈)(𝑧 − 𝑧𝜈)
2. (A.6)

such that

∫︁

𝒞
d𝑥 exp

(︂
𝑓(𝑥)

~

)︂
≈
∑︁

𝜈

exp

(︂
𝑓(𝑧𝜈)

~

)︂∫︁

𝒞𝜈
d𝑧 exp

(︂
1

2~
d2𝑓(𝑧𝜈)
d𝑧2

(𝑧 − 𝑧𝜈)
2

)︂
, (A.7)

where 𝒞𝜈 is a straight line in the complex plane tangential to 𝒞′ in the saddle point 𝑧𝜈 . Since the

integrals in the arising contribution are Gaussians which have their significant contributions in the

small neighborhood of the saddle point 𝑧𝜈 we only make a tiny error by extending 𝒞𝜈 infinitely in the

complex plane.

It now remains our task to compute a set of Gaussian integrals in complex space. To this end, we

introduce 𝜒𝜈 by

d2𝑓
d𝑧2

(𝑧𝜈) =

⃒⃒
⃒⃒d

2𝑓

d𝑧2
(𝑧𝜈)

⃒⃒
⃒⃒ exp (i𝜒𝜈), (A.8)

and parametrize the integration contour 𝒞𝜈 by

⎯⎸⎸⎷
⃒⃒
⃒d

2𝑓
d𝑧2

(𝑧𝜈)
⃒⃒
⃒

2~
(𝑧 − 𝑧𝜈) = 𝑠 exp (i𝜙𝜈), (A.9)
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with 𝑠 ∈ R and 𝜙𝜈 ∈ [0, 2𝜋) picking the direction of the contour 𝒞𝜈 . As a consequence, we have

∫︁

𝒞
d𝑥 exp

(︂
𝑓(𝑥)

~

)︂
≈
∑︁

𝜈

⎯⎸⎸⎷ 2~⃒⃒
⃒𝜕2𝑓
𝜕𝑧2

(𝑧𝜈)
⃒⃒
⃒
exp

(︂
𝑓(𝑧𝜈)

~
+ i𝜙𝜈

)︂ ∞∫︁

−∞

d𝑠 exp
(︁
−𝑠2𝑒i[𝜋+𝜒𝜈+2𝜙𝜈 ]

)︁
. (A.10)

We can now deduce 𝜙𝜈 from 𝜒𝜈 as

𝜙𝜈 = 𝜋𝑟𝜈 −
𝜋 + 𝜒𝜈

2
, (A.11)

where 𝑟𝜈 is an integer which has to be chosen such that the contour 𝒞𝜈 is integrated along the correct

direction. For integrals with 𝑥min < 𝑥max, 𝜙𝜈 is typically in the range [−𝜋/2, 𝜋/2] indicating that 𝒞𝜈
is followed towards rising real part. This makes a unique choice of 𝑟𝜈 possible. These manipulations

give the final result,

∫︁

𝒞
d𝑥 exp

(︂
𝑓(𝑥)

~

)︂
≈
∑︁

𝜈

exp

(︂
i𝜋𝑟𝜈 −

𝜋 + 𝜒𝜈

2

)︂⎯⎸⎸⎷ 2𝜋~⃒⃒
⃒𝜕2𝑓
𝜕𝑧2

(𝑧𝜈)
⃒⃒
⃒
exp

(︂
𝑓(𝑧𝜈)

~

)︂
, (A.12)

which is sometimes formally written as

∫︁

𝒞
d𝑥 exp

(︂
𝑓(𝑥)

~

)︂
≈
∑︁

𝜈

(−1)𝑟𝜈

√︃
−2𝜋~
𝜕2𝑓
𝜕𝑧2

(𝑧𝜈)
exp

(︂
𝑓(𝑧𝜈)

~

)︂
. (A.13)

Note, that along the same lines of reasoning, the method of steepest descent can be generalized to

integrals of the form

∫︁

𝒞
d𝑥 𝑔(𝑥) exp

(︂
𝑓(𝑥)

~

)︂
≈
∑︁

𝜈

𝑔(𝑧𝜈) exp

(︂
i𝜋𝑟𝜈 −

𝜋 + 𝜒𝜈

2

)︂⎯⎸⎸⎷ 2𝜋~⃒⃒
⃒𝜕2𝑓
𝜕𝑧2

(𝑧𝜈)
⃒⃒
⃒
exp

(︂
𝑓(𝑧𝜈)

~

)︂
. (A.14)

A.2. Applying the method of steepest descent in physics

When being faced with an integral like Eq. (A.14) in semiclassical physics, we can solve it in the spirit

of the method of steepest descent along the following steps:

(i) We search for saddle points 𝑧𝜈 ∈ C, 𝜈 ∈ N, in 𝑓 , i. e.,

d𝑓(𝑧𝜈)
d𝑧

=: 𝑓 ′(𝑧𝜈) = 0. (A.15)

(ii) We compute 𝑓 ′′(𝑧𝜈) giving |𝑓 ′′(𝑧𝜈)| while 𝜙𝜈 = 𝜋𝑟𝜈 − 𝜋+𝜒𝜈

2 is typically chosen from the interval

[−𝜋
2 ,

𝜋
2 ]. In step (iii) this gives

∫︁

𝒞
d𝑥 𝑔(𝑥) exp

(︂
𝑓(𝑥)

~

)︂
≈
∑︁

𝜈

𝑔(𝑧𝜈) exp (𝜙𝜈)

⎯⎸⎸⎷ 2𝜋~⃒⃒
⃒𝜕2𝑓
𝜕𝑧2

(𝑧𝜈)
⃒⃒
⃒
exp

(︂
𝑓(𝑧𝜈)

~

)︂
. (A.16)
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Applying a saddle-point method in this way bears many pitfalls which one has to be aware of.

A collection of such problems shall be discussed here, briefly. The first assumption, which has to

hold for applying the method of steepest descent is that the deformation of the integration contour

𝒞 into the contour 𝒞′ which passes through the saddle points 𝑧𝜈 is possible. Even in this case, it

might be necessary to pass isolated singularities which give additional contributions to the integral.

In a physical context, one sometimes calls such contributions diffraction contributions, as they arise

from sharp non-analytic changes in the integrand. Furthermore, if the deformation of the integration

contour into 𝒞′ is possible, it can still happen that the most important contributions to the integral

originate from the edges of 𝒞′ close to the points 𝑥min or 𝑥max. In that case, a different approximation

strategy for these edge terms is necessary. Moreover, it is possible that a careful deformation of the

integration contour into 𝒞′ yields that only a subset of all saddle points of 𝑓(𝑧) actually contributes

to the final integral. However, such a deformation cannot always be controlled and hence one needs

so-called pruning rules in order to select the right saddle points which contribute to the integral.

Finally, at some saddle points 𝑧𝜈 it is possible that 𝑓 ′′(𝑧𝜈) is also zero. In that case one has to expand

𝑓(𝑧) to cubic order leading to Airy instead of Gaussian integrals. In physics, this problem arises at

turning points, where an additional Maslov-phase shift has to be considered.

B. Derivation of complex paths for regular-to-chaotic

tunneling-matrix elements

In this Appendix, we derive semiclassical expressions for the regular-to-chaotic tunneling-matrix ele-

ments ⟨𝐼 ′𝑐ℎ|̂︀𝑈 |𝐼𝑚⟩ of Eq. (4.5). In order to illuminate how classical paths in complexified phase space

arise in a semiclassical evaluation of regular-to-chaotic tunneling-matrix elements, the derivation is

presented in great detail. The result, Eq. (4.6), gives exactly the one-step version of the semiclassical

propagator presented in Ref. [81]. It is summarized in Sect. 4.1.2.

B.1. Semiclassical expressions for the basis states and the propagator

We start our derivation of semiclassical tunneling-matrix elements ⟨𝐼 ′𝑐ℎ|̂︀𝑈 |𝐼𝑚⟩ by inserting the position
representation,

⟨𝐼 ′𝑐ℎ|̂︀𝑈 |𝐼𝑚⟩ =
∫︁
d𝑞′
∫︁
d𝑞
⟨︀
𝐼 ′𝑐ℎ|𝑞′

⟩︀
⟨𝑞′|̂︀𝑈 |𝑞⟩ ⟨𝑞|𝐼𝑚⟩ . (B.1)

In order to transform Eq. (B.1) into a semiclassical expression, the initial basis state ⟨𝑞|𝐼𝑚⟩, the
propagator ⟨𝑞′|̂︀𝑈 |𝑞⟩, and the final basis state ⟨𝐼 ′𝑐ℎ|𝑞′⟩ are subsequently replaced by their semiclassical

counter parts.
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In order to achieve such expressions for the basis states we use the result of Miller [134],

⟨𝑞|𝐼𝑚⟩ =
∑︁

𝜇

√︃
1

2𝜋i~
𝜕2ℱ (2)

𝜇 (𝑞, 𝐼𝑚)

𝜕𝑞 𝜕𝐼𝑚
exp

(︂
i
~
ℱ (2)
𝜇 (𝑞, 𝐼𝑚)

)︂
, (B.2)

⟨︀
𝐼 ′𝑐ℎ|𝑞′

⟩︀
=
∑︁

𝜎

√︃
1

2𝜋i~
𝜕2ℱ (3)

𝜇 (𝐼 ′𝑐ℎ, 𝑞
′)

𝜕𝐼 ′𝑐ℎ 𝜕𝑞
′ exp

(︂
i
~
ℱ (3)
𝜎 (𝐼 ′𝑐ℎ, 𝑞

′)

)︂
. (B.3)

This makes explicit use of the canonical transformations, Eqs. (4.4) and (4.3), which ensures the ex-

istence of the required type-two generating function ℱ (2)
𝜇 (𝑞, 𝐼) and the type-three generating function

ℱ (3)
𝜎 (𝐼 ′, 𝑞′), respectively.

Differentiating ℱ (2)
𝜇 (𝑞, 𝐼) with respect to 𝑞 gives the momentum

𝑝𝜇(𝑞, 𝐼) =
𝜕ℱ (2)

𝜇 (𝑞, 𝐼)

𝜕𝑞
, (B.4)

on the torus of action 𝐼 at the toruses intersection with the plane of positions 𝑞. Since this function

arises from solving Eq. (4.3) for 𝑝, it can be multi-valued. This is accounted for by the index 𝜇.

Further, differentiating ℱ (2)
𝜇 (𝑞, 𝐼) with respect to 𝐼 gives the corresponding angle,

𝜃𝜇(𝑞, 𝐼) =
𝜕ℱ (2)

𝜇 (𝑞, 𝐼)

𝜕𝐼
. (B.5)

Analogously, differentiating ℱ (3)
𝜎 (𝐼 ′, 𝑞′) with respect to 𝑞′ gives the momentum

𝑝′𝜎(𝐼
′, 𝑞′) = −𝜕ℱ

(3)
𝜎 (𝐼 ′, 𝑞′)

𝜕𝑞′
, (B.6)

on the torus of action 𝐼 ′ at the toruses intersection with the plane of position 𝑞′. Since this function

arises from solving Eq. (4.4) for 𝑝′, it can also be multi-valued. This is accounted for by the index 𝜎.

Further, differentiating ℱ (3)
𝜎 (𝐼 ′, 𝑞′) with respect to 𝐼 ′ gives the corresponding angle,

𝜃′𝜎(𝐼
′, 𝑞′) = −𝜕ℱ

(3)
𝜎 (𝐼 ′, 𝑞′)

𝜕𝐼 ′
. (B.7)

For the following derivation it is important to keep in mind that (𝑞, 𝑝𝜇) denotes a point on the initial

torus 𝐼, while (𝑞′, 𝑝′𝜎) denotes a point on the final torus 𝐼 ′.

For the propagator, we use the general semiclassical expression

⟨𝑞′|̂︀𝑈 |𝑞⟩ =
∑︁

𝜈

√︃
i

2𝜋~
𝜕2𝒮𝑈

𝜈 (𝑞′, 𝑞)

𝜕𝑞′ 𝜕𝑞
exp

(︂
i
~
𝒮𝑈
𝜈 (𝑞′, 𝑞)

)︂
. (B.8)

Here, 𝒮𝑈
𝜈 (𝑞′, 𝑞) is the action of a path 𝜈 which maps from 𝑞 to 𝑞′ via the classical map 𝑈 . This action

is a type-one generating function, which encodes the information about initial and final momenta of
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the path 𝜈 according to

𝑝′𝜈(𝑞
′, 𝑞) =

𝜕𝒮𝑈
𝜈 (𝑞′, 𝑞)

𝜕𝑞′
, (B.9)

𝑝𝜈(𝑞
′, 𝑞) = −𝜕𝒮

𝑈
𝜈 (𝑞′, 𝑞)

𝜕𝑞
. (B.10)

These equations originate from solving the map (𝑞′, 𝑝′) = 𝑈(𝑞, 𝑝) for 𝑝, 𝑝′, i. e., by finding paths from

𝑞 to 𝑞′. Since this is a boundary-value problem it can have multiple solutions. This is accounted for

by the index 𝜈. Note that the above presentation is not restricted to the standard map but holds for

general time-periodic systems whose classical dynamics is described by the stroboscopic map 𝑈 over

unit time.

We now take the semiclassical expressions Eqs. (B.2), (B.3), and (B.8) and insert them into

Eq. (B.1),

⟨𝐼 ′𝑐ℎ|̂︀𝑈 |𝐼𝑚⟩ =
∑︁

𝜎,𝜈,𝜇

∫︁
d𝑞
∫︁
d𝑞′

1

(2𝜋~)3/2

√︃
1

i

𝜕2ℱ (3)
𝜎 (𝐼 ′𝑐ℎ, 𝑞

′)

𝜕𝐼 ′𝑐ℎ 𝜕𝑞
′

𝜕2𝒮𝑈
𝜈 (𝑞′, 𝑞)

𝜕𝑞′ 𝜕𝑞

𝜕2ℱ (2)
𝜇 (𝑞, 𝐼𝑚)

𝜕𝑞 𝜕𝐼𝑚

× exp

(︂
i
~

[︁
ℱ (3)
𝜎 (𝐼 ′𝑐ℎ, 𝑞

′) + 𝒮𝑈
𝜈 (𝑞′, 𝑞) + ℱ (2)

𝜇 (𝑞, 𝐼𝑚)
]︁)︂

(B.11)

(B.4), (B.7), (B.10)
=

∑︁

𝜎,𝜈,𝜇

∫︁
d𝑞
∫︁
d𝑞′

1

(2𝜋~)3/2

√︃
i
𝜕𝜃′𝜎(𝐼

′
𝑐ℎ, 𝑞

′)

𝜕𝑞′
𝜕𝑝′𝜈(𝑞

′, 𝑞)

𝜕𝑞

𝜕𝑝𝜇(𝑞, 𝐼𝑚)

𝜕𝐼𝑚

× exp

(︂
i
~

[︁
ℱ (3)
𝜎 (𝐼 ′𝑐ℎ, 𝑞

′) + 𝒮𝑈
𝜈 (𝑞′, 𝑞) + ℱ (2)

𝜇 (𝑞, 𝐼𝑚)
]︁)︂
. (B.12)

In that the initial position 𝑞 of the path 𝜈 is immediately identified with a position 𝑞 on the initial

torus 𝐼𝑚. Analogously, the final position 𝑞′ of the path 𝜈 is identified with a position 𝑞′ on the

final torus 𝐼 ′𝑐ℎ. This allows for omitting the tilde symbol on the position coordinates. In contrast to

positions 𝑞, 𝑞′, which are from now on always attached to the tori 𝐼𝑚, 𝐼 ′𝑐ℎ, respectively, the initial and

final momenta 𝑝, 𝑝′ of the path 𝜈 are still unrelated to the tori 𝐼𝑚, 𝐼 ′𝑐ℎ.

B.2. Method of steepest descent – The cradle of complex paths

In order to evaluate the integrals in Eq. (B.12) semiclassically, we apply the method of steepest

descent [91, 92], see App. A for a short introduction. This amounts to approximating the integrals in

Eq. (B.12) by Gaussian integrals, which arise from a second order expansion of the exponent function

in Eq. (B.12) around its saddle points. See the details below.

The first step of the steepest-descent method requires to define the exponent function, composed

from the action 𝒮,

ℎ(𝑞′, 𝑞) := i𝒮(𝑞′, 𝑞) := i
[︁
ℱ (3)
𝜎 (𝐼 ′𝑐ℎ, 𝑞

′) + 𝒮𝑈
𝜈 (𝑞′, 𝑞) + ℱ (2)

𝜇 (𝑞, 𝐼𝑚)
]︁
. (B.13)

This function depends on the integration coordinates 𝑞 and 𝑞′. It further has a parametric dependence
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on the actions 𝐼𝑚 and 𝐼 ′𝑐ℎ. Note that these actions correspond to physical observables which determine

the representation of the considered tunneling-matrix element ⟨𝐼 ′𝑐ℎ|̂︀𝑈 |𝐼𝑚⟩. Therefore, 𝐼𝑚 and 𝐼 ′𝑐ℎ are

always real in the following.

The second step of the steepest-descent method requires to identify the saddle-point positions of

ℎ(𝑞′, 𝑞), i. e., we have to search for positions at which the gradient of ℎ(𝑞′, 𝑞) vanishes,

0
!
=
𝜕𝒮𝑈

𝜈 (𝑞′, 𝑞)

𝜕𝑞
+
𝜕ℱ (2)

𝜇 (𝑞, 𝐼𝑚)

𝜕𝑞
, (B.14)

0
!
=
𝜕ℱ (3)

𝜎 (𝐼 ′𝑐ℎ, 𝑞
′)

𝜕𝑞′
+
𝜕𝒮𝑈

𝜈 (𝑞′, 𝑞)

𝜕𝑞′
. (B.15)

Using Eqs. (B.4), (B.6), (B.9), and (B.10), gives the saddle-point conditions, which determine the

saddle-point positions 𝑞, 𝑞′ implicitly,

𝑝𝜈(𝑞
′, 𝑞)

!
= 𝑝𝜇(𝑞, 𝐼𝑚), (B.16)

𝑝′𝜎(𝐼
′
𝑐ℎ, 𝑞

′)
!
= 𝑝′𝜈(𝑞

′, 𝑞). (B.17)

These conditions provide the essential semiclassical connection between regular-to-chaotic tunneling-

matrix elements and classical paths of 𝑈 , which map from the torus 𝐼𝑚 to the torus 𝐼 ′𝑐ℎ. In order to

realize this, recall that 𝑞 and 𝑞′ are already positions on the tori 𝐼𝑚 and 𝐼 ′𝑐ℎ, respectively. Hence, for

positions which solve the saddle-point equations, the corresponding initial momentum 𝑝𝜈 of the path

𝜈 coincides with the corresponding momentum 𝑝𝜇 on the initial torus 𝐼𝑚, Eq. (B.16). Similarly, for

positions which solve the saddle-point equations, the corresponding final momentum 𝑝𝜈 of the path 𝜈

coincides with the corresponding momentum 𝑝′𝜎 on the final torus 𝐼 ′𝑐ℎ, Eq. (B.17). Hence, searching

for saddle-point positions is equivalent to searching for paths 𝜈 which map via 𝑈 from the torus 𝐼𝑚
to the torus 𝐼 ′𝑐ℎ. This allows for labeling the solutions of the saddle-point conditions by the index 𝜈,

𝑞𝜈 = 𝑞𝜈(𝐼
′
𝑐ℎ, 𝐼𝑚), (B.18)

𝑞′𝜈 = 𝑞′𝜈(𝐼
′
𝑐ℎ, 𝐼𝑚). (B.19)

For regular-to-chaotic tunneling-matrix elements, identifying saddle-points which solve Eqs. (B.16)

and (B.17) contains an additional twist. This twist is obvious, when thinking of saddle-points in terms

of classical paths. The tori 𝐼𝑚 and 𝐼 ′𝑐ℎ localize in dynamically separated phase-space regions. So how

can there be saddle-points which corresponds to a path mapping from 𝐼𝑚 to 𝐼 ′𝑐ℎ?

The correct answer to this question is provided by realizing that there cannot be a classical path of

𝑈 , which connects 𝐼𝑚 and 𝐼 ′𝑐ℎ in real phase space, i. e., there are no real solutions for Eqs. (B.16) and

(B.17). However, the method of steepest descent allows for resorting to complex saddle points [92].

This is implemented in our integral approximation by exploiting Cauchy’s theorem and deforming the

integration contours in Eq. (B.12) across complex saddle points. This procedure assumes that the

integrand in Eq. (B.12) is analytic in 𝑞 and 𝑞′. Note that this implies analyticity for the momentum
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and angle functions, Eqs. (B.4), (B.5), (B.6), (B.7), (B.9), and (B.10). When using the method

of steepest descent with complexified saddle points, Eqs. (B.16) and (B.17) become two complex

equations for two complex saddle points. It is essential to note that even a complex saddle-point

solution of Eqs. (B.16) and (B.17) is equivalent to a classical path which maps from 𝐼𝑚 to 𝐼 ′𝑐ℎ via the

map 𝑈 . However, now the complex saddle-point solution corresponds to a complex path, which maps

from a point on the complexified torus 𝐼𝑚 to a point on the complexified torus 𝐼 ′𝑐ℎ via the complexified

map 𝑈 .

After finding the paths 𝜈 which connect 𝐼𝑚 and 𝐼 ′𝑐ℎ, we can express the indexes 𝜇 and 𝜎 as 𝜇(𝜈)

and 𝜎(𝜈), respectively. This allows for defining the complex coordinates of the path 𝜈, 𝑝𝜈 , 𝜃𝜈 , 𝑝′𝜈 , and

𝜃′𝜈 , which correspond to the complex saddle points 𝑞𝜈 and 𝑞′𝜈 as functions of the real actions 𝐼𝑚 and

𝐼 ′𝑐ℎ,

𝑝𝜈(𝐼
′
𝑐ℎ, 𝐼𝑚) := 𝑝𝜈(𝑞

′
𝜈(𝐼

′
𝑐ℎ, 𝐼𝑚), 𝑞𝜈(𝐼

′
𝑐ℎ, 𝐼𝑚))

(B.16)
= 𝑝𝜇(𝜈)(𝑞𝜈(𝑞

′, 𝐼𝑚), 𝐼𝑚), (B.20)

𝜃𝜈(𝐼
′
𝑐ℎ, 𝐼𝑚) := 𝜃𝜇(𝜈)(𝑞𝜈(𝐼

′
𝑐ℎ, 𝐼𝑚), 𝐼𝑚), (B.21)

𝑝′𝜈(𝐼
′
𝑐ℎ, 𝐼𝑚) := 𝑝′𝜈(𝑞

′
𝜈(𝐼

′
𝑐ℎ, 𝐼𝑚), 𝑞𝜈(𝐼

′
𝑐ℎ, 𝐼𝑚))

(B.17)
= 𝑝′𝜎(𝜈)(𝐼

′
𝑐ℎ, 𝑞

′
𝜈(𝐼

′
𝑐ℎ, 𝐼𝑚)), (B.22)

𝜃′𝜈(𝐼
′
𝑐ℎ, 𝐼𝑚) := 𝜃𝜎(𝜈)(𝐼

′
𝑐ℎ, 𝑞

′
𝜈(𝐼

′
𝑐ℎ, 𝐼𝑚)). (B.23)

The third step of the steepest-descent method requires to evaluate the function ℎ(𝑞, 𝑞′), Eq. (B.13),

at the saddle points. We do this by defining the complex action of the path 𝜈,

𝒮𝜈(𝐼
′
𝑐ℎ, 𝐼𝑚) := ℱ (3)

𝜎(𝜈)(𝐼
′
𝑐ℎ, 𝑞

′
𝜈(𝐼

′
𝑐ℎ, 𝐼𝑚)) + 𝒮𝑈

𝜈 (𝑞′𝜈(𝐼
′
𝑐ℎ, 𝐼𝑚), 𝑞𝜈(𝐼

′
𝑐ℎ, 𝐼𝑚)) + ℱ (2)

𝜇(𝜈)(𝑞𝜈(𝐼
′
𝑐ℎ, 𝐼𝑚), 𝐼𝑚).

(B.24)

Note that this function can be shown to fulfill the properties of a type-four generating function

𝜕𝒮𝜈(𝐼
′
𝑐ℎ, 𝐼𝑚)

𝜕𝐼 ′𝑐ℎ
= −𝜃′𝜈(𝐼 ′𝑐ℎ, 𝐼𝑚), (B.25)

𝜕𝒮𝜈(𝐼
′
𝑐ℎ, 𝐼𝑚)

𝜕𝐼𝑚
= 𝜃𝜈(𝐼

′
𝑐ℎ, 𝐼𝑚) (B.26)

by using Eqs. (B.4), (B.5), (B.6), (B.7), (B.9), (B.10), (B.20), (B.21), (B.22), and (B.23).

The fourth step of the steepest-descent method requires to compute the determinant of the Hessian

of ℎ(𝑞′, 𝑞), Eq. (B.13), at the saddle points

detHessℎ(𝑞′, 𝑞) =
[︃
− 𝜕𝑝𝜈(𝑞

′, 𝑞)

𝜕𝑞′
𝜕𝑝′𝜈(𝑞

′, 𝑞)

𝜕𝑞
−
(︂
𝜕𝑝𝜈(𝑞

′, 𝑞)

𝜕𝑞
−
𝜕𝑝𝜇(𝜈)(𝑞, 𝐼𝑚)

𝜕𝑞

)︂
·
(︃
𝜕𝑝′𝜎(𝜈)(𝐼

′
𝑐ℎ, 𝑞

′)

𝜕𝑞′
− 𝜕𝑝′𝜈(𝑞

′, 𝑞)

𝜕𝑞′

)︃]︃⃒⃒
⃒⃒
⃒
𝑞′=𝑞′𝜈 , 𝑞=𝑞𝜈

.

(B.27)

The fifth step of the steepest-descent method requires to evaluate the arising Gaussian integrals as
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approximations to the integrals in Eq. (B.12). This gives the semiclassical regular-to-chaotic tunneling-

matrix elements [91, 92],

⟨𝐼 ′𝑐ℎ|̂︀𝑈 |𝐼𝑚⟩ = 1

(2𝜋i~)1/2
∑︁

𝜈

exp

(︂
i
~
𝒮(𝐼 ′𝑐ℎ, 𝐼𝑚)

)︂

×

⎯⎸⎸⎸⎸⎷

𝜕𝜃′
𝜎(𝜈)

(𝐼′𝑐ℎ,𝑞
′)

𝜕𝑞′ · 𝜕𝑝′𝜈(𝑞
′,𝑞)

𝜕𝑞 · 𝜕𝑝𝜇(𝜈)(𝑞,𝐼𝑚)

𝜕𝐼𝑚

𝜕𝑝𝜈(𝑞′,𝑞)
𝜕𝑞′

𝜕𝑝′𝜈(𝑞
′,𝑞)

𝜕𝑞 +
(︁
𝜕𝑝𝜈(𝑞′,𝑞)

𝜕𝑞 − 𝜕𝑝𝜇(𝜈)(𝑞,𝐼𝑚)

𝜕𝑞

)︁
·
(︂

𝜕𝑝′
𝜎(𝜈)

(𝐼′𝑐ℎ,𝑞
′)

𝜕𝑞′ − 𝜕𝑝′𝜈(𝑞
′,𝑞)

𝜕𝑞′

)︂

⃒⃒
⃒⃒
⃒⃒
⃒⃒
𝑞′=𝑞′𝜈 , 𝑞=𝑞𝜈

. (B.28)

B.3. Stability prefactor

Equation (B.28) still contains a very complicated relation in the root function. In the following

computation, we show that this root function can be rearranged in terms of a stability prefactor,

casting the semiclassical tunneling-matrix elements of Eq. (B.28) in the elegant form of a semiclassical

propagator in action coordinates, Eq. (B.37).

We start by computing the partial derivative of the saddle points, Eqs. (B.18) and (B.19), with

respect to 𝐼𝑚,

𝜕𝑞′𝜈
𝜕𝐼𝑚

=
𝜕𝑞′𝜈(𝐼

′
𝑐ℎ, 𝐼𝑚)

𝜕𝐼𝑚
, (B.29)

𝜕𝑞𝜈
𝜕𝐼𝑚

=
𝜕𝑞𝜈(𝐼

′
𝑐ℎ, 𝐼𝑚)

𝜕𝐼𝑚
. (B.30)

Subsequently, we compute the partial derivative of the final angle 𝜃′𝜈 , Eq. (B.23), with respect to 𝐼𝑚 ,

𝜕𝜃′𝜈(𝐼
′
𝑐ℎ, 𝐼𝑚)

𝜕𝐼𝑚
=
𝜕𝜃′𝜎(𝜈)(𝐼

′
𝑐ℎ, 𝑞

′)

𝜕𝑞′

⃒⃒
⃒⃒
⃒
𝑞′=𝑞′𝜈

𝜕𝑞′𝜈
𝜕𝐼𝑚

. (B.31)

We also compute the partial derivative of the right relation in Eq. (B.20) with respect to 𝐼𝑚,

𝜕𝑝′𝜎(𝜈)(𝐼
′
𝑐ℎ, 𝑞

′)

𝜕𝑞′

⃒⃒
⃒⃒
⃒
𝑞′=𝑞′𝜈

𝜕𝑞′𝜈
𝜕𝐼𝑚

=
𝜕𝑝′𝜈(𝑞

′, 𝑞)

𝜕𝑞′

⃒⃒
⃒⃒
𝑞′=𝑞′𝜈

𝜕𝑞′𝜈
𝜕𝐼𝑚

+
𝜕𝑝′𝜈(𝑞

′, 𝑞)

𝜕𝑞

⃒⃒
⃒⃒
𝑞=𝑞𝜈

𝜕𝑞𝜈
𝜕𝐼𝑚

, (B.32)

giving

𝜕𝑞′𝜈
𝜕𝐼𝑚

=

𝜕𝑝′𝜈(𝑞
′,𝑞)

𝜕𝑞

𝜕𝑝′
𝜎(𝜈)

(𝐼′𝑐ℎ,𝑞
′)

𝜕𝑞′ − 𝜕𝑝′𝜈(𝑞
′,𝑞)

𝜕𝑞′

⃒⃒
⃒⃒
⃒⃒
𝑞′=𝑞′𝜈 , 𝑞=𝑞𝜈

𝜕𝑞𝜈
𝜕𝐼𝑚

. (B.33)
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Furthermore, we compute the partial derivative of the right relation in Eq. (B.22) with respect to 𝐼𝑚

𝜕𝑝𝜈(𝑞
′, 𝑞)

𝜕𝑞′

⃒⃒
⃒⃒
𝑞′=𝑞′𝜈

𝜕𝑞′𝜈
𝜕𝐼𝑚

+
𝜕𝑝𝜈(𝑞

′, 𝑞)

𝜕𝑞

⃒⃒
⃒⃒
𝑞=𝑞𝜈

𝜕𝑞𝜈
𝜕𝐼𝑚

=
𝜕𝑝𝜇(𝜈)(𝑞, 𝐼𝑚)

𝜕𝑞

⃒⃒
⃒⃒
𝑞=𝑞𝜈

𝜕𝑞𝜈
𝜕𝐼𝑚

+
𝜕𝑝𝜇(𝜈)(𝑞, 𝐼𝑚)

𝜕𝐼𝑚

⃒⃒
⃒⃒
𝑞=𝑞𝜈

,

(B.34)

which together with Eq. (B.33) gives

𝜕𝑞𝜈
𝜕𝐼𝑚

=

(︂
𝜕𝑝′

𝜎(𝜈)
(𝐼′𝑐ℎ,𝑞

′)

𝜕𝑞′ − 𝜕𝑝′𝜈(𝑞
′,𝑞)

𝜕𝑞′

)︂
𝜕𝑝𝜇(𝜈)(𝑞,𝐼𝑚)

𝜕𝐼𝑚

𝜕𝑝𝜈(𝑞′,𝑞)
𝜕𝑞′

𝜕𝑝′𝜈(𝑞
′,𝑞)

𝜕𝑞 +
(︁
𝜕𝑝𝜈(𝑞′,𝑞)

𝜕𝑞 − 𝜕𝑝𝜇(𝜈)(𝑞,𝐼𝑚)

𝜕𝑞

)︁
·
(︂

𝜕𝑝′
𝜎(𝜈)

(𝐼′𝑐ℎ,𝑞
′)

𝜕𝑞′ − 𝜕𝑝′𝜈(𝑞
′,𝑞)

𝜕𝑞′

)︂

⃒⃒
⃒⃒
⃒⃒
⃒⃒
𝑞′=𝑞′𝜈 , 𝑞=𝑞𝜈

.

(B.35)

Combining Eqs. (B.31), (B.33), and (B.35) gives a simplified expression for the stability prefactor in

Eq. (B.28) according to

𝜕𝜃′𝜈(𝐼
′
𝑐ℎ, 𝐼𝑚)

𝜕𝐼𝑚
=

𝜕𝜃′
𝜎(𝜈)

(𝐼′𝑐ℎ,𝑞
′)

𝜕𝑞′ · 𝜕𝑝′𝜈(𝑞
′,𝑞)

𝜕𝑞 · 𝜕𝑝𝜇(𝜈)(𝑞,𝐼𝑚)

𝜕𝐼𝑚

𝜕𝑝𝜈(𝑞′,𝑞)
𝜕𝑞′

𝜕𝑝′𝜈(𝑞
′,𝑞)

𝜕𝑞 +
(︁
𝜕𝑝𝜈(𝑞′,𝑞)

𝜕𝑞 − 𝜕𝑝𝜇(𝜈)(𝑞,𝐼𝑚)

𝜕𝑞

)︁
·
(︂

𝜕𝑝′
𝜎(𝜈)

(𝐼′𝑐ℎ,𝑞
′)

𝜕𝑞′ − 𝜕𝑝′𝜈(𝑞
′,𝑞)

𝜕𝑞′

)︂

⃒⃒
⃒⃒
⃒⃒
⃒⃒
𝑞′=𝑞′𝜈 , 𝑞=𝑞𝜈

.

(B.36)

Together with Eq. (B.25) this gives a semiclassical prediction of regular-to-chaotic tunneling-matrix

elements in the shape of a semiclassical propagator between classical actions 𝐼𝑚 and 𝐼 ′𝑐ℎ,

⟨𝐼 ′𝑐ℎ|̂︀𝑈 |𝐼𝑚⟩ =
∑︁

𝜈

√︃
i

2𝜋~
𝜕2𝒮𝜈(𝐼 ′𝑐ℎ, 𝐼𝑚)

𝜕𝐼 ′𝑐ℎ 𝜕𝐼𝑚
exp

(︂
i
~
𝒮𝜈(𝐼

′
𝑐ℎ, 𝐼𝑚)

)︂
, (B.37)

for the tunneling-matrix elements.

B.4. WKB-like actions and semiclassical normalization for basis states

In order to make the semiclassical propagator for regular-to-chaotic tunneling-matrix elements, given

by Eq. (B.37) applicable for practical use, we evaluate the generating functions ℱ (2)
𝜇 and ℱ (3)

𝜎 , required

for computing the action 𝒮𝜈(𝐼
′
𝑐ℎ, 𝐼𝑚), Eq. (B.24), by integrating Eqs. (B.4) and (B.6), along quantizing

tori 𝐼 = 𝐼𝑚 and 𝐼 ′ = 𝐼 ′𝑐ℎ, respectively,

ℱ (2)
𝜇 (𝑞, 𝐼𝑚) =

∫︁

𝒞𝑚,𝜇

𝑝𝜇(𝑞, 𝐼𝑚)d𝑞 + 𝑓(𝐼𝑚) with 𝑓(𝐼𝑚) = −i~ log (~), (B.38)

ℱ (3)
𝜎 (𝐼 ′𝑐ℎ, 𝑞

′) =

∫︁

𝒞𝑐ℎ,𝜎

𝑝′𝜎(𝐼
′
𝑐ℎ, 𝑞

′)d𝑞′ + 𝑓(𝐼 ′𝑐ℎ) with 𝑓(𝐼 ′𝑐ℎ) = −i~ log (~). (B.39)
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The integrations take place along curves 𝒞𝑚,𝜇 and 𝒞𝑐ℎ,𝜎, on the (possibly complexified) tori of action

𝐼𝑚 and 𝐼 ′𝑐ℎ, respectively. The curve 𝒞𝑚,𝜇 originates from a conveniently chosen reference point (𝑞𝑚, 𝑝𝑚)

on the real phase-space branch 𝒯𝑚 of the quantizing torus 𝐼𝑚. It ends at the point (𝑞, 𝑝𝜇(𝑞, 𝐼𝑐ℎ)),

with 𝑞 determined from the considered basis state ⟨𝑞|𝐼𝑚⟩. In contrast, the curve 𝒞𝑐ℎ,𝜎 originates from

the point (𝑞′, 𝑝′𝜎(𝐼
′
𝑐ℎ, 𝑞

′)), with 𝑞′ determined from the basis state ⟨𝐼 ′𝑐ℎ|𝑞′⟩. It ends at the conveniently
chosen reference point (𝑞′𝑐ℎ, 𝑝

′
𝑐ℎ) on the real phase-space branch 𝒯𝑐ℎ of the quantizing torus 𝐼 ′𝑐ℎ. The

choice of the reference points and the real part of the integration constants Re 𝑓(𝐼𝑚) and Re 𝑓(𝐼 ′𝑐ℎ)

affect the irrelevant global phase of the initial and final basis states, Eqs. (B.2) and (B.3), respectively.

The imaginary part of the integration constants are chosen such that the basis states, Eqs. (B.2) and

(B.3), are normalized. This is confirmed by inserting Eq. (B.38) into Eq. (B.2) and using Eq. (B.5),

⟨𝑞|𝐼𝑚⟩ =
∑︁

𝜇

√︃
1

2𝜋i
𝜕𝜃(𝑞, 𝐼𝑚)

𝜕𝑞
exp

⎛
⎜⎝ i
~

∫︁

𝒞𝑚,𝜇

𝑝𝜇(𝑞, 𝐼𝑚)d𝑞

⎞
⎟⎠, (B.40)

or similarly inserting (B.39) into (B.3) and using Eq. (B.7),

⟨︀
𝐼 ′𝑐ℎ|𝑞′

⟩︀
=
∑︁

𝜎

√︃
1

2𝜋i

𝜕𝜃′(𝐼 ′𝑐ℎ, 𝑞
′)

𝜕𝑞′
exp

⎛
⎜⎝− i

~

∫︁

𝒞𝑐ℎ,𝜎

𝑝′𝜎(𝐼
′
𝑐ℎ, 𝑞

′)d𝑞′

⎞
⎟⎠, (B.41)

respectively. This gives WKB-like wave functions whose normalization is semiclassically dominated

by the classical probability densities on the real phase-space branches 𝒯𝑚 and 𝒯𝑐ℎ of the quantizing

tori 𝐼𝑚 and 𝐼 ′𝑐ℎ [66, 67],

∞∫︁

−∞

d𝑞 |⟨𝑞|𝐼𝑚⟩|2 S.P.A.
=

∮︁

𝒯𝑚

d𝑞
2𝜋

⃒⃒
⃒⃒𝜕𝜃(𝑞, 𝐼𝑚)

𝜕𝑞

⃒⃒
⃒⃒ , (B.42)

∞∫︁

−∞

d𝑞′
⃒⃒⟨︀
𝐼 ′𝑐ℎ|𝑞′

⟩︀⃒⃒2 S.P.A.
=

∮︁

𝒯𝑐ℎ

d𝑞′

2𝜋

⃒⃒
⃒⃒𝜕𝜃

′(𝑞′, 𝐼 ′𝑐ℎ)

𝜕𝑞′

⃒⃒
⃒⃒ , (B.43)

respectively. Exploiting that 𝒯𝑚 and 𝒯𝑐ℎ can be parametrized by 𝑞 = 𝑞(𝜃, 𝐼𝑚) and 𝑞′ = 𝑞′(𝐼 ′𝑐ℎ, 𝜃
′) the

normalization is evident,

∮︁

𝒯𝑚

d𝑞
2𝜋

⃒⃒
⃒⃒𝜕𝜃(𝑞, 𝐼𝑚)

𝜕𝑞

⃒⃒
⃒⃒ =

2𝜋∫︁

0

d𝜃
2𝜋

= 1, (B.44)

∮︁

𝒯𝑐ℎ

d𝑞′

2𝜋

⃒⃒
⃒⃒𝜕𝜃

′(𝑞′, 𝐼 ′𝑐ℎ)

𝜕𝑞′

⃒⃒
⃒⃒ =

2𝜋∫︁

0

d𝜃′

2𝜋
= 1. (B.45)

This concludes our derivation. We combine Eqs. (B.38) and (B.39) with the semiclassical propagator

for regular-to-chaotic tunneling-matrix elements, Eq. (B.37) and its corresponding action Eq. (B.24)
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giving our final result, Eq. (4.6), with the action given by Eq. (4.7). Furthermore, we introduce a

Maslov phase 𝜑𝜈 which accounts for additional phase shifts due to turning points [67, 91, 92].
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