
Chaotic transport and trapping

close to regular structures

in 4d symplectic maps

Dissertation

zur Erlangung des wissenschaftlichen Grades

Doctor rerum naturalium

vorgelegt von

Steffen Lange

geboren am 06.02.1988 in Dresden

Institut für Theoretische Physik

Fachrichtung Physik

Fakultät für Mathematik und Naturwissenschaften

Technische Universität Dresden

2016



Eingereicht am 26. Mai 2016

1. Gutachter: Prof. Dr. Roland Ketzmerick

2. Gutachter: Prof. Dr. James Meiss



iii

Abstract

Higher-dimensional Hamiltonian systems usually exhibit a mixed phase space in which

regular and chaotic motion coexist. While regular trajectories are con�ned to regular

tori, chaotic trajectories can be transported through a web of so called resonance chan-

nels which disrupt the regular structures. The focus of this thesis are time-discrete 4d

symplectic maps which represent the lowest dimensional system for which the chaotic

transport can circumvent regular tori. While the dynamics of 2d maps are well estab-

lished, many fundamental questions are open for maps of dimension four and higher due

to this property. In particular, the mechanism of the power-law trapping is unknown

for these maps. In this thesis, the organization and hierarchy of the regular structures

of 4d maps is uncovered and the slow chaotic transport close to these structures is

examined. Speci�cally, this transport is shown to be organized by a set of overlapping

resonance channels. The transport across these channels is found to be governed by par-

tial transport barriers. For the transport along a channel a stochastic process including

a drift is conjectured. Based on each of these two types of chaotic transport a possible

mechanism for the power-law trapping in higher-dimensional systems is proposed.

Zusammenfassung

Der Phasenraum höherdimensionaler Hamilton'scher Systeme weist üblicherweise so-

wohl Bereiche regulärer als auch chaotischer Dynamik auf. Reguläre Trajektorien

sind eingeschränkt auf reguläre Tori. Im Gegensatz dazu können chaotische Trajek-

torien durch ein Netz von sogenannten Resonanzkanälen, welche den regulären Bereich

durchziehen, transportiert werden. Der Schwerpunkt dieser Doktorarbeit sind zeit-

diskrete, vierdimensionale, symplektische Abbildungen, da diese das niedrigstdimension-

ale System darstellen für welches der chaotische Transport die regulären Tori umgehen

kann. Aufgrund dieser Eigenschaft ist der chaotische Transport in vier- oder höherdi-

mensionalen Abbildungen kaum verstanden, während die Dynamik von zweidimensi-

onalen Abbildungen allgemein bekannt ist. Insbesondere ist die Ursache für den algebra-

ischen Zerfall der Poincaré-Rückkehrzeiten unklar für höherdimensionale Abbildungen.

In dieser Arbeit wird die Organisation und Hierarchie der regulären Tori erklärt. Es

stellt sich heraus, dass der chaotische Transport in der Nähe der regulären Bereiche

durch überlappende Resonanzkanäle organisiert wird. Es wird gezeigt, dass der Trans-

port transversal zu diesen Kanälen Signaturen von partiellen Barrieren aufweist. Als

Modell für den Transport entlang eines Kanals wird ein stochastischer Prozess mit

einem physikalisch motivierten Drift vorgeschlagen. Ausgehend von jeder dieser bei-

den Transportrichtungen wird eine mögliche Ursache für den algebraischen Zerfall der

Poincaré-Rückkehrzeiten hergeleitet.
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1 Introduction

Hamiltonian systems occur in many areas of physics, chemistry, and mathematics. In

principle, the time evolution of a trajectory or orbit within a Hamiltonian system is

uniquely determined by its initial condition in phase space, i.e. the initial coordinates

of position and momentum. However, a reliable long-term prediction of this time evo-

lution is often impossible as the dynamics typically exhibits an exponential sensitivity

to the initial conditions. This phenomenon is referred to as deterministic chaos [1].

An example is the solar system which is chaotic [2] such that no reliable predictions

are possible beyond sixty million years [3] and even collisions between earth and other

planets may occur. The transport of orbits due to chaotic motion is denoted as chaotic

transport. Understanding chaotic transport is key to, e.g., predict the stability of ce-

lestial motion [4�11], control the beams of particle accelerators [12�16], and to describe

reactions of atoms and molecules [17�21].

The counterpart of chaos is regular motion which takes place on invariant regular tori.

Typical Hamiltonian systems have a mixed phase space in which regions of chaotic and

regular dynamics coexist. The interface between the two types of motion fundamentally

a�ects the chaotic transport as chaotic orbits tend to stick to the vicinity of the regular

phase-space structures for long times. More precisely, the probability 𝑃 (𝑇 ) that a

chaotic orbit spends the time 𝑇 in the neighborhood of these structures decays as

a power law 𝑃 (𝑇 ) ∼ 𝑇−𝛾, i.e. much slower than for a fully chaotic phase space for

which 𝑃 (𝑇 ) decays exponentially. This so-called power-law trapping entails dramatic

consequences for the transport properties in many systems, e.g., comet orbits in the solar

system [22], many-body systems in disordered enviroments [23], DNA [24], molecular

di�usion [25], microwave ionization of Rydberg atoms [26,27], and even a�ects quantum

dynamics [28,29]. The trapping causes anomalous di�usion, intermittent non-ergodicity,

and slow decay of time correlations [30�33].

Chaotic transport in the vicinity of regular structures is well understood for Hamilto-

nian systems with two degrees of freedom [34]: The invariant regular tori are barriers in

phase space such that chaotic orbits cannot cross them. In their vicinity so called partial

transport barriers of same dimension exist which allow for a limited �ux of chaotic phase-

space volume across them. A hierarchy of these partial barriers governs the dynamics
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and causes the power-law trapping. However, most of the relevant systems have three

or more degrees of freedom and much less is known about their dynamics: A distinctive

feature of these higher-dimensional systems is that the invariant regular tori have an

insu�cient dimension to be barriers in phase space. An intuitive way to picture this is

a closed ring in a 3d space. This ring does not constitute a barrier as any two points

in this space can be connected with a line which does not cross the ring. The absence

of barriers has two major consequences: Firstly, chaotic orbits can get arbitrarily close

to any point in phase space. Secondly, the mechanism of the power-law trapping of two

degrees of freedom cannot be generalized to higher dimensions. Thus, even though the

power-law trapping occurs also in higher-dimensional systems [32,35�37] its mechanism

is unknown.

Understanding the regular structures and chaotic transport of higher-dimensional

Hamiltonian systems is challenging as the phase space cannot directly be visualized:

Time-continuous systems can be reduced to time-discrete maps, i.e. an autonomous

Hamiltonian system with 𝑓 degrees of freedom corresponds to a (2𝑓 − 2)-dimensional

symplectic map [1]. In this sense, 4d maps are of particular interest as they represent

systems with three degrees of freedom, which are the lowest dimensional systems for

which chaotic transport can circumvent regular tori. Furthermore, higher-dimensional

systems are usually studied in action space [38�40] or in frequency space [20, 41�46],

which require only half of the dimensions of the corresponding phase space. In frequency

space each regular 2d torus of a 4d map is represented by a point corresponding to its

two frequencies 𝜈 = (𝜈1, 𝜈2) ∈ [0, 1)2. These frequencies de�ne the dynamics on the

torus which can be locally described by action�angle variables 𝐼 ∈ R2, Θ ∈ [0, 2π)2, i.e.

the 𝑡-th iteration of an orbit on the torus reads 𝐼(𝑡) = const. and Θ(𝑡) = Θ0 +2π𝜈(𝐼)𝑡.

If a system is integrable, that is all orbits lie on regular tori, a part of the frequency

space is densely �lled with points. If a non-integrable perturbation is added, e.g.,

electromagnetic �elds to a hydrogen atom [18,44,47], regular tori whose frequencies are

close to a resonance condition, 𝑚𝜈 = 𝑛 for some 𝑚 ∈ Z2∖{0}, 𝑛 ∈ Z, break up. This

break-up leaves band-like gaps in frequency space, so called resonance channels, which

can be accessed by chaotic orbits.

The chaotic transport in higher-dimensional maps is governed by the web of inter-

secting resonance channels: Chaotic orbits di�use along the channels by various mecha-

nisms [1,48�55] including Arnold di�usion [1,7,48,49,56]. They also can switch between

overlapping channels [49, 57�59] or exhibit even more complex dynamics at the junc-

tion of channels [30, 31,39, 41,60,61]. While the di�usion along a channel is sometimes

found [43,62,63] and often assumed [39,40,64] to be normal, its generic nature remains

unknown [56,65]. Some features of the chaotic transport in higher-dimensional systems
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can be explained by lower-dimensional subsystems perturbing each other [32, 62, 66].

However, many generic aspects of the chaotic transport, including power-law trapping,

have not been understood and are assumed to be truly higher-dimensional e�ects with-

out an analog in systems with two degrees of freedom [32,66]. While generalizations of

the partial transport barriers governing the trapping in 2d maps exist [41,67�70], these

objects seem to lack a su�cient hierarchy and their in�uence on the higher-dimensional

dynamics is hardly known. Additionally, many studies in the literature are performed

on near-integrable or weakly coupled systems in which the actions and angles of the un-

perturbed or uncoupled system are still a good approximation to measure the chaotic

transport. However, many practial applications are concerned with generic, strongly-

coupled, non-perturbative systems [18,20,71]. These systems exhibit prominent features

such as a large chaotic region surrounding regular structures and resonance channels

which are reaching far into the chaotic region.

In this thesis the slow chaotic transport close to regular structures is examined for the

prototypical 4d map of two coupled standard maps. Firstly, using a combination of 3d

phase-space slices and frequency analysis the organization and hierarchy of the regular

structures is uncovered. Secondly, the chaotic transport is shown to be organized by

a set of overlapping resonance channels. While the transport across these channels is

found to be governed by partial transport barriers, a stochastic process including a drift

is conjectured for the transport along a channel. It is demonstrated how each of these

two types of transport may constitute a mechanism for the power-law trapping.

This thesis is organized as following: Chapter 2 contains an introduction and overview

of the state of the art on chaotic transport in higher-dimensional systems including a

review of preliminary results of the author. In Chapter 3 it is explained how the regular

2d tori of 4d maps are arranged around a skeleton of families of elliptic 1d tori. The

origins of these families are uncovered and a hierarchy of the families similar to the one

present in 2d maps is constructed. Based on these insights about the organization of

phase space a new designed map, the coupled twist maps, is proposed which facilitates

the quanti�cation of the generic chaotic transport. In Chapter 4 the chaotic transport

and power-law trapping is discussed. Trapped orbits are found to stick to the surface

of the regular structures, where their transport is organized by a set of overlapping

resonance channels. This transport is decomposed into four basic phenomena which

are examined separately, namely I) transport across resonance channels, II) trapping

deeper into the hierarchy, III) trapping at resonance junctions, and IV) transport along

resonance channels. The �rst three phenomena I), II), and III) are shown to be governed

by higher-dimensional partial barriers. While the hierarchy and junctions appear to be

less relevant for the chaotic transport, the transport between resonance channels is
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shown to provide a mechanism for power-law trapping in higher-dimensional systems.

However, numerical results suggest that generically IV) the transport along resonance

channels is responsible for the power-law trapping. A one-dimensional stochastic model

for this transport including a physically motivated drift along the channel is proposed.

The challenges of a numerical veri�cation of this model are discussed.

In conclusion, while no de�nite answer to the question about the mechanism of the

power-law trapping is given, the results signi�cantly advance the comprehension of

transport in 4d maps. In particular, an intuitive picture of the chaotic transport

near regular structures is presented, similar to the excellent understanding available

for generic 2d maps. It should be possible to generalize the results from 4d maps to

even higher-dimensional systems as all these systems share the crucial property that

regular tori are no dynamical barriers in phase space.



2 Regular and chaotic dynamics

Typical Hamiltonian systems are neither integrable nor fully chaotic but have a mixed

phase space in which regular and chaotic dynamics coexist. While the interface between

the two types of motion has a huge impact on the chaotic transport, it is not well under-

stood for the phase space of higher-dimensional systems. Fundamental insights about

Hamiltonian systems can be obtained from the study of symplectic maps. While the

mechanisms within 2d maps are well known, these results can not simply be general-

ized to higher-dimensional maps as their regular tori have an insu�cient dimension to

be barriers in phase space. The lowest-dimensional maps with this property are four-

dimensional. This chapter outlines some aspects of chaotic transport with a focus on

2d and 4d maps, including the phenomenon of power-law trapping.

In Sec. 2.1 fundamental concepts of mixed Hamiltonian systems are introduced, in-

cluding symplectic maps as a representation of time-continuous systems. In Sec. 2.2 the

crucial role of higher-dimensional chaotic transport, in particular trapping of chaotic

orbits, is reviewed. In Sec. 2.3 the coupled standard maps are introduced, which serve

as a prototypical 4d map in this thesis. In Sec. 2.4 chaotic transport and phase-space

structures in 2d maps are outlined. In Sec. 2.5 previous results about regular and

chaotic dynamics of 4d maps are discussed. In Sec. 2.6 preliminary studies of the au-

thor are presented which demonstrate that the mechanism of the power-law trapping in

4d maps di�ers considerably from the one in 2d maps [72].

2.1 Dynamics of Hamiltonian mixed systems

Some fundamental concepts of mixed Hamiltonian systems are introduced in the follow-

ing. First, basic properties of regular and chaotic dynamics are outlined, including the

Kolmogorov-Arnold-Moser (KAM) theorem, which describes the coexistence of these

dynamics due to resonances. Second, the transition from time-continuous Hamiltonian

systems to symplectic maps is sketched. Finally, after a discussion of the stability in

2d and 4d symplectic maps the fundamental di�erence between 2d and all higher-

dimensional maps is pointed out. A nice overview of the basic principles of Hamiltonian
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systems, mixed phase space, and transport for kicked systems with one degree of free-

dom can be found in Michler [73, sections 2 and 3].

Consider a time-continuous Hamiltonian system𝐻(𝑝, 𝑞, 𝑡) with 𝑁 degrees of freedom.

This dynamical system is described in the phase space (𝑝, 𝑞) ∈ 𝑈 ⊆ R𝑁 ×R𝑁 , where 𝑝

and 𝑞 denote the momentum and the position vectors, and the time 𝑡 ∈ R [1, 74]. The

canonical equations of motion are

𝑝̇ = −𝜕𝐻(𝑝, 𝑞, 𝑡)

𝜕𝑞
𝑞̇ =

𝜕𝐻(𝑝, 𝑞, 𝑡)

𝜕𝑝
. (2.1)

Based on these equations an initial condition 𝑥0 can be integrated to an orbit 𝑥(𝑡)

with 𝑥(0) = 𝑥0. For an integrable system, i.e. a system with 𝑁 integrals of motion,

local canonical transformation exists that converts its phase-space coordinates (𝑝, 𝑞) to

action�angle coordinates (𝐼,Θ) ∈ R𝑁×T𝑁 for which the equations of motions Eq. (2.1)

change to

𝐼 = −𝜕𝐻(𝐼)

𝜕Θ
= 0 Θ̇ =

𝜕𝐻(𝐼)

𝜕𝐼
=: 2π𝜈(𝐼) , (2.2)

with the 𝑁 -dimensional vector of the fundamental frequencies 𝜈 ∈ [0, 1)𝑁 and the

periodic domain T = [0, 2π) of each angle Θ𝑖. The frequencies de�ne the dynamics on a

𝑁 -dimensional torus, i.e. an initial point 𝑥0 = (𝑝(𝐼0,Θ0), 𝑞(𝐼0,Θ0)) leads to a so called

regular orbit

𝑥(𝑡) = (𝑝(𝐼(𝑡),Θ(𝑡)), 𝑞(𝐼(𝑡),Θ(𝑡)))

with

𝐼(𝑡) = 𝐼0 Θ(𝑡) = (Θ0 + 2π𝜈(𝐼0)𝑡) mod 2π (2.3)

Hence, such a regular torus is characterized by its actions 𝐼 which can be computed by

𝐼𝑖 =
1

2π

∮︁
𝛾𝑖

𝑁∑︁
𝑗=1

𝑝𝑗d𝑞𝑗 (2.4)

where the closed path 𝛾𝑖 is a fundamental path on the torus parametrized by the corre-

sponding angle Θ𝑖 ∈ T and all other angles being constant. Note that the action�angle

coordinates and thus also the frequencies 𝜈 of any torus are only de�ned up to uni-

modular transformations 𝒰 = (𝑢𝑖𝑗) with 𝑖, 𝑗 ∈ {1, . . . , 𝑁}, 𝑢𝑖𝑗 ∈ Z, and det𝒰 = I,
I ∈ {−1, 1}, see Ref. [75, Sec. 15] and Refs. [47, 76]. More precisely, if (𝐼,Θ) are
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action�angle variables, then (𝐼, Θ̃) are also action�angle variables with

𝐼 = (𝒰𝑇 )−1𝐼 Θ̃ = 𝒰Θ → 𝜈 = 𝒰𝜈 . (2.5)

However, there is a preferred choice given by Eq. (2.4) with the minimal, fundamental

paths on the torus. This action is consistent with the linearization around stable �xed

points and is relevant for the quantized version of the dynamics [47]. Also note that

the action along any closed path on the torus is a superposition of the fundamental

actions, i.e. the action 𝐼 along a path 𝛾 with 𝑚1 and 𝑚2 full rotations around Θ1 and

Θ2, respectively, is 𝐼 = 𝑚1𝐼1 + 𝑚2𝐼2.

Generic Hamiltonian systems exhibit chaotic dynamics [74, section 1]. Chaos means

that orbits 𝑥(𝑡) of the system are exponentially sensitive with respect to their initial

condition 𝑥(0): a small deviation of the initial condition, △𝑥0 = 𝑥′(0) − 𝑥(0) with

||△𝑥0|| ≪ 1, leads to an orbit 𝑥′(𝑡) exponentially diverging from the original one,

||𝑥(𝑡) − 𝑥′(𝑡)|| ∼ e𝜆𝑡 with a Lyapunov exponent 𝜆. Such an orbit 𝑥(𝑡) is called chaotic

and regions containing just chaotic orbits are denoted chaotic as well. While a regular

orbit is con�ned to a torus, a chaotic orbit can propagate through connected chaotic

regions leading to chaotic transport in phase space.

Generic Hamiltonian systems 𝐻 are neither integrable nor fully chaotic, but rather

mixed [77]. An important insight about the transition from integrable to chaotic dy-

namics is given by the KAM theorem [1,74]. Consider a system given in form of a sum

𝐻 = 𝐻0 +𝐾 ·𝐻1 of an integrable Hamiltonian 𝐻0 and a perturbation in form of a non-

integrable Hamiltonian 𝐾 · 𝐻1. The parameter 𝐾 > 0 determines the strength of the

perturbation. The KAM theorem makes statements about the tori of the phase space

of 𝐻, depending on their fundamental frequencies 𝜈. That is, frequencies 𝜈 ful�lling a

resonance condition

𝑚 · 𝜈 = 0 (2.6)

for any 𝑚 ∈ Z𝑁∖{0} are called commensurable and the corresponding torus is called

resonant torus. The set of resonant tori is dense in phase space of 𝐻0 but of measure

zero. The non-resonant tori with frequencies 𝜈 in the vicinity of a resonance, i.e. for

which

|𝑚 · 𝜈| ≤ 𝛾(𝜈)𝑚−(𝑁+1) 𝑚 =
𝑁∑︁
𝑖=1

|𝑚𝑖| ∀ 𝑚 ∈ Z𝑁∖{0} (2.7)
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with some factor 𝛾(𝜈) independent of 𝐾 and the order 𝑚 of the resonance 𝑚, are

considered to be close to resonant tori [74, section 7.3]. The remaining set of non-

resonant tori, which are not close to resonant tori are of �nite measure in the phase

space. From Eqs. (2.3) and (2.6) follows that orbits on non-resonant tori are dense on

these tori for 𝑡 → ∞.

For𝐾 = 0 the phase space of𝐻 is identical to the regular phase space of the integrable

Hamiltonian 𝐻0. For a small perturbation 𝐾 ≪ 1 all resonant and close to resonant tori

cease to exist. These regular tori are replaced by chaotic regions and new regular tori of

a di�erent topology. The details of this break-up process of resonant tori are presented

in Sec. 2.4 for lower-dimensional and in Sec. 3.2.2 for higher-dimensional systems. The

remaining non-resonant tori are deformed but still present for a small perturbation.

They are referred to as KAM tori. Hence, the former regular phase space contains now

both regular regions with KAM tori and chaotic regions. Such a phase space is called

near-integrable. When the perturbation is increased further, more and more KAM tori

break, starting with the tori which are closest to resonances in the sense of Eq. (2.7). A

broken KAM torus is called cantorus as its remnants are given by Cantor sets in phase

space [78]. For a system with an external driving the resonance condition Eq. (2.6) is

generalized to

𝑚 · 𝜈 = 𝑛 (2.8)

with 𝑚 ∈ Z𝑁∖{0} and 𝑛 ∈ Z. The resonance condition Eq. (2.8) is abbreviated as

𝑚1 : . . . : 𝑚𝑁⏟  ⏞  
𝑁

: 𝑛 (2.9)

still with order𝑚 according to Eq. (2.7) and said to be a coupling resonance if 𝑛 = 0 [49].

Due to energy conservation and using a stroboscopic Poincaré section the dynamics of

the autonomous Hamiltonian system 𝐻(𝑝, 𝑞) can be reduced to a 2𝑁 − 2-dimensional

symplectic map 𝐹 [74, section 1.3]. For instance, a 4d symplectic map corresponds

either to an autonomous system with three degrees of freedom or to a system with two

degrees of freedom under time-periodic driving. Symplectic means that the map 𝐹 is

an orientation and volume preserving di�eomorphism on the phase space

𝐹 : 𝑈 → 𝑈 (𝑝′, 𝑞′) = 𝐹 (𝑝, 𝑞) (2.10)

(𝐷𝐹 )𝑇𝐽(𝐷𝐹 ) = 𝐽 𝐽 =

(︃
0 −1

1 0

)︃
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with the Jacobian 𝐷𝐹 and the identity matrix 1. The iterations of the map 𝐹 are

𝑥(𝑡) = 𝐹 𝑡(𝑥(0)) = 𝐹 ⊗ . . .⊗ 𝐹⏟  ⏞  
𝑡

(𝑥0)

where the sequence 𝑥(𝑡) with 𝑡 ∈ N is called orbit with the initial condition 𝑥(0) = 𝑥0.

The integer iterations 𝑡 represent the time and also backward iterations are possible

using the inverse map 𝐹−1, i.e. 𝑡 ∈ Z.

For any symplectic map 𝐹 with a �xed point 𝐹 (𝑢⃗fp) = 𝑢⃗fp or a period-𝑝 orbit 𝐹 𝑝(𝑢⃗p) =

𝑢⃗p the eigenvalues of the Jacobian matrix 𝐷𝐹 (𝑢⃗fp) or 𝐷𝐹 𝑝(𝑢⃗p) occur in form of four-

tuples (𝜆, 𝜆̄, 1/𝜆, 1/𝜆̄) [1, section 3.3]. For 2d maps there are two types of �xed points.

Firstly, if both eigenvalues of 𝐷𝐹 (𝑢⃗fp) have a zero imaginary part and are not on the

unit circle, then the linearized dynamics around the point 𝑢⃗fp or 𝑢⃗p has a stable and

unstable direction and the point is called hyperbolic periodic point. Secondly, if both

eigenvalues are on the unit circle, then the linearized dynamics around the point is

stable and given by tori centered around the point, which is then called elliptic periodic

point. In a 4d map there are four possibilities, i.e. elliptic-elliptic, elliptic-hyperbolic,

hyperbolic�hyperbolic and complex unstable [79]. While the �rst three cases are just

a combination of the 2d cases, abbreviated in the following with ee, eh, and hh,

respectively, the complex unstable case means that all four eigenvalues are not on the

unit circle and have a non-zero imaginary part.

According to Eq. (2.3), regular tori have codimension 𝑁 in the phase space of the

2𝑁 -dimensional symplectic map. For 2d maps their codimension is one, meaning that

they are barriers in phase space. For all maps of dimension four and higher the regular

tori have an insu�cient dimension to be barriers, which makes these higher-dimensional

systems fundamentally di�erent.

2.2 Chaotic transport and power-law trapping

Chaotic transport in Hamiltonian systems is important in many areas of physics and

chemistry. The regular phase-space structures strongly a�ect the chaotic dynamics in

their vicinity, i.e. the chaotic transport in phase space can be slowed down considerably.

For Hamiltonian systems with two degrees of freedom this is well understood [70, 80],

while for higher-dimensional systems many fundamental questions remain open. In

this section, the crucial role of chaotic transport in higher-dimensional systems is re-

viewed. The phenomenon of stickiness, especially power-law trapping, is introduced in



10 2.2 Chaotic transport and power-law trapping

this section and its impact on chaotic transport is outlined. The mechanism causing

the power-law trapping is a long standing open question.

As mentioned in the introduction, understanding chaotic transport is crucial to pre-

dict the stability of celestial motion [4�11], control the beams of particle accelera-

tors [12�16], and to describe atoms and molecules [17�21]. For instance it is known

that the solar system is chaotic [2] and that no reliable predictions are possible be-

yond sixty million years [3]. Insights about the structure of higher-dimensional phase

spaces could support space missions [81]. Chaotic transport is considered in scatter-

ing processes, which are a fundamental tool to reveal characteristics of natural pro-

cesses [82, 83]. Many real life systems are modeled by the coupling of two degree of

freedom systems [84�86] including issues of synchronization [87�89] and thermal con-

ductivity [90]. In chemistry chaotic transport appears for instance in connection with

weak van der Waals bonds [91, 92], isomerization [30, 31], and intramolecular energy

redistribution [41, 46, 60, 93]. It is interesting to note, that while molecular dynamics

are of quantum nature, many insights are obtained from classical counterparts, e.g., the

famous transition state theory is a purely classical theory [46, 91]. Nevertheless, many

questions about the dynamics of higher-dimensional systems remain [94�96].

A particular open question concerns the power-law trapping. The Poincaré recurrence

theorem states that for a symplectic map 𝐹 with a con�ned phase space 𝑈 every region

Γ ⊆ 𝑈 is mapped almost completely onto itself in the limits of large times [74,97, section

7.1.3]. More precisely, ∀ 𝑥(0) ∈ Γ∖Γ0 : ∃ 𝑡 > 0: 𝑥(𝑡) ∈ Γ, where the excluded subset

Γ0 ⊆ Γ is of measure zero. The �rst time 𝑇 an orbit returns to its initial region Γ

is called Poincaré recurrence. The statistics of Poincaré recurrences 𝑃 (𝑇 ) gives the

probability that an orbit 𝑥(𝑡), with 𝑥(0) ∈ Γ, has not returned to Γ until time 𝑇 . As

only the �rst recurrence is of interest here, the following sections assume that for any

orbit 𝑥(𝑡) the time is bounded 𝑡 ∈ [0, 𝑇 ] with the recurrence time 𝑇 of the orbit.

For a fully chaotic map 𝐹chaotic the statistics 𝑃 (𝑇 ) is analogous to the probability

of a coin toss 𝑃chaotic(𝑇 ) ∼ 1/2𝑇 , i.e. decays exponentially 𝑃chaotic(𝑇 ) ∼ e−𝛽𝑇 [98, 99].

However, in generic mixed systems chaotic orbits are observed to stick to the vicinity

of the regular structures for long times. Thus, this vicinity is also called sticky region.

This stickiness crucially a�ects the chaotic transport. Most importantly, the statistics

of Poincaré recurrences exhibits a power-law decay 𝑃 (𝑇 ) ∼ 𝑇−𝛾 [35]. This so called

power-law trapping is well understood for 2d maps [34]. For the much less investigated

higher-dimensional maps, the power-law decay of 𝑃 (𝑇 ) is also observed, despite the fact

that these maps are fundamentally di�erent. An explanation for the power-law trapping

in higher-dimensional systems is missing so far.
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As mentioned in the introduction, the power-law trapping entails dramatic conse-

quences for classical transport, such as anomalous di�usion, and for quantum me-

chanical properties, such as conductance �uctuations and long-range interaction, see

Refs. [20, 45, 100] and references therein. More precisely, power-law trapping causes

intermittent non-ergodicity and slow decay of time correlations [101, 102] with 1/𝑓

spectra [30, 31, 103, 104]. It is an origin of anomalous di�usion as the slow trapped

orbits may cause subdi�usion or sticking to so called accelerator modes may enhance

transport causing superdi�usion [32, 33, 105, 106]. Thus, power-law trapping is an im-

portant aspect for many systems, e.g., comet orbits in the solar system [22], many body

systems in disordered environments [23], molecular di�usion [25], microwave ionization

of Rydberg atoms [26, 27], and even for DNA [24]. The recurrence statistics have also

been used as indicator of chaos and synchronization [107]. In chemical reactions the

recurrence time is related to the reactant lifetime [91,92,108]. The trapping even a�ects

quantum dynamics [28,29], although in real systems the long time dynamics is probably

governed mostly by quantum mechanical e�ects [91]. In 2d maps the understanding of

the power-law trapping enables e�cient control of this phenomenon [109].

For the well studied case of 2d symplectic generic maps the exponent 𝛾 of the power-

law decay is found to be on average 𝛾 ≈ 1.5 [22, 34, 35, 110�113] and is believed to be

universal [114�116]. Based on the trapping at marginally unstable periodic orbits an

upper bound for the power-law exponent 𝛾 ≤ 2 in 2d maps is given [117]. The exponent

is observed in the range 1.1 < 𝛾 < 1.5 for 4D, 1.7 < 𝛾 < 2 for 6D and 1.3 < 𝛾 < 5.5

for maps with 𝑁 = 25 degrees of freedom [32, 35�37] and it has been conjectured that

independently of the degrees of freedom the exponent is universal 𝛾 ≈ 1.3 . . . 1.4 [37].

Note that there is a di�erence for the value of 𝛾 between maps and time-continuous

systems and sometimes the power-law is more straight in the time-continuous case [22].

There are some other commonly used statistics which are related to 𝑃 (𝑇 ). One is

the survival time 𝑆(𝑇 ), which denotes the probability that an orbit is still in the initial

region Γ at time 𝑇 . If the initial region for the survival times 𝑆(𝑇 ) is chosen to be the

complement of the initial region for the Poincaré recurrences 𝑃 (𝑇 ) with a power-law

𝑃 (𝑇 ) ∼ 𝑇−𝛾, 𝑆(𝑇 ) exhibits a power-law 𝑆(𝑇 ) ∼ 𝑟𝑇−(𝛾−1) [101,117,118]. A third option

is to measure the time orbits require to escape from a small part of the sticky region to

the chaotic sea. This escape or survival time should exhibit the same long-time decay

as the statistics of Poincaré recurrences.
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2.3 Example system - coupled standard map

Higher-dimensional systems are often studied through using symplectic maps of di-

mension four and higher. Such maps have a lower dimension than the corresponding

time-continuous systems and are numerically more convenient. A typical model system

is the coupled standard map, which is mainly used in this thesis. Thus, the following

sections use without loss of generality such time-discrete maps. After a short review of

applications of symplectic maps, the standard map and the coupled standard map are

introduced and the choice of the parameters is discussed. While in the literature 4d

maps are mainly studied for weak coupling or in the near-integrable regime, the focus in

this thesis is on generic, fully coupled systems. The standard map serves as reference for

a generic 2d symplectic map with which the results for the higher-dimensional systems

can be compared.

Symplectic maps are often used to investigate fundamental aspects of chaotic trans-

port and instability [70]. Maps of dimension two allow to investigate chaotic transport

in plasmas and �uids [119], maps of dimension two and four are used to study dy-

namics of particle accelerators [12,13,16,38,120], molecular fragmentation [91,92], and

galactic dynamics [4, 9, 11, 22] and are also relevant in crystal physics [121]. Coupled

symplectic maps are used to understand synchronization [87,88] and thermal conductiv-

ities [90], and can exhibit physical properties similar to those of disordered Hamiltonian

systems [86].

The well studied 2d standard map corresponds to the Hamiltonian 𝐻2d(𝑝, 𝑞, 𝑡) of the

kicked rotor

𝐻2d(𝑝, 𝑞, 𝑡) = 𝑇2d(𝑝) +
∑︁
𝑛∈Z

𝛿(𝑡− 𝑛)𝑉2d(𝑞) 𝑇2d(𝑝) =
𝑝2

2

𝑉2d(𝑞) =
𝐾

4π2
cos(2π𝑞)

(2.11)

with the kinetic energy 𝑇2d, the potential 𝑉2d, and the kicking strength 𝐾. The domains

are 𝑝 ∈ [−0.5, 0.5) and 𝑞 ∈ [0, 1) with periodic boundaries. From the Hamiltonian

𝐻2d(𝑝, 𝑞, 𝑡) follows for times 𝑡 = 𝑛+ 𝜖 > 𝑛, right after the kick, the symplectic map 𝐹2d

(𝑝′, 𝑞′) = 𝐹2d(𝑝, 𝑞) (2.12)

𝑝′ = 𝑝 +
𝐾

2π
sin(2π𝑞′)

𝑞′ = 𝑞 + 𝑝
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solving the equation of motion emerging from Eq. (2.11) over one period of the driving.

While the system is integrable for 𝐾 = 0, here usually 𝐾 = 2.25 or 𝐾 = 2.5 is chosen.

For these parameters the phase space of 𝐹2d has an elliptic �xed point in the center at

(𝑝, 𝑞) = (0, 0.5) surrounded by a regular island, which is embedded in a chaotic sea.

The coupled standard map, suggested by Arnold and devised by Froeschlé [122] cor-

responds to the Hamiltonian 𝐻𝑁(𝑝, 𝑞, 𝑡) of 𝑁 coupled, kicked rotors is

𝐻𝑁(𝑝, 𝑞, 𝑡) = 𝑇𝑁(𝑝) +
∑︁
𝑛∈Z

𝛿(𝑡− 𝑛)𝑉𝑁(𝑞) 𝑇𝑁(𝑝) =
𝑁∑︁
𝑖=1

𝑝2𝑖
2

𝑉𝑁(𝑞) =
𝑁∑︁
𝑖=1

𝐾𝑖

4π2
cos(2π𝑞𝑖) +

𝜉

4π2
cos

(︃
2π

(︃
𝑁∑︁
𝑖=1

𝑞𝑖

)︃)︃ (2.13)

with the kinetic energy 𝑇𝑁 , the potential 𝑉𝑁 , the kicking strengths 𝐾𝑖 and the coupling

parameter 𝜉. The domains of the momentum 𝑝 and position 𝑞 are 𝑝 ∈ [−0.5, 0.5)𝑁

and 𝑞 ∈ [0, 1)𝑁 with periodic boundaries. From the Hamiltonian 𝐻𝑁(𝑝, 𝑞, 𝑡) follows for

𝑁 = 2 the two coupled standard maps 𝐹SC

(𝑝′, 𝑞′) = 𝐹SC(𝑝, 𝑞)

𝑝′1 = 𝑝1 +
𝐾1

2π
sin(2π𝑞′1) +

𝜉

2π
sin (2π (𝑞′1 + 𝑞′2))

𝑝′2 = 𝑝2 +
𝐾2

2π
sin(2π𝑞′2) +

𝜉

2π
sin (2π (𝑞′1 + 𝑞′2))

𝑞′1 = 𝑞1 + 𝑝1

𝑞′2 = 𝑞2 + 𝑝2

(2.14)

where the kicking strengths are set to 𝐾1 = 2.25 and 𝐾2 = 3.0. A strong coupling

𝜉 = 1.0 is chosen.

The perturbation and coupling parameters 𝐾𝑖, 𝜉 are chosen large to ensure that

𝐹SC is a generic 4d map. This choice is motivated by the following: In the litera-

ture usually weakly coupled systems [4, 32, 60, 62, 66, 123�126], e.g., 𝜉 < 10−2, or near-

integrable systems [39,40,127] are considered such that the actions of the uncoupled or

unperturbed system are still a good approximation to measure chaotic transport. This

also allows to obtain results by normal-form tools [39, 128�134] or other perturbative

schemes [135�137]. However, many practical applications are concerned with generic,

strongly coupled, non-perturbative systems [71] such as the hydrogen atom in crossed

�elds [18,44,47] or energy �ow in planar OCS molecules [20,45]. In principle, also issues

of ionization, attosecond �elds, and plasma oscillations should belong to this kind of

systems. Thus, it is particularly relevant to investigate the dynamics in systems far
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from integrability and far from �xed points. Such dynamics are studied with the chosen

map 𝐹SC.

The linearization of the map 𝐹SC at a point (𝑝1, 𝑝2, 𝑞1, 𝑞2) is given by the Jacobian

𝐷𝐹SC(𝑢⃗fp)

𝐷𝐹SC(𝑥𝑓 ) =

(︂
𝜕(𝐹SC(𝑥𝑓 ) · 𝑒𝑗)

𝜕𝑥𝑖

)︂
𝑖𝑗

=

⎛⎜⎜⎜⎜⎝
1 + 𝐵1 + 𝐶 𝐶 𝐵1 + 𝐶 𝐶

𝐶 1 + 𝐵2 + 𝐶 𝐶 𝐵2 + 𝐶

1 0 1 0

0 1 0 1

⎞⎟⎟⎟⎟⎠
with 𝐵𝑖 = 𝐾𝑖 cos(2π(𝑝𝑖 + 𝑞𝑖)) and 𝐶 = 𝜉 cos(2π(𝑝1 + 𝑝2 + 𝑞1 + 𝑞2)). Hence, the phase

space of 𝐹SC has an ee �xed point at the center 𝑢⃗fp = (0, 0, 0.5, 0.5). The eigenvalues

(𝜆fp
1 , 𝜆̄

fp
1 , 𝜆

fp
2 , 𝜆̄

fp
2 ) of the linearized dynamics around 𝑢⃗fp are (exp (±i 2𝜋𝜈fp

1 ), exp (±i 2𝜋𝜈fp
2 ))

with (𝜈fp
1 , 𝜈fp

2 ) = (0.30632, 0.12173) and corresponding eigenvectors

𝑣fp
1𝑎 = 𝑣fp

1𝑏 = (−0.4864, 0.7019, 0.2432 + 0.1694i,−0.3509 − 0.2445i)

𝑣fp
2𝑎 = 𝑣fp

2𝑏 = (0.1834 − 0.4561i, 0.1271 − 0.3160i,−0.6587,−0.4565) .
(2.15)

The center 𝑢⃗fp is also used as point of origin. Also the period-7 ee orbit with one point

𝑢⃗p = (0.0, 0.0, 0.583438087, 0.618666288) is frequently used. Its eigenvalues with respect

to the 7-th iteration are (exp (±i 2𝜋𝜈 ′
1), exp (±i 2𝜋𝜈 ′

2)) with (𝜈 ′
1, 𝜈

′
2) = (0.1515, 0.0838).

Note that there is another period-7 orbit analogous to 𝑢⃗p [138].

2.4 Dynamics in 2D maps

The dynamics of 2d maps have been extensively studied. In particular, the organization

of phase space in terms of class and level hierarchies and the chaotic transport in terms

of partial barriers is well known [70, 139]. Furthermore, the mechanism of the power-

law decay of the statistics of Poincaré recurrences for generic 2d maps in terms of a

hierarchy of partial barriers is well understood. In this section, the break-up process

of resonant tori is reviewed along with the consequences for the hierarchy of the phase

space and chaotic transport. In particular, some of the structures resulting from the

break-up cause the trapping close to KAM tori.

According to the KAM theorem, discussed in Sec. 2.1, tori close to a resonance break

up in case of a small perturbation of the integrable Hamiltonian. In the 2d phase space

the tori are 1D invariant, closed lines with one fundamental frequency 𝜈, see Eq. (2.3).

Thus, a torus is resonant if this frequency is a rational number 𝜈 = 𝑛/𝑚, see Eq. (2.8).

Every orbit on this resonant torus is a periodic orbit with period 𝑚. The Poincaré-
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(a) Class hierarchy for 𝐾 = 2.5, 𝑇 = 50117
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(b) Level hierarchy for 𝐾 = 2.25, 𝑇 = 10781549

Figure 2.1: Chaotic orbits trapped in the hierarchical phase space of the 2d map 𝐹2d,
i.e. mainly trapped along (a) the class hierarchy for 𝐾 = 2.5 and (b) the level hierarchy
for 𝐾 = 2.25. The points of the chaotic orbits are colored according to their iteration time
𝑡 ∈ [0, 𝑇 ] and some regular orbits are shown in red. The initial region is Γ = {(𝑝, 𝑞) ∈ 𝑈 :
𝑞 < 0.1}

Birkho� theorem states that 2𝑘 of these period-𝑚 orbits with 𝑘 ∈ N, 𝑘 ≥ 1 remain

when the resonant torus breaks up due to a perturbation. These periodic orbits form a

chain of alternating hyperbolic and elliptic periodic orbits.

The dynamics in the vicinity of an elliptic point can be approximated by a Hamilto-

nian similar to the one presented in Sec. 2.1 given by an integrable part with a small

perturbation. Hence, this subsystem denoted as regular island is again subject to both

the KAM and Poincaré-Birkho� theorem. This leads to two self-similar hierarchies of

island chains in the phase space, the class hierarchy and the level hierarchy [1, 139]. It

should be pointed out that recent investigations showed that while each of the hierar-

chies exhibits universal properties, these properties di�er between the two types [140].

The class hierarchy denotes the hierarchy due to the organization of islands around

islands. In Fig. 2.1(a) the phase space of the map 𝐹2d for 𝐾 = 2.5 with some regular

tori in red and one chaotic orbit colored according to its iteration time is shown on

di�erent scales in order to demonstrate the class hierarchy. In the left plot the regular
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tori surrounding the elliptic �xed point in the center at (𝑝, 𝑞) = (0, 0.5) are visible.

This central island is surrounded by a period-4 island chain whose elliptic periodic orbit

is part of the remains of a broken resonant torus. In the magni�cation of one of the

subislands again four smaller subislands appear, and this hierarchy is continued for

another scale. The phase space structures can be labeled according to their position in

this hierarchy. For instance an elliptic �xed point of class 𝑐 is surrounded by regular

tori of class 𝑐 + 1. A periodic orbit from a broken resonant torus of class 𝑐 + 1 is also

𝑐 + 1 and its surrounding regular tori are of class 𝑐 + 2.

The level hierarchy describes the hierarchy of island chains within one class approach-

ing the outermost KAM torus. As generally the frequencies of the regular tori around an

elliptic �xed point change monotonically, there exists a series of island chains whose ra-

tional frequencies 𝜈 = 𝑛/𝑚 approach the frequency of the outermost KAM torus. Their

sequence in phase space is governed by the sequence of their frequencies. In Fig. 2.1(b)

the phase space of the map 𝐹2d with 𝐾 = 2.25 is shown analogous to Fig. 2.1(a) in

order to demonstrate the class hierarchy. At this parameter the period-4 island chain is

surrounded by KAM tori, which denies orbits from the chaotic sea to access the vicinity

of this chain. Instead, the area �lled by the chaotic orbit in the magni�cations reveals

several white holes corresponding to other island chains whose sequence converges to

the outermost KAM torus. Note that around each of these island chains deeper classes

can be found.

The hyperbolic points which are in between the elliptic points of an island chain

are not shown in Fig. 2.1. The stable direction of a hyperbolic point 𝑥ℎ gives rise

to a smooth stable invariant manifold 𝑊 𝑠(𝑥ℎ) = {𝑥 ∈ 𝑈 : lim𝑡→∞ 𝐹 𝑡𝑥 = 𝑥ℎ} and

the unstable direction to a smooth unstable invariant manifold 𝑊 𝑢(𝑥ℎ) = {𝑥 ∈ 𝑈 :

lim𝑡→∞ 𝐹−𝑡𝑥 = 𝑥ℎ}. The point intersections of two manifolds 𝑊 𝑠(𝑥ℎ) and 𝑊 𝑢(𝑥̃ℎ) are

called homoclinic points if 𝑥ℎ = 𝑥̃ℎ and heteroclinic points if 𝑥ℎ ̸= 𝑥̃ℎ. Besides being an

origin of chaotic dynamics [141], these intersections give rise to partial transport barriers

with a very limited chaotic �ux across them. Cantori are another type of partial barrier.

In an island chain the chaotic area embedded in between the regular islands of the

elliptic periodic orbits and the manifolds of the hyperbolic periodic orbits is called

stochastic layer. Thus, there is chaotic dynamics in the stochastic layers while transport

in between the layers of an island chain and its adjacent island chains only happens

once in a while. In principle, each stochastic layer has three adjacent layers, one level

towards and one level away from the outermost KAM torus of the current class 𝑐, and

one class 𝑐+ 1 deeper into the hierarchy. Of course for some layers one level away from

the outermost torus corresponds to going into a higher class 𝑐 − 1. This dynamics is

visible for the trapped orbits colored according to their iteration time in Fig. 2.1. In
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Fig. 2.1(a) the colors of the trapped orbit illustrate how it is swiftly transported from

the chaotic sea three classes deep into the hierarchy and back into the chaotic sea. Due

to the decreasing �ux deeper into the hierarchy, the orbit spends most of the time in the

deepest class it reaches. In Fig. 2.1(b) the orbit is mostly transported from the chaotic

sea along the levels towards the outermost KAM torus. The di�erently colored bands

with sharp transitions between them demonstrate the stochastic layers with small �ux

in between them. Again the orbit spends most of its time within the deepest levels it

reaches. In Sec. 4.2 it is demonstrated that partial barriers and the hierarchies of 2d

maps are also well detectable in frequency space.

Based on the transport within the class and level hierarchy, a Markov tree can be

constructed explaining the power-law decay of the statistics of Poincaré recurrences as

a superposition of exponential decays from the individual layers [34]. Thus, there are

log-periodic oscillations on the power-law decay observed in 2d maps. While a Markov

chain can be constructed for class [105] and level [102] hierarchy individually, both

hierarchies are needed to simulate the transport correctly [100]. Also note that cantori

are the partial barriers which dominantly inhibit the chaotic transport [34]. Models

to quantify the �ux through them are based on the sequence of island chains whose

rational frequencies converge towards the irrational frequency of the cantorus in terms

of a continued fraction expansion.

2.5 Dynamics in 4D maps

The chaotic transport in terms of partial barriers as sketched in Sec. 2.4 for 2d maps can

not simply be generalized to higher dimensions as the regular tori have an insu�cient

dimension to be barriers in phase space. This allows chaotic orbits to get transported

arbitrarily close to any point in phase space by the so called Arnold di�usion. The

lowest-dimensional maps with this fundamental property are 4d maps which are the

focus of this thesis. In this section, previous results for phase-space structures, chaotic

transport, and trapping in higher-dimensional systems are outlined. While the chaotic

transport is known to be majorly organized by resonance channels, next to nothing is

understood about the mechanism of the power-law trapping.

In Sec. 2.5.1 chaotic transport, relevant phase-space structures and established meth-

ods for examining higher-dimensional systems are discussed, mostly in frequency space.

In Sec. 2.5.2 results on power-law trapping and stickiness are reviewed.
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2.5.1 Transport and phase-space structures

Higher-dimensional systems are usually studied in the frequency space [20,41�46] or the

action space [38�40]. For instance, each regular 2d torus of a 4d map is represented

by a point marking its two frequencies 𝜈 = (𝜈1, 𝜈2) ∈ [0, 1)2 or the corresponding two

actions 𝐼, see Eq. (2.3). As this thesis presents results mainly in the frequency space,

the action space is not discussed in the following. In an integrable system the phase

space is foliated by regular tori and the frequency space is densely covered with points.

But if a non-integrable perturbation is added, e.g., electromagnetic �elds to a hydrogen

atom [18,44,47], according to the KAM theorem only diophantine regular tori survive,

i.e. not ful�lling Eq. (2.7). Consequently, the densely covered areas are disrupted by

straight channels. While in�nitely many of these so called resonance channels exist, both

their width in frequency space and their phase-space volume decreases exponentially

with increasing order of the resonance [39,40,49,62].

The resonance channels can be accessed by chaotic orbits. One kind of chaotic trans-

port along a channel is Arnold di�usion [1, 7, 48, 49, 56] and thus the network of in-

tersecting channels is called Arnold web [48, 49]. Several mechanisms have been pro-

posed in the mathematical literature in order to describe and quantify the details of

Arnold di�usion [48,49,53�55]. For instance the heteroclinic intersections of the invari-

ant manifolds along families of hyperbolic 1d tori are believed to mediate a transport.

Five regimes of transport are usually distinguished in the Arnold web: Arnold di�u-

sion along a single channel, modulational di�usion along partially overlapping chan-

nels [1, 52], resonance streaming along a single channel [1, 50, 51], the transport at

overlapping channels, the so called Chirikov overlap [49, 57�59], and the dynamics at

an intersection of two channels, so called resonance junctions [30, 31, 39, 41, 60, 61]. A

junction of resonances has an intricate phase-space structure consisting of periodic or-

bits of di�erent types of stability, families of elliptic and hyperbolic lower-dimensional

tori, surrounding higher-dimensional tori, and corresponding invariant manifolds. Note

that at resonance junctions the chaotic transport is inhibited along the resonances due

to trapping [41, 60] as well as facilitated across the resonances due to resonance over-

lap [39, 60, 142]. The Nekhoroshev estimate gives an upper bound for the long-time

stability depending on the strength of the perturbation [1, 59]. In some situations the

local di�usion coe�cients 𝐷(𝐼) ∈ R2 of these processes can be obtained by normal

form analysis [39] or semi-analytical methods [66]. However, while the di�usion along

a channel is sometimes found [43,62,63] and often assumed [39,40,64] to be normal, its

generic nature is unknown [56,65]. For instance, in some cases a subdi�usive transport

is observed, which is not yet understood [66]. Furthermore, a drift along resonance chan-
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nels due to the curvature of the tori is expected [143,144]. Also for near-integrable sys-

tems [39,40,145] or systems consisting of two low dimensional systems which are weakly

coupled [32,62,64,66] the dependence of the di�usion coe�cients on the strength of the

perturbation [39,40,64,66,125] or the coupling parameter has been studied [4,62,64,125].

The studies in weakly coupled systems traced back some features of the transport in

higher-dimensional systems to e�ects caused by one lower-dimensional system perturb-

ing the other [32, 62, 66]. However, many generic aspects of the chaotic transport have

not been explained and are assumed to be truly higher-dimensional e�ects. Some-

times, chaotic transport is measured in the frequency space. For this, frequency or

wavelet analysis is used to numerically assign frequencies to segments of a chaotic or-

bit [41, 43, 146]. Also there exist a number of chaos indicators to distinguish regular

and chaotic dynamics like �nite-time Lyapunov exponents [33,147,148], Fast Lyapunov

Indicator [149�151], and many more, see e.g. [152�154] and references therein.

While the representation of regular tori in the frequency space is convenient, their

organization in phase space is more complicated: For a 2𝑁 -dimensional symplectic

map the corresponding phase space in general contains regular tori of dimensions 𝑑 =

0, . . . , 𝑁 [128�131], in the following denoted as 𝑑-tori. The behavior normal to lower-

dimensional tori (0 < 𝑑 < 𝑁) and �xed points (𝑑 = 0) can be an arbitrary combination

of hyperbolic and elliptic components [134, 155, 156]. A 𝑑-torus is called elliptic or

hyperbolic if all its normal components are elliptic or hyperbolic [155]. Hyperbolic tori,

also called whiskered tori, are important for many dynamical properties of a system

including Arnold di�usion [21, 48, 95, 128, 129]. The regular tori have a hierarchical

ordering in the sense that Cantor families of elliptic 𝑑-tori are arranged around elliptic

(𝑑−1)-tori for 0 < 𝑑 ≤ 𝑁 in an intricate way [134,155,157]. It is known that 2d tori can

break up into elliptic and hyperbolic 1d tori [132] or ee, eh and hh periodic orbits [79].

There exist also some results on the bifurcation of 1d tori [158�161]. However, there is

no comparable theory to Greene's criterion in higher dimensions, which describes the

robustness and destruction of multi-dimensional tori [14,160,162].

2.5.2 Trapping and stickiness

Power-law trapping is only well understood in 2d maps, where the chaotic orbits stick

to the vicinity of the regular tori due to a hierarchy of partial barriers, see Sec. 2.4.

These partial barriers result from stable and unstable manifolds of hyperbolic periodic

orbits or cantori. While there are generalizations of these barriers to higher dimensions

via normally hyperbolic invariant manifolds [68, 163�165], analogues of broken sepa-

ratrices [92, 166, 167] and higher-dimensional concepts of cantori [41, 60, 67, 69], they
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seem to lack a su�cient hierarchy. A nice detection of normally hyperbolic invariant

manifolds in relation with the Arnold web can be found in Ref. [168]. While the exis-

tence of cantori is proven in higher-dimensional systems [69], only a few indications of

their nature and manifestation have been reported [41, 46, 60]. In higher-dimensional

systems such partial barriers also have holes due to intersecting resonances [41], see

also the introduction of Ref. [72]. The short time behavior of the statistics of Poincaré

recurrence times of 4d maps can be modeled by white noise perturbing a generic 2d

map [32,82,108,118,169]. More precisely, for short times after an exponential decay due

to the chaotic sea the power-law decay of an uncoupled 2d map is observed. After that,

enhanced trapping 𝑃 (𝑇 ) ∼ 𝑇−1/2 occurs due to a random walk within the regular island

of the 2d map which is followed by an exponential cut-o� due to the �nite size of the

island. However, for even longer times, stronger perturbation, or coupling a power-law

decay is observed which can not be explained by noise on a 2d map and is suspected to

be a genuinely higher-dimensional e�ect. Features of this higher-dimensional trapping

are a very straight power-law decay without the oscillations typical for 2d systems [37]

and in 4d maps both Lyapunov exponents of trapped orbits suddenly becoming close

to zero [170]. It was conjectured that for higher-dimensional systems the stickiness

resembles the trapping at marginally unstable periodic orbits 𝑃 (𝑇 ) ∼ 𝑇−2 [117], but

the relevance of such periodic orbits is questionable [169, 171]. For very large times

the superexponential stickiness of Lagrangian tori may play a role [155, 172]. Also the

transport in the Arnold web may cause a power-law decay due to a one-dimensional

𝑃 (𝑇 ) ∼ 𝑇−1/2 or two-dimensional 𝑃 (𝑇 ) ∼ 𝑇−1 random walk through the web [64,125].

However, none of these results explain the observed power-laws. In Refs. [30,31] orbits

starting from a chaotic saddle and getting trapped in the Arnold web pass a region

far away from major junctions on their way in and out of the Arnold web. This region

causes a power-law decay and subdi�usion, while the junctions of the Arnold web rather

cause an exponential decay and normal di�usion. This regime could be related to the

trapping observed in Ref. [72], see Sec. 2.6.3.

2.6 Preliminary studies

In this section, studies performed by the author during his diploma thesis are re-

viewed [72]. The combination of a new visualization method and frequency analysis

enables unprecedented insights into the higher-dimensional phase space of 4d maps. In

particular, chaotic orbits are found to be trapped at the surface of regular structures

outside of the usual Arnold web. In contrast to the power-law trapping in 2d maps,

the trapped orbits exhibit no signs of a hierarchy. Instead, their transport seems to be
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governed by a set of open resonance channels. As the presented methods are also em-

ployed in this thesis, this section also contains basic parameter choices and algorithms

used in the following chapters.

In Sec. 2.6.1 the 3d phase-space slices are introduced in order to display the 4d phase

space in a comprehensible way. In Sec. 2.6.2 this representation of the phase space is

complemented by frequency analysis, which is also performed on trapped orbits. In

Sec. 2.6.3 the preliminary results regarding trapping obtained by these methods are

reviewed and illustrated, introducing the new notions of open and closed resonance

channels.

2.6.1 3D phase-space slices

Many insights about the classical and quantum dynamics of 2dmaps have been obtained

from phase-space pictures, such as Fig. 2.1. Such a direct visualization of phase space

is not possible for higher-dimensional systems. Starting with the pioneering work of

Froeschlé [173,174], several methods have been introduced to display the dynamics in a

lower-dimensional space. Examples are two-dimensional plots of multi-sections [151,174]

or projections to two [5,173,175,176] or three [177�179] dimensions, also including color

to indicate the projected coordinate [180, 181], frequency analysis [41, 43, 44, 46], and

action-space plots [38].

In Ref. [72] and this thesis the 4d phase space is visualized using 3d phase-space

slices [182, 183]. In Fig. 2.2(a) an example for the two coupled standard maps 𝐹SC is

shown, where the slice condition for one coordinate is |𝑝2 − 𝑝*2| ≤ 𝜀 with 𝑝*2 = 0 and

𝜀 = 10−4. Whenever a point of an orbit lies within this slice, the remaining coordinates

(𝑝1, 𝑞1, 𝑞2) are displayed in a 3d plot. The 3d impression is considerably enhanced when

the �gure is rotated. Note that more generally one can de�ne a rotated 3d phase-space

slice by the slice condition

|𝑢⃗ · 𝑛⃗−𝐷| ≤ 𝜀, (2.16)

for points 𝑢⃗ in phase space, where 𝑛⃗ is the normal vector of the chosen slice and 𝐷 is

the distance of the slice to the origin.

Objects of the 4d phase space appear reduced by one dimension in the 3d phase-space

slice, e.g., each 2d regular torus typically leads to a pair of 1d rings. However, also none,

i.e. the slice does not intersect the torus, or more rings are possible. Periodic orbits will

usually not be visible in the 3d phase-space slice. A typical chaotic trajectory �lls a

4d volume in the 4d phase space. In the 3d phase-space slice this leads to a sequence

of points �lling a 3d volume. In Fig. 2.2(a) several groups of regular tori are displayed
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Figure 2.2: (a) Visualization of the phase space of the two coupled standard maps 𝐹SC

using a 3d phase-space slice with |𝑝2| ≤ 10−4 with some regular 2d tori appearing as
colored 1d lines and a chaotic orbit in blue. Each regular torus is iterated such that 4000
points are in the slice. The differently colored regions of regular tori are denoted in the
text. (b) Corresponding frequency space of 𝐹SC with regular tori shown as gray points.
The regular tori from (a) are highlighted in corresponding colors. Some resonances are
indicated as dashed lines and labeled by their coefficients 𝑚1 : 𝑚2 : 𝑛, see Eq. (2.8). The
ee fixed point 𝑢⃗fp corresponds to the center in (a) and to the rightmost tip in (b) with

frequencies (𝜈fp1 , 𝜈fp2 ) = (0.30632, 0.12173), see Sec. 2.3. [Modified from Ref. [182]]

in di�erent colors along with a chaotic orbit in blue, which indicates the surrounding

chaotic sea. This nicely demonstrates how a 3d phase-space slice allows for displaying

several di�erent orbits at the same time and provides a global visualization of their

arrangement in phase space.

The di�erent regions of regular tori colored di�erently in Fig. 2.2(a) are denoted

as following: central island (red), horseshoe and inner end of the horseshoe (pink),

outer ring (cyan), top tower (purple), region around the resonance −1 : 3 : 0 (green),

and period 7 islands (orange). The horseshoe, named according to the appearance

of its regular tori in the 3d phase-space slice in Fig. 2.2(a), will turn out to be the

most relevant region for this thesis. Also note that some of the 3d phase-space slices

presented in this thesis are modi�ed versions of slices from papers of the author. For

these slices videos with a rotating view are available as supplemental material on the

journals website or http://www.comp-phys.tu-dresden.de/supp/.

http://www.comp-phys.tu-dresden.de/supp/
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2.6.2 Frequency space in relation to phase space

The combination of 3d phase-space slices and the established frequency space has proven

very fruitful [182]. On the one hand, the frequency space allows to explain gaps and

characteristics in the phase space by resonances and to separate distinct regions. On

the other hand, the 3d phase-space slices enable to interpret ambiguous frequencies,

e.g., at resonances, and to consistently assign frequencies. In this section, this mutual

complementation of the phase and frequency space is demonstrated for regular tori of

the map 𝐹SC. At the end of this section, some technical details of the frequency analysis

are outlined including the parameters used throughout this thesis. Also the frequency

analysis for chaotic orbits is discussed.

Each frequency pair (𝜈1, 𝜈2) of a regular torus is calculated from ∆𝑡 = 4096 iterations

using a fast, analytical interpolation method [146, Sec. 4.2.4]. The error of this method

scales with ∆𝑡−4 like the original method of Laskar [42,43]. The regular tori of Fig. 2.2(a)

are shown in the frequency space in Fig. 2.2(b) by correspondingly colored points.

The gray points represent regular tori obtained by starting 108 initial conditions with

uniformly, random chosen 𝑝1, 𝑝2 ∈ [−0.2, 0.2] and 𝑞1, 𝑞2 ∈ [0.3, 0.7] in the 4d phase space

of 𝐹SC. Note that for strongly coupled maps far from integrability a sampling on 2d

planes is not su�cient as this will typically miss some regions with regular motion. To

decide whether an orbit is regular the frequency criterion

max (|𝜈1 − 𝜈1|, |𝜈2 − 𝜈2|) < 10−7, (2.17)

is used where the frequency pair (𝜈1, 𝜈2) is calculated from ∆𝑡 further iterations. As

expected, areas of gray points are disrupted by resonance channels in Fig. 2.2(b). Some

important resonances are labeled and indicated by dashed lines.

A comparison as in Fig. 2.2 allows to explain features in phase space by resonances in

frequency space. For instance, the orange island chain in the phase space in Fig. 2.2(a)

represents a part of the junction of the resonances 7 : 0 : 2 and 0 : 7 : 1 in Fig. 2.2(a)

and the green tower-like structure is caused by the resonance channel of the resonance

−1 : 3 : 0. Also the gap between the cyan structure and the red one in Fig. 2.2(a) is

caused by the resonance −1 : 2 : 0 in Fig. 2.2(b).

Note that the frequencies (𝜈1, 𝜈2) are only de�ned up to a unimodular transformation,

see Sec. 2.1. Using the 3d phase-space slices we can choose the frequencies consistently

such that regular tori which are close in phase space are also close in the frequency

space. Explicitly, we make the following transformations: i) if 𝜈𝑖 > 0.5 then 𝜈𝑖 ↦→ 1−𝜈𝑖,

ii) if 𝜈2 > 𝜈1 then (𝜈1, 𝜈2) ↦→ (𝜈2, 𝜈1), iii) for tori of the type shown in pink in Fig. 2.2(a)

with 𝜈2 > 0.25 we use (𝜈1, 𝜈2) ↦→ (𝜈1,−4𝜈1 +𝜈2). The resulting frequency pairs reside in
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the small region of the frequency space. Determining the correct transformation is also

accomplished with the help of 3d projections [182] as the remnants of broken resonant

tori display a geometry from which the original resonance can be read o� [132,159], see

also Sec. 3.2.2. For thin or distorted tori the computation of the correct frequency pair is

challenging [72,184,185], as is the interpretation of frequencies with respect to di�erent

�xed structures, see Sec. 3.3.2. Note that there are a few concepts for straightening out

tori analytically [71].

As mentioned in Sec. 2.5.1, frequency analysis is also applied to chaotic orbits by

assigning numerically frequencies to segments of length ∆𝑡. More precisely, a chaotic

orbit 𝑥(𝑡) with recurrence time 𝑇 is mapped to a sequence of frequencies 𝜈(𝑡) by

{𝑥(0), . . . ,𝑥(∆𝑡− 1)} ↦→ 𝜈(0)

{𝑥(∆𝑡), . . . ,𝑥(2∆𝑡− 1)} ↦→ 𝜈(∆𝑡)

...

{𝑥(𝑛∆𝑡), . . . ,𝑥(𝑇 )} ↦→ 𝜈(𝑛∆𝑡)

(2.18)

with 𝑛 = (𝑇 − (𝑇 mod ∆𝑡))/∆𝑡 − 1 and 𝑇 = 𝑇 + 1. Apart from displaying 𝜈(𝑡) in

the frequency space, the components can also be presented in time�frequency plots [41,

43, 60]. The frequencies are computed from the complex signal 𝑧𝑖(𝑡) = 𝑞𝑖(𝑡) − i𝑝𝑖(𝑡).

For the two coupled standard maps the frequencies are obtained from the �rst degree of

freedom 𝑧1(𝑡) by determining the dominant frequency �rst, subtracting all harmonics up

to order three from the Fourier spectrum and then determining the next most important

frequency. For details on this procedure including pitfalls see Ref. [72]. For the coupled

twist maps introduced in Sec. 3.5 each frequency 𝜈𝑖(𝑡) is obtained as dominant frequency

from the corresponding degree of freedom 𝑧𝑖(𝑡). Note that for noisy signals, like trapped

orbits, one expects from considerations and numerical simulations that the interpolation

method is less accurate than the original method of Laskar, in particular, frequencies

tend to be shifted away from values 𝜈 = 𝑗/∆𝑡, 𝑗 ∈ 𝑁 . This artifact depends on the

strength of the noise and is not a priori problematic as for noisy signals or signals with

varying frequency the mapping to a single frequency is ambiguous anyway. Nevertheless,

all results are checked for consistency using both methods and for all density-like plots

in chapter Sec. 4 the original method is used to avoid confusion.

2.6.3 Power-law trapping

In this section, preliminary results [72] regarding the power-law trapping are reviewed

and illustrated. In Ref. [72] the 4d symplectic map 𝐹SC is studied, which has a regular
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region embedded in a large chaotic sea, i.e. it is far away from the near-integrable

regime. Using a combination of 3d phase-space slices and frequency space, it could be

determined that the trapped chaotic orbits, which cause the slow power-law decay of

escape times, stick to the surface of the regular structures. The following statements

about the power-law trapping could be made: It is clearly di�erent from trapping in

2d maps, as the trapped orbits do not explore the hierarchy of the 4d phase space.

Moreover, it is not related to the typical Arnold web. Instead, the trapped orbits seem to

be governed by a heterogeneous, anisotropic, anomalous 2d stochastic process through

the sticky region, which consists of a large set of overlapping resonance channels. In this

context the notion of an open resonance channel is introduced. A special representation

for the frequencies of the horseshoe is chosen for the following chapters.

In order to obtain the statistics of the Poincaré recurrences 𝑃 (𝑇 ), see Sec. 2.2, the

initial region Γ is chosen for the map 𝐹SC with the phase space 𝑈 as

Γ = {(𝑝1, 𝑝2, 𝑞1, 𝑞2) ∈ 𝑈 : 𝑞1 < 0.1} . (2.19)

By visualization of the phase space it is con�rmed that Γ lies completely in the chaotic

sea. The region Γ is indicated in Fig. 2.3 by the blue box to the left of the 3d phase-space

slice shown as inset. Since Γ covers 10% of the phase space and the chaotic region is quite

big, it is assumed that once a trapped orbit returns to the chaotic sea, it recurs. This

means that for all orbits the observed e�ects result from the properties of a single sticky

region and not from repeated trapping at di�erent regions. In Fig. 2.3 the statistics 𝑃 (𝑇 )

are determined for 𝐹SC using ≈ 1013 initial conditions uniformly distributed within Γ.

The distribution shows a very straight power-law decay 𝑃 (𝑇 ) ∼ 𝑇−𝛾 with an exponent

𝛾 ≈ 1.6 over more than 5 orders of magnitude. The typical exponential decay for small

times is due to the chaotic sea. The inset shows the 3d phase-space slice with the

regular tori from Fig. 2.2(a) in red and a trapped orbit in blue. The trapped orbit is

iterated beyond its recurrence to Γ in order to indicate the chaotic sea.

In order to understand the trapping mechanism frequency analysis is performed on

all trapped orbits with recurrences times 𝑇 > 104. An example is shown in Fig. 2.4

both in a conveniently chosen 3d phase-space slice and frequency space. In Fig. 2.4(a)

the trapped orbit, shown as points colored by iteration time, is distributed over the

surface of the regular structure, represented by regular 2d tori appearing as gray rings.

In the center of the tower formed by the regular tori, a family of elliptic 1d tori is

shown as orange points grouped to a line. The sticky region is even better visible in the

frequency space in Fig. 2.4(b), where in addition to the frequencies of the trapped orbit

and the elliptic family shown in Fig. 2.4(a) many more 2d tori in gray are included.
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Figure 2.3: Statistics of Poincaré recurrences 𝑃 (𝑇 ) for the map 𝐹SC. For comparison the
gray, dashed line represents a power-law 𝑃 (𝑇 ) ∼ 𝑇−𝛾 , with 𝛾 = 1.6. The inset sketches
the position of the initial region Γ (blue box) in the 3d phase-space slice |𝑝2| < 10−5 with
regular tori (red) and a trapped orbit (blue, iterated beyond its recurrence to indicate the
chaotic sea). For the statistics about 1013 chaotic orbits are started uniformly in Γ from
which 8608055 have 𝑇 > 300 and 3354864 have 𝑇 > 104.

More precisely, the frequency space shows that the chaotic orbit propagates through a

network of overlapping resonance channels which is located at the surface of the regular

region. Closer to the elliptic family in orange the resonance channels are con�ned

by dense areas of regular tori, which makes the width of each channel visible. These

con�ned parts of the channels are usually considered as the Arnold web. The trapped

orbit does not penetrate into these parts during the considered time scales, implying

that they are not necessary for the power-law trapping. Instead, in Ref. [72] the chaotic

transport in the sticky region in frequency space is examined in terms of a 2d stochastic

process. It turns out that the transport along the surface of the regular structure is an

order of magnitude faster than the transport away from the regular structure. More

precisely, the transport along the surface seems to follow a random walk, while the

transport away from the region is subdi�usive. The transport in both directions gets

more rapid with increasing distance to the regular structure.

As mentioned before, almost every resonance channel has two parts, an inner part be-

ing con�ned by regular tori and an outer part overlapping with other channels. Instruc-

tive illustrations of these two di�erent regimes can be found in Ref. [186] and [39, Figs.

1 and 7c]. In the following, the outer part is referred to as open resonance channel and
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Figure 2.4: Chaotic orbit trapped in the neighborhood of a regular region of 𝐹SC

(a) in a 3d phase-space slice and (b) in frequency space with the iteration time 𝑡 ∈
[0, 𝑇 ≈ 1.7 · 107] encoded in color (see color bar), regular tori in gray, and the cen-
tral family of elliptic 1d tori in orange. The parameters of the 3d phase-space slice
are 𝑛⃗ = (0.63234022, 0.61078167, 0.31384557, 0.35859804) and 𝐷 = 0.321827835126, see
Eq. (2.16). The regular region is the horseshoe shown in pink in Fig. 2.2. In (b) some res-
onance channels are visible as band shaped gaps in the gray areas and as lines populated
by the gray points of the regular tori.
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the inner part as closed resonance channel. As pointed out, only the open resonance

channels are visited by trapped orbits for the considered time scales.

The regular region shown in Fig. 2.4 is the horseshoe shown in pink in Fig. 2.2. This

region is important as most of the trapped orbits stick to this structure, i.e. 938384

of the 3354864 trapped orbits with 𝑇 > 104 stick to the horseshoe and 61600 of them

even for 𝑇 > 105, see also Sec. 4.1. However, this regular region is a result of the

resonance 3 : 1 : 1 and thus has a fold in frequency space close-by, i.e. the torsion d𝜈/d𝐼

changes sign [15, 76, 187], see Sec. 3.4 and Figs. 3.2 and A.10(b). However, due to the

peculiar geometry of the regular 2d tori of the horseshoe an overtone of 𝜈2 is obtained

from frequency analysis, allowing to distinguish the horseshoe and its surrounding from

close-by regular regions, see transformation iii) in Sec. 2.6.2. In order to avoid confusion

of the frequencies of the horseshoe and close-by regular regions, the transformation iii) is

not performed. This means in the following the horseshoe is not shown as in Fig. 2.4(b)

but rather in the untransformed frequencies also used in Ref. [72]. This representation

is also bene�cial as the interesting area is extended more in 𝜈2-direction which resolves

the details better. However, this means that in the following chapters a resonances

𝑘1 : 𝑘2 : 𝑘3 corresponds to resonance (𝑘1 + 4𝑘2) : 𝑘2 : (𝑘3 + 𝑘2) in the frequencies of

Figs. 2.2(b) and 2.4(b). In practice, the resonances which are directed more along the

surface of the horseshoe tend to have smaller order in the latter form, while the opposite

is true for resonances perpendicular to the surface.



3 Organization of regular tori

in 4D maps

In generic systems with a mixed phase space the chaotic transport is slowed down

considerably in the vicinity of regular structures, which leads for instance to the power-

law trapping discussed in Chapter 2. In order to study such slow chaotic transport

it is important to understand the organization of the regular structures. In 2d maps

regular tori are organized around elliptic periodic orbits forming a self-similar level and

class hierarchy. These hierarchies are key to the power-law trapping in 2d maps. In

this chapter it is revealed that the regular 2d tori in 4d maps are organized around

one-parameter Cantor families of elliptic 1d tori, which exhibit a class hierarchy. This

hierarchy has implications for the inner structure of resonance channels. The insight

into the organization of the regular structures is exploited by designing a map which

facilitates the quanti�cation of chaotic transport notably. This map is essential for the

investigation of the trapping mechanism in Chapter 4.

In Sec. 3.1 it is demonstrated how 2d tori are organized around families of elliptic 1d

tori. By comparison of this organization in phase and frequency space, gaps within the

regular structures are shown to be caused by resonance channels. In Sec. 3.2 features

of the families of elliptic 1d tori, like origin, actions, and frequencies, are examined.

In Sec. 3.3 the class hierarchy of these families analogous to 2d maps is explained. In

particular, the regular structures present within any resonance channel or any resonance

junction represent a deeper class. Due to the self-similarity, the trapping at these

structures should be analogous to the trapping at a generic regular structure embedded

in a chaotic sea. Consequently, the generic power-law trapping is relevant for the chaotic

transport within any Arnold web, even for maps in the near-integrable regime. In

Sec. 3.4 bifurcations along the families of elliptic 1d tori are brie�y discussed. The

horseshoe which is relevant for the power-law trapping in the 4d map 𝐹SC is revealed

to be a deeper class due to a resonance. The insights about the organization of the

regular tori are exploited in Sec. 3.5 by designing a convenient map which allows for

a more accurate measurement of the chaotic transport. While the map exhibits all

relevant characteristics of a generic system, it also contains a region with a special
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trapping mechanism, which is related to trapping along the level hierarchy in 2d maps.

In addition, the hyperbolic structures which are also present are brie�y discussed. Note

that the results of the following sections are in part a review of papers the author

co-produced [138,186] and some text passages closely follow these publications.

3.1 Skeleton of elliptic 1D tori

According to the literature, reviewed in Sec. 2.5.1, each regular elliptic torus of dimen-

sion 𝑑 > 0 is arranged around a regular elliptic torus of dimension 𝑑−1. In this section,

it is shown how in 4d maps regular 2d tori are organized around families of elliptic 1d

tori. To this end, elliptic 1d tori of the two coupled standard maps 𝐹SC are computed,

using a re�ned version of an algorithm conceived in an earlier work [72], and displayed

in 3d phase-space slices along with 2d tori. The algorithm is discussed in Sec. 3.3.2.

A comparison with the frequency space substantiates the organization and reveals how

gaps in the skeleton are due to resonances.

In order to understand the relation of 2d tori and elliptic 1d tori, consider a 2d

torus which has a minor and a major radius. Contracting the minor radius, while

leaving the major radius constant, results in a 1d torus or ring in the center of the

original 2d torus. In case of a 4d map the tori are embedded in a 4d phase space.

In a typical 3d phase-space slice the 2d torus appears as two rings and the 1d torus

as two points, each in the center of one of the two rings. In this geometric sense the

2d torus is organized around the 1d torus. Since a 2d torus has codimension two

in a 4d phase space this relation is not unique, i.e. several elliptic 1d tori qualify as

center of a 2d torus. Performing the described contraction for many 2d tori of the two

coupled standard maps 𝐹SC results in colored lines in the 3d phase-space slice shown

in Fig. 3.1(a). More precisely, in Fig. 3.1(a) the di�erently colored points of the elliptic

1d tori approximately compose 1d lines. Each gray ring, representing a 2d torus in

the slice, is centered around one of these lines. This is also visible, e.g., for the 2d tori

around orange and purple lines. Thus, these lines are denoted as central lines 𝒞. The
fact that the elliptic 1d tori compose such lines in a 3d phase-space slice implies that

these tori occur as one-parameter families ℳ in the 4d phase space. Corresponding

central lines 𝒞 and families ℳ are denoted with matching indices. Figures 3.1(c) and

3.1(d) show 3d color projections for the orange and red families ℳfp
1 and ℳfp

2 as well

as for the purple family ℳres, respectively. In these projections the individual 1d tori

are visible and they populate seemingly smooth 2d manifolds ℳ. The intersections 𝒞
with the 3d phase-space slice are included in the projections in the same colors as in

Fig. 3.1(a). They illustrate the fact that each 1d torus intersects several times with
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Figure 3.1: Visualization of the families ℳfp
1 , ℳfp

2 , ℳres, and ℳ7 (orange, red, blue,
and purple) of elliptic 1d tori of the map 𝐹SC in (a) the 3d phase-space slice |𝑝2| < 10−4,
(b) frequency space, and (c), (d) 3d projections. (a) and (b) correspond to Fig. 2.2 with
regular 2d tori in gray which are organized around the families. In (c), (d) for a selection

of 1000 1d tori (excluding the strong bends of ℳfp
2 ) 2000 iterates under the map 𝐹SC are

computed and projected on (𝑝1, 𝑞1, 𝑞2) with 𝑝2 encoded in color. The intersections of the

1d tori with 𝑝2 = 0 composing the central lines 𝒞fp
1 , 𝒞fp

2 , and 𝒞res are colored as in (a), (b).

While the families ℳfp
1 , ℳfp

2 emanate from the ee fixed point 𝑢⃗fp and continue beyond
large gaps in (a) and (b), ℳres corresponds to the resonance −1 : 3 : 0 and ℳ7 to the

resonance junction (2/7, 1/7) as seen in (b). In (c) the spheres in a gap of ℳfp
1 correspond

to two ee (red) and two eh (green) period-7 orbits which are related to the family ℳ𝛼2

indicated in green in (b) which is discussed in Sec. 3.3.1. [Modified from Ref. [138]]
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the slice, e.g., twice in case of ℳfp
1 and ℳfp

2 in Fig. 3.1(c) and six times in the case of

ℳres in Fig. 3.1(d). Thus, the several branches appearing for each of these examples in

Fig. 3.1(a) are dynamically connected and belong to a single family of 1d tori.

In both the 3d phase-space slice and the 3d projections gaps and bends are visible

along the families ℳ. These features are due to crossing resonances, which is demon-

strated in the frequency space in Fig. 3.1(b). In addition to the regular 2d tori in

gray the frequencies of the elliptic 1d tori of Fig. 3.1(a) are shown in corresponding

colors. In contrast to a 2d torus, the dynamics on a 1d torus is only described by one

longitudinal frequency 𝜈𝐿, also called intrinsic frequency. For example, in Fig. 3.1(b)

this frequency 𝜈𝐿 corresponds to 𝜈1 in case of the family ℳfp
1 and to 𝜈2 for ℳfp

2 . The

remaining frequency 𝜈𝑁 , called normal or librating frequency, is de�ned by the dynam-

ical behavior normal to a elliptic 1d torus and can be calculated from the linearized

dynamics [156, 188, 189]. Another way to interpret the normal frequency is in terms of

the above described contraction, see also Sec. 3.3.2. Consider a series of 2d tori 𝑇𝑖,

𝑖 ∈ N whose dynamics around the minor radius is described by a normal frequency 𝜈𝑖,𝑁

and around the major radius by a longitudinal frequency 𝜈𝑖,𝐿. If this series contracts

towards a particular 1d torus 𝑇1d with frequencies (𝜈𝐿, 𝜈𝑁), e.g., the major radius 𝑟𝑖,𝐿
stays constant and the minor radius contracts 𝑟𝑖,𝑁 < 𝑟𝑗,𝑁 for 𝑖 > 𝑗, then the 2d tori

converge 𝑇𝑖 → 𝑇1d and hence also their frequencies (𝜈𝑖,𝐿, 𝜈𝑖,𝑁) → (𝜈𝐿, 𝜈𝑁) for 𝑖 → ∞.

In frequency space in Fig. 3.1(b), the sharp edges emanating from the ee �xed point

(𝜈fp
1 , 𝜈fp

2 ) correspond to the orange and red families ℳfp
1 and ℳfp

2 , respectively. The

regular 2d tori in gray are attached to these edges, which demonstrates how the families

of elliptic 1d tori also organize the 2d tori in frequency space. Since the frequencies are

functionals of the actions, see Eq. (2.3), the 1d tori organize the actions of the 2d tori

similarly. More precisely, in action space the families ℳfp
1 and ℳfp

2 lie on the 𝐼2 = 0

and 𝐼1 = 0 axis, respectively, with the actions of the 2d tori attached to them. This

can be illustrated again by the series of 2d tori 𝑇𝑖 as described above. Note that the

longitudinal and normal frequencies (𝜈𝑖,𝐿, 𝜈𝑖,𝑁) on 2d tori 𝑇𝑖 de�ne the dynamics of the

angle coordinates (Θ𝑖,𝐿,Θ𝑖,𝑁). The corresponding actions (𝐼𝑖,𝐿, 𝐼𝑖,𝑁) are de�ned by the

pathintegrals 𝐼𝑖,𝑘 = 1/(2π)
∮︀
𝛾𝑖,𝑘

∑︀2
𝑗=1 𝑝𝑗d𝑞𝑗 with 𝑘 ∈ {𝐿,𝑁} and the paths 𝛾𝑖,𝑘 on a

torus 𝑇𝑖 along one angle, e.g., 𝛾𝑖,𝐿 de�nes the closed path with Θ𝑖,𝐿 ∈ [0, 2π] and Θ𝑖,𝑁

being constant, see Sec. 2.1. Obviously, the normal action 𝐼𝑁 of a 1d torus is zero.

Thus, for a contraction 𝑖 → ∞ the actions of the 2d tori converge (𝐼𝑖,𝐿, 𝐼𝑖,𝑁) → (𝐼𝐿, 0).

Taking into account that for the family ℳfp
1 it is 𝐼𝑁 = 𝐼2 whereas for ℳfp

2 it is 𝐼𝑁 = 𝐼1

and the fact that the actions of a �xed point are both zero, it is clear that the families

reside on the corresponding axes in action space and emanate from the origin, which
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represents the ee �xed point 𝑢⃗fp. The actions of regular tori in 4d maps are discussed

in more detail in Appendix A.5 including numerical results.

In the frequency space in Fig. 3.1(b) the families ℳfp
1 and ℳfp

2 are interrupted by

resonances on arbitrary �ne scale. Thus, the families of 1d tori are rather Cantor

families. By comparing Figs. 3.1(a) and 3.1(b) the gaps and bends along the families

in phase space can be associated to the responsible resonances. The most prominent

example is the large gap in the orange family ℳfp
1 with a large bend of the family on

one side, which is caused by the resonance 3 : 1 : 1. The di�erent types of gaps can be

explained by di�erent types of bifurcations, see Sec. 3.4. In the frequency space also a

crucial di�erence between the families ℳfp
1 and ℳfp

2 and the other families, ℳres and

ℳ7, is apparent. While the families ℳfp
1 and ℳfp

2 emanate from one point, that is the

central ee �xed point 𝑢⃗fp, the purple family ℳres resides on the resonance −1 : 3 : 0

and the two blue families ℳ7 are con�ned to a junction of resonances in Fig. 3.1(b).

The two families ℳ7 emanate from an ee period-7 periodic orbit 𝑢⃗p in phase space. In

the following sections, it is explained how these families and periodic orbits originate

from the break-up of resonant 2d tori and how their frequencies have to be analyzed.

3.2 Origins of 1D tori

The regular 2d tori are organized around a skeleton of families of elliptic 1d tori. Thus,

in order to understand the regular structures it is important to focus on the properties

of these families. In this section, the origins of these families are explained and their

actions and frequencies are discussed. The families originate either from ee periodic

orbits or are due to resonances. In the latter case there exist families of hyperbolic

1d tori which are like counterparts to the elliptic families with related actions and

frequencies. Each pair of an elliptic and a hyperbolic family may be considered as the

skeleton of the corresponding resonance channel.

In Sec. 3.2.1 Lyapunov families from ee periodic orbits are reviewed and a nice match

of their actions with predictions from the linearized dynamics is found. In Sec. 3.2.2

the break-up of resonant 2d tori is revised, including a novel type of break-up, and the

geometry of remaining elliptic and hyperbolic 1d tori is discussed. Considering not a

single resonant 2d torus but a whole one-parameter family of 2d tori sharing the same

resonance condition gives an origin of pairs of families of elliptic and hyperbolic 1d tori.

This is explained in Sec. 3.2.3 along with relations between the actions and frequencies

of the two families. Also a hybrid case to which both origins apply is discussed.
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3.2.1 Lyapunov families

At each ee periodic orbit or �xed point two families of elliptic 1d tori are attached.

They are predicted by the Lyapunov center theorem [190], called Lyapunov families of

invariant curves [133,156] or cantorian central submanifolds [134], and have been studied

in the near-integrable regime [134, 135, 191, 192]. The frequencies (𝜈𝐿, 𝜈𝑁) and action

𝐼𝐿 of the elliptic 1d tori of a Lyapunov family can be approximated by the linearized

dynamics at the corresponding ee point. In this section, results are presented for the

example of the Lyapunov families ℳfp
1 and ℳfp

2 which originate from the ee �xed point

𝑢⃗fp. Another example are the families ℳ7 originating from the period-7 ee periodic

orbit 𝑢⃗p. Note that certain Lyapunov families are embedded in bigger families of 1d

tori, see Appendix A.4.

The normal and longitudinal frequencies (𝜈𝐿, 𝜈𝑁) of the 1d tori of each family converge

to the frequencies obtained from the linearization at the corresponding ee point. For

instance, the families ℳfp
1 and ℳfp

2 meet in the frequency space in Fig. 3.1(b) at the

frequencies (𝜈fp
1 , 𝜈fp

2 ) of the ee �xed point 𝑢⃗fp.

In the vicinity of the ee point, the actions 𝐼𝐿 of the elliptic 1d tori can be ap-

proximated by the actions of the harmonic oscillator which is de�ned by the linearized

dynamics in each degree of freedom at the ee point. In Appendix A.6 the linear ap-

proximation for the actions 𝐼𝐿 in an elliptic degree of freedom of a �xed point is derived.

The action 𝐼𝐿 is expressed both with respect to the mean squared radius E[𝑟2] and the

circumference 𝑠 of the 1d tori. The action 𝐼𝐿 of a 1d torus can easily be computed

by using an orbit 𝑥(𝑡) on it and its longitudinal frequency 𝜈𝐿 obtained from frequency

analysis. The points 𝑥(𝑡) of the orbit can be associated to angles Θ(𝑡) = 2π𝜈𝐿𝑡 mod 2π

and ordered with ascending angle. These ordered points approximate the path along the

1d torus and thus the action 𝐼𝐿 = 1/(2π)
∮︀
𝛾𝐿

∑︀2
𝑗=1 𝑝𝑗d𝑞𝑗 can be computed numerically.

Likewise, the ordered points can also be used to numerically compute the circumference

𝑠 of the 1d torus. The radius 𝑟 is the distance to the corresponding �xed point and the

average is done for all points of the orbit. Note that using the circumference 𝑠 seems

more plausible, as this entity is also meaningful in the 4d space, while the radius 𝑟 of

a 1d closed line on a curved 2d manifold in 4d seems not well de�ned.

In Fig. 3.2 the linear approximations and numerical results for 𝐼𝐿 of elliptic 1d tori

of ℳfp
1 and ℳfp

2 are shown. The 1d tori correspond to the ones presented in Ref. [72].

For each 1d torus an orbit 𝑥(𝑡) of 2000 iterations is considered. For both dependencies

𝐼𝐿(E[𝑟2]) and 𝐼(𝑠2) the analytic approximations and the numerical results virtually

coincide even far away from the �xed point. More precisely, larger deviations become

visible after the crossing of the resonance −1 : 2 : 0 and ℳfp
2 at E[𝑟2] ≈ 0.02 and
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Figure 3.2: Actions 𝐼𝐿 of elliptic 1d tori of the families ℳfp
1 , ℳfp

2 (orange, red) with
respect to their (a) mean square radius E[𝑟2] and (b) square circumference 𝑠2. The linear
approximations obtained from the ee fixed point 𝑢⃗fp according to Appendix A.6 are
indicated as dashed lines. The parameters 𝑅 and 𝑠0(𝑅) follow from the eigenvectors, see

Eq. (2.15), i.e. for ℳfp
1 and ℳfp

2 one has 𝑅 = 0.27293, 𝑠0(𝑅) = 2.07325 and 𝑅 = 0.61041,
𝑠0(𝑅) = 1.64266, respectively.

𝑠2 ≈ 0.75 and the crossing of the resonance 3 : 1 : 1 and ℳfp
1 at E[𝑟2] ≈ 0.025 and

𝑠2 ≈ 1.0. In particular, the horseshoe corresponding to the strong bend on ℳfp
1 in

frequency and phase space in Fig. 3.1 due to the resonance 3 : 1 : 1 is visible. In

Fig. 3.2(b) the numerical results are far more scattered, which illustrates that some

of the used orbits actually lie on thin 2d tori instead of 1d tori. For these orbits

the numerical computation of the circumference 𝑠 produces always bigger values than

expected from a close-by 1d torus. The mean squared radius E[𝑟2] is more robust

against such bad approximations of 1d tori.

3.2.2 Break-up of resonant tori

In order to understand the origin of families of elliptic 1d tori, which are not Lyapunov

families due to ee �xed points, the break-up of resonant tori has to be taken into

account. For this, the results of Todesco are reviewed and illustrated [132]. While

these results are derived for the vicinity of an ee �xed point, the described behavior

is con�rmed for resonant tori far away from a �xed point and even in absence of any

�xed point. In this section, it is additionally demonstrated how the geometry of the

original resonant 2d torus and its resonance determine the geometry of the phase-space

structures, which remain after the break-up. This includes a geometric relation between

periodic orbits and 1d tori close to them. Finally, a new case, the break-up of a 1d torus
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with rational longitudinal frequency is discussed along with the hierarchy of hyperbolic

1d tori 1.

Without loss of generality, the following cases always consider the scenario of an

original 2d torus of an integrable 4d symplectic map, which broke up according to the

KAM theorem when a non-integrable perturbation was added. This break-up depends

on the number 𝑘 of ful�lled, linearly independent resonance conditions𝑚1𝜈1+𝑚2𝜈2 = 𝑛,

𝑚1,𝑚2, 𝑛 ∈ Z, denoted as rank 𝑘, and whether the resonance is coupled or uncoupled.

The four possible cases are illustrated by examples from the two coupled standard maps

𝐹SC in phase space and the frequency plane, see Fig. 3.3. Note that Fig. 3.3(a) is a

detail of the frequency space in Fig. 3.1(b). The example tori are chosen as close as

possible to each other such that the geometry of their original 2d tori resemble each

other. Thus, the examples look like di�erent cases of resonances for geometrically the

same torus. The involved hyperbolic 1d tori are not shown but are added in Ref. [189].

Rank-0: On a non-resonant 2d torus of the integrable system each orbit is dense. Such

a 2d torus will in general survive a perturbation and just be deformed. An example

is shown in Fig. 3.3(b) and marked as point b○ in Fig. 3.3(a). Such 2d tori have been

called rotational [179,181] but are actually librational as they are contractable [1].

Rank-1, uncoupled : If one uncoupled resonance condition 𝑚1𝜈1 = 𝑛 with 𝑚1 ̸= 0

is ful�lled on a 2d torus of the integrable system, each orbit on it densely �lls 𝑚1

disjoint lines. At least 2𝑚1 of these in�nite number of lines survive a perturbation,

alternating between normally elliptic and normally hyperbolic [193]. An example is

shown in Fig. 3.3(c) and marked as point c○ in Fig. 3.3(a). The original 2d torus broke

since it was on the resonance 7 : 0 : 2 leaving a 1d torus consisting of seven elliptic

lines (hyperbolic lines not shown). This 1d torus is displayed in Fig. 3.3(c) along with

a 2d torus from its elliptic surrounding. In this example there are another seven elliptic

lines, which are not shown.

Rank-1, coupled : If one coupled resonance condition with both 𝑚1 and 𝑚2 non-

zero is ful�lled on a 2d torus of the integrable system, each orbit on it densely �lls

gcd(𝑚1,𝑚2) disjoint lines [159]. At least one elliptic and one hyperbolic line survive a

perturbation. An example is shown in Fig. 3.3(d) and marked as point d○ in Fig. 3.3(a).

The original 2d torus broke since it was on the resonance −1 : 3 : 0 leaving one elliptic

line (hyperbolic line not shown). This 1d torus and a thin 2d torus from its elliptic

surrounding are displayed in Fig. 3.3(d). Such 2d tori of rank-1 resonances have been

called tube tori [179,181].

1The discussion quotes several passages of a section of Ref. [138]. For brevity, these passages are not
individually indicated.
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Figure 3.3: Illustration of the break-up of resonant 2d tori in (a) frequency space and
(b)–(d) 3d projections as in Fig. 3.1. (a) Detail of Fig. 3.1(b) with circled letters marking
the frequencies of the example tori (b)–(e) and Fig. 3.4. In (c), (d) an elliptic 1d torus and
a surrounding 2d torus are shown and in (e) the 1d torus of (d) is added for comparison
with the ee (red), eh (green), and hh (blue) period-21 orbits. [Modified from Ref. [138]]
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Rank-2 (resonance junction): If two independent resonance conditions are ful�lled on

a 2d torus of the integrable system, each orbit on it is periodic. If such a resonance

junction is at (𝜈1 = 𝑛1/𝑚1, 𝜈2 = 𝑛2/𝑚2) then the period is given by 𝑙𝑐𝑚(𝑚1,𝑚2). At

least four periodic orbits survive a perturbation: either one ee, one hh, and two eh

periodic orbits or two complex unstable and two eh periodic orbits. Such a break-up

has also been derived from symmetry considerations [79] and has been analyzed also

for the case of strong resonances [61]. An example for a rank-2 resonance is shown in

Fig. 3.3(e) and marked as point e○ in Fig. 3.3(a). The original 2d torus broke since it

was at the intersection of the resonances 7 : 0 : 2 and −1 : 3 : 0 leaving two ee, two

hh, and four eh periodic orbits of period 21. The twofold number of periodic orbits is

analogous to the twofold number of surviving 1d tori for the resonance 7 : 0 : 2. Another

example for a rank-2 resonance are the period-7 orbits 𝑢⃗p from which the blue family

ℳ7 in Fig. 3.1(a) emanates. These periodic orbits result from the rank-2 resonance at

the intersection of the resonances 7 : 0 : 2 and 3 : 1 : 1, see Fig. 3.1(b). Note that

a resonance junction is an intricate region in phase space, considering the phase space

structures associated with the periodic orbits, like stable and unstable 2d manifolds.

Note that at any resonance junction in�nitely many resonance conditions are ful�lled.

In Appendix A.4 a semi-analytical procedure is derived to determine the lowest order

resonance of a junction.

For reasons of continuity the periodic orbits due to a rank-2 resonance are expected

to be located where the surviving lines of the two crossing rank-1 resonances get close

to each other in phase space. For example, an ee periodic orbit is expected, where an

elliptic line of the �rst rank-1 resonance and an elliptic line of the second one get close

to each other. This is illustrated by the rank-2 resonance in Fig. 3.4(a) which is marked

as point 6○ in Fig. 3.3(a). There each of the elliptic 1d tori of the resonances 5 : −5 : 1

and 7 : 0 : 2 almost coincides with a chain of alternating ee and eh periodic orbits. ee

points occur where these elliptic 1d tori almost intersect. Note again that there exists

another elliptic 1d torus from the resonance 7 : 0 : 2 in between the shown ones.

From this argument also the number and stability of periodic orbits resulting from

a rank-2 resonance becomes plausible: The elliptic (E1) and the hyperbolic (H1) line

of the �rst rank-1 resonance intersect in four kind of points with the elliptic (E2) and

hyperbolic (H2) line of a second rank-1 resonance, giving periodic orbits with stability

E1E2, E1H2, E2H1, and H1H2.

An origin for periodic orbits not discussed in the literature is the break-up of an

elliptic 1d torus with rational longitudinal frequency. It is observed that from this

break-up a one-dimensional chain of ee and eh periodic orbits arises. This case is

illustrated in Fig. 3.4(b) for the intersection of the 7 : 0 : 2 resonance and ℳfp
1 , which
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p1

−q1

−q2

(a) Rank-2: 𝜈 = (2/7, 3/35)

p1

−q1

−q2

(b) Rank-1 on 1d torus

Figure 3.4: Arrangement of ee (red), eh (green), and hh (blue) periodic orbits. (a)
Rank-2 resonance at the junction of the resonances 5 : −5 : 1 and 7 : 0 : 2 (marked by 6○
in Fig. 3.3(a)). Two ee, four eh, and two hh period-35 orbits and two elliptic 1d tori,
one from the resonance 5 : −5 : 1 and one from Fig. 3.3(c), are shown. (b) Alternating
1d chain of ee, eh period-7 orbits (also shown in Fig. 3.1(c)) at the intersection of the

resonance 7 : 0 : 2 and the family ℳfp
1 (marked by 7○ in Fig. 3.3(a)) with a close-by

elliptic 1d torus of ℳfp
1 for comparison. [Modified from Ref. [138]]

is marked as point 7○ in Fig. 3.3(a). This example is also included in Fig. 3.1(b) where

the two ee and two eh period-7 periodic orbit appear as an alternating chain in a small

gap of ℳfp
1 . As demonstrated by the example, the break-up of a 1d torus with rational

frequency looks like an application of the Poincaré-Birkho� theorem of 2d maps to the

2d manifold of the family ℳfp
1 . In particular, the hyperbolic degree of freedom of the

eh orbit and one elliptic degree of freedom of the ee orbit are embedded within this

manifold, see Sec. 3.3.1. This break-up scenario also applies to hyperbolic 1d tori with

rational frequency, which break up into a chain of eh and hh periodic orbits. However,

the family of hyperbolic 1d tori originating from such a eh periodic orbit is embedded

within the bigger family of hyperbolic 1d tori. Thus, families of hyperbolic 1d tori do

not cause further large families outside of themselves and the hierarchy within them is

neglected in the following sections.

3.2.3 Families due to resonant tori

In this section, the results of the previous section are used to explain the origin of

families of elliptic 1d tori like ℳres, which are not Lyapunov families of ee �xed points

or periodic orbits: Such a family arises from the break-up of a one-parameter family

of 2d tori which share the same resonance condition. In particular, no �xed point or
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periodic orbit is required. Some properties of these families resulting from resonances

are discussed as well as their relevance for resonance channels. Also a hybrid case is

mentioned.

According to the previous section, a 2d torus whose frequencies (𝜈1, 𝜈2) ful�ll a single

resonance condition 𝑚1𝜈1 + 𝑚2𝜈2 = 𝑛 with 𝑚1,𝑚2, 𝑛 ∈ Z breaks up into an equal

number of elliptic and hyperbolic 1d tori. As a resonance condition de�nes a line in

frequency space, in an integrable 4d map generically a one-parameter family of 2d

tori exists ful�lling this condition. Consequently, for each family at least two one-

parameter Cantor families of 1d tori, one hyperbolic and one elliptic, should remain

when a perturbation is added. The position of these 1d tori is such that they form

the manifolds described in Sec. 3.1. An example is the family ℳres shown in purple in

Fig. 3.1 which originates in this sense from the resonance −1 : 3 : 0. In the frequency

space in Fig. 3.1(b) the results of the frequency analysis for these 1d tori all fall on

this resonance line. This is caused by the geometry of these 1d tori, which resembles

orbits on the original resonant 2d tori, as seen in Fig. 3.3(d). Due to that the resonant

frequencies of the broken 2d tori are dominant in the Fourier spectrum of these 1d tori

and their surrounding structures. The longitudinal and normal frequencies of these 1d

tori are discussed in Secs. 3.3.1 and 3.3.2. In Ref. [189] several other examples of families

of 1d tori resulting from single resonances are presented, including the hyperbolic 1d

tori.

The families of hyperbolic and elliptic 1d tori arising from resonances have several

related properties. Each of these elliptic 1d tori has a hyperbolic counterpart which

originates from the same resonant 2d torus. Thus, the hyperbolic and elliptic 1d torus

have the same longitudinal frequency 𝜈𝐿. They also have a similar longitudinal action

𝐼𝐿. More precisely, as the 1d tori described equivalent paths on the resonant 2d torus,

their action 𝐼𝐿 is approximately the action 𝐼𝐿 along this path on the 2d torus. Note that

this action 𝐼𝐿 is a superposition of the fundamental actions (𝐼1, 𝐼2) of the 2d torus see

Sec. 2.1, i.e. in case of a resonance𝑚1𝜈1+𝑚2𝜈2 = 𝑛 the action is 𝐼𝐿 ≈ 𝐼𝐿 = 𝑚2𝐼1+𝑚1𝐼2.

In Appendix A.5 an application of this fact is discussed. The deviation of 𝐼𝐿 from 𝐼𝐿

is expected to increase with the strength of the perturbation. This is also expected for

the di�erence between 𝐼𝐿 for the elliptic and the hyperbolic 1d torus, which should be

analogous to the action di�erence of minimax and minimizing orbits in 2d maps [80]. In

Ref. [189] these relations of the actions are mostly con�rmed. There also is a proximity

between the normal frequency 𝜈𝑁 of the elliptic and the Lyapunov exponent 𝜆𝑁 of the

hyperbolic 1d torus originating from the same resonant 2d torus is found 2π𝜈𝑁 ≈ 𝜆,

which can explained by the linearized dynamics.



41

It should be pointed out that the families of hyperbolic and elliptic 1d tori arising

from resonances form essentially the skeleton of the corresponding resonance channel.

In particular, the transport along and the escape from a channel are expected to be

largely governed by the stable and unstable manifolds of the hyperbolic 1d tori. Thus,

it is important to study these families.

Finally, note that the case of an elliptic 1d torus with rational longitudinal frequency

𝜈𝐿 = 𝑛/𝑚 mentioned in Sec. 3.2.2 causes hybrid families of elliptic and hyperbolic 1d

tori. The ee and eh periodic orbits remaining after the break-up of such a rational 1d

torus are the origin of two special families. That is, one family of elliptic and one family

of hyperbolic 1d tori, respectively, which are not embedded in the family of elliptic 1d

tori to which the rational 1d torus belongs. Since these families emanate from periodic

orbits, they are Lyapunov families, see Sec. 3.2.1. However, they also coincide with the

families caused by the uncoupled resonance condition 𝑚𝜈𝐿 + 0 · 𝜈𝑁 = 𝑛. An example

for this hybrid case is the family ℳ𝛼2 from the intersection of the resonance 7 : 0 : 2

with the family ℳfp
1 highlighted in green in Figs. 3.1(b) and 3.3(a).

3.3 Hierarchy of families of elliptic 1D tori

In symplectic 2d maps the regular 1d tori are not only organized around elliptic pe-

riodic orbits, but there are two hierarchies of these orbits, namely classes and levels,

as outlined in Sec. 2.4. As explained in the previous sections, in symplectic 4d maps

the regular 2d tori are organized around families of elliptic 1d tori. In this section,

a hierarchy of these families analogous to the hierarchy of classes, also called islands-

around-islands, in 2d maps is established. In particular, there are three principal ways

to continue the hierarchy into a deeper class that is by (𝛼1) two resonance conditions

on a 2d torus, (𝛽) one resonance condition on a one-parameter family of 2d tori, or

(𝛼2) one uncoupled resonance condition on a 1d torus. As mentioned in the previous

sections, the case (𝛼1) is present at every resonance junction and the case (𝛽) in every

resonance channel. Hence, trapping at the regular structures within the Arnold web

means trapping in a deeper class. Due to the self-similarity along the hierarchy, under-

standing the mechanism of power-law trapping implies understanding the in�uence of

the regular structures within the Arnold web.

In Sec. 3.3.1 the three possible cases for one step deeper into the class hierarchy is

explained in phase and frequency space and the self-similarity is pointed out. Due to

this similarity the hierarchy can be continued along any resonance or resonance junction

into deeper classes. In Sec. 3.3.2 a general way to perform the frequency analysis for

a deeper class is described. This is crucial for examining trapping in a deeper class
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and supports future studies of scaling and universality along the hierarchy. Also the

longitudinal frequencies of the deeper class are essential for many algorithms which

compute invariant structures. In Sec. 3.3.3 the order and labeling of the classes along

the hierarchy analogous to 2d maps is introduced. Note that the hierarchy of the

hyperbolic structures is brie�y discussed in Secs. 3.2.2 and 3.3.3.

3.3.1 Self-similar hierarchy

The didactic scenario of Secs. 3.2.2 and 3.2.3 is an integrable system to which a non-

integrable perturbation is added: Families of elliptic 1d tori in the perturbed system in

principle originate from the break-up of resonant 2d or 1d tori of the integrable system.

This implies that the 2d tori which are organized around such families in the perturbed

system do not exist in the integrable system. In this sense, these 2d tori are in a deeper

class than the 2d tori which exist in both systems, i.e. which survive the perturbation.

In this section, the similarity between two consecutive classes is illustrated for the three

possible origins (𝛼1), (𝛽), (𝛼2) of families of elliptic 1d tori. A family of elliptic 1d

tori is either (𝛼1, 𝛼2) attached to ee periodic orbits or (𝛽) the remains of broken 2d

tori sharing a single resonance condition. The ee periodic orbits can arise from (𝛼1)

resonance junctions, i.e. broken 2d tori ful�lling more than one resonance condition, or

(𝛼2) broken elliptic 1d tori with rational longitudinal frequency.

Consider the ee �xed point 𝑢⃗fp and the attached families ℳfp
1 and ℳfp

2 as the top

class of the 4d map 𝐹SC, see Fig. 3.1. Then, according to Secs. 3.1 and 3.2 the families

ℳ7, ℳres, and ℳ𝛼2 are examples for the cases (𝛼1), (𝛽), and (𝛼2), respectively. In

Fig. 3.5 each of these families and their surrounding 2d tori are presented in detail in a

3d phase-space slice and frequency space. As mentioned in Sec. 3.2.3, a straightforward

frequency analysis for these structures produces the resonant frequencies of the broken

2d tori, from which the structures originate. In contrast, here the frequency analysis is

performed with respect to the organizing center of each case, as explained in detail in

the following and in Sec. 3.3.2.

(𝛼1) In Fig. 3.5(a) a detail around one of the ee periodic points 𝑢⃗p from which the

families ℳ7 emanate, more precisely now ℳ7
1 and ℳ7

2, is magni�ed. The periodic

point 𝑢⃗p is shown in purple and the central lines 𝒞7
1 and 𝒞7

2 of the families are shown

in blue and labeled accordingly. Along with the surrounding 2d tori in gray the regular

structure in Fig. 3.5(a) is equivalently organized as the regular structure on the top class

with ℳfp
1 , ℳfp

2 , 𝑢⃗fp and resembles the structure in Fig. 3.1(a). While the frequency

analysis for all these tori produces (𝜈1, 𝜈2) = (2/7, 1/7), a frequency analysis using only

every 7-th point of each orbit produces the frequencies (𝜈 ′
1, 𝜈

′
2) shown in Fig. 3.5(b) in
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(c) (𝛽) Rank-1 on 2d torus: −1 : 3 : 0
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(e) (𝛼2) Rational 1d torus: 𝑢⃗𝛼2
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(f) 𝜈 ′′′(𝑢⃗𝛼2) = (0.4475, 0.0081)

Figure 3.5: First level of the hierarchy with the three types (𝛼1), (𝛽), and (𝛼2) in (a), (c),
(e) 3d phase-space slices and (b), (d), (f) adapted frequencies with 2d tori in gray. (a) 𝒞7

around one point 𝑢⃗p of the ee period-7 orbit, see Sec. 2.3, (c) one branch of 𝒞res of the −1 :
3 : 0 resonance, and (e) central lines 𝒞𝛼2

1 (bright blue) and 𝒞𝛼2
2 (green) representing families

of 1d tori ℳ𝛼2
1 and ℳ𝛼2

2 around one point 𝑢⃗𝛼2 = (0.115287658,−0.141621338, 0.0, 0.0)
of the ee period-7 chain. The slice conditions are (a), (c) |𝑝2| < 10−5 and (e) |𝑞2| < 10−6.
The coordinate system is shifted for each plot. The purple (red) point represents 𝑢⃗p (𝑢⃗𝛼2)
with adapted frequencies 𝜈 ′(𝑢⃗p) (𝜈 ′′′(𝑢⃗𝛼2)). The two families emanting from 𝑢⃗p (both
blue) intersect in (b) with an angle close to π. [Modified from Ref. [138]]
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corresponding colors. The families of elliptic 1d tori ℳ7
1 and ℳ7

2 shown in blue are

located on the edges emanating from the periodic point 𝑢⃗p in purple just as in the case

of ℳfp
1 , ℳfp

2 , 𝑢⃗fp in Fig. 3.1(b). The families from periodic orbits at resonance junctions

seem to be embedded in the families of the crossing resonances, see Appendix A.4.

(𝛽) In Fig. 3.5(c) one of the branches of the family ℳres in purple is magni�ed. While

again the organization of the 2d tori around the family is visible, in this case only

one family and no ee periodic point or �xed point is involved. While the frequency

analysis for all these tori produces frequencies (𝜈1, 𝜈2) on the resonance −1 : 3 : 0,

choosing 𝜈 ′′
1 = 𝜈1/3 = 𝜈2 and calculating another independent frequency produces 𝜈 ′′

2 .

In Fig. 3.5(d) the frequencies (𝜈 ′′
1 , 𝜈

′′
2 ) shown in corresponding colors again display the

family at one edge. Note that it is only one edge and not two in this case. It should

be emphasized, that the direction along the resonance channel −1 : 3 : 0, expressed

by 𝜈1 or 𝜈2 in Fig. 3.1(b), roughly corresponds to the direction along the family ℳres,

expressed by the longitudinal frequency 𝜈𝐿 = 𝜈 ′′
1 in Fig. 3.5(d). This correspondence is

valid for all resonance channels.

(𝛼2) In Fig. 3.5(e) a detail around one of the ee period-7 periodic points 𝑢⃗𝛼2 from

which the families ℳ𝛼2
1 and ℳ𝛼2

2 emanate us magni�ed. Note that ℳ𝛼2
1 is denoted

ℳ𝛼2 in Figs. 3.1(b) and 3.3(a). Since only eh points of the chain are within the slice

𝑝2 = 0, as seen in Fig. 3.1(c), the slice de�ned by 𝑞2 = 0 is used here. Additionally

to the structures belonging to the red ee periodic point 𝑢⃗𝛼2, also the family ℳfp
1 is

included in orange, whose crossing with the resonance channel 7 : 0 : 2 is the cause for

the periodic points, see Sec. 3.2.3. While this case looks similar to (𝛼1), there are a few

peculiarities. The green family ℳ𝛼2
2 emanating from the ee point 𝑢⃗𝛼2 extends far away

from the point. In contrast, the other family ℳ𝛼2
1 shown in bright blue is embedded

within the larger familyℳfp
1 . The frequency analysis produces for the structures around

the family ℳ𝛼2
1 frequencies (𝜈1, 𝜈2) on the resonance 7 : 0 : 2 and for structures around

the family ℳ𝛼2
1 in principle frequencies (𝜈1, 𝜈2) at the intersection of the resonance

and ℳfp
1 , see Figs. 3.1(b) and 3.3(a). A frequency analysis as for (𝛼1) produces the

frequencies (𝜈 ′′′
1 , 𝜈

′′′
2 ) shown in Fig. 3.5(f) in corresponding colors. The only di�erence

to (𝛼1) is the fact that the edge representing the embedded family ℳ𝛼2
1 is much shorter

and seems to approach to 𝜈 ′′′
2 = 0. The same behavior is observed for the crossing of

the resonance 17 : 0 : 5 and the part of ℳfp
1 belonging to the horseshoe. This might

be interpreted as the frequencies of the embedded 1d tori of ℳ𝛼2
1 getting closer to the

separatrix. Note that the family ℳ𝛼2
2 is considered to be a hybrid case of (𝛽) and

(𝛼2), see Sec. 3.2.3. In particular, for ℳ𝛼2
2 there is a direct relation between 𝜈2 and the

longitudinal frequency 𝜈𝐿 = 𝜈 ′′′
1 of ℳ𝛼2

2 in Figs. 3.3(a) and 3.5(f), respectively, that is

𝜈 ′′′
1 = 1 − 7 · 𝜈2.
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The similarity of the described cases (𝛼1), (𝛽), (𝛼2) to their top class applies to all

available resonances and junctions of this top class. Furthermore, for all cases resonance

channels and junctions are visible in the frequency spaces in Fig. 3.5 as for the top class

in Fig. 3.1(b). Consequently, the hierarchy can be continued in the same ways (𝛼1), (𝛽),

(𝛼2) along any of these resonances and junctions. For instance, the isolated gray points

on the resonance 5 : 0 : 2, that is the vertical line on the left of Fig. 3.5(f), correspond

to the regular 2d tori at the junction of the resonances 7 : 0 : 2 and 5 : −5 : 1. This

even deeper class is illustrated in Fig. 3.4(a). Depending on the point of view, this

deeper class is due to (𝛼1) the junction or due to (𝛼2) the crossing of the resonance

5 : 0 : 2 and ℳ𝛼2
2 . An analogous example is the resonance 21 : 0 : 2 crossing ℳres in

Fig. 3.5(d), which corresponds to the junction of the resonances −1 : 3 : 0 and 7 : 0 : 2

in Fig. 3.3(a), and whose periodic orbits are shown in Fig. 3.3(e).

3.3.2 Frequency analysis along hierarchy

In order to explore the deeper classes of the hierarchy in the frequency space, it is

necessary to perform the frequency analysis with respect to the organizing structures.

A few examples for this are presented in Sec. 3.3.1. In particular, it is crucial to compute

and predict the longitudinal frequency of the 1d tori of a deeper class, as most of the

algorithms for computing 1d tori heavily depend on this frequency [72,138,156,194�198].

One approach is to construct suitable normal forms to transform the motion, which is

rather cumbersome [184,185]. Instead, for (𝛼1, 𝛼2) Lyapunov families this frequency can

be estimated from the eigenvalues of the ee periodic orbits or computed numerically by

taking into account the period of the orbit. In this section, a general way to obtain this

frequency for (𝛽) families of 1d tori due to a single, generic resonance is proposed. Also

an expression for the period of the periodic orbits at a resonance junction is mentioned.

In order to illustrate the importance of the longitudinal frequency, the contraction

algorithm for computing elliptic 1d tori is brie�y discussed here. The main idea for

this algorithm has been devised in Ref. [72] and the algorithm has been re�ned in later

publications [138, 189, 199]. Consider an orbit 𝑥0(𝑡) on a 2d torus 𝑇0 that is organized

around an elliptic 1d torus. With respect to this 1d torus the frequencies (𝜈1, 𝜈2) ob-

tained from frequency analysis for the orbit 𝑥0(𝑡) can be interpreted as longitudinal and

normal frequency (𝜈𝐿, 𝜈𝑁) of the torus 𝑇0. The points {𝑥0(𝑡𝑗)}𝑗 with 𝜈𝐿𝑡𝑗 mod 1 ≈ 0

are located at a similar longitudinal angle but have arbitrary normal angles. Approxi-

mating an initial point in the center of these points, e.g., by their geometric center, in

general leads to an orbit 𝑥1(𝑡) on a torus 𝑇1 with smaller radius in normal direction.

This procedure is iterated until the resulting torus is close enough to a 1d torus, as
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de�ned by some criteria. Despite the fact that this algorithm only works for elliptic 1d

tori, it provides good initial guesses for elliptic 1d tori that are required by more so-

phisticated algorithms and continuation methods to �nd hyperbolic 1d tori [189]. The

crucial step is to associate frequencies (𝜈1, 𝜈2) with (𝜈𝐿, 𝜈𝑁). In case of families like ℳfp
1

and ℳfp
2 this is straightforward, as 𝜈𝐿 = 𝜈1 and 𝜈𝐿 = 𝜈2, respectively. However, this is

not true for families from generic resonances, like ℳres from the resonance −1 : 3 : 0.

As discussed in Sec. 2.1, the frequencies 𝜈 = (𝜈1, 𝜈2) of any 2d torus are only de�ned

up to unimodular transformations 𝒰 = (𝑢𝑖𝑗) with 𝑖, 𝑗 ∈ {1, 2}, 𝑢𝑖𝑗 ∈ Z, and det𝒰 = I,
I ∈ {−1, 1}. More precisely, a change in the angle coordinates Θ′ = 𝒰Θ causes new

frequencies 𝜈 ′ = 𝒰𝜈. If the frequencies 𝜈 ful�ll a resonance condition 𝑘1𝜈1 + 𝑘2𝜈2 = 𝑘3,

without loss of generality 𝑘2 ̸= 0, then the transformed frequencies read

𝜈 ′ =

(︃
𝑢11 𝑢12

𝑢21 𝑢22

)︃(︃
𝜈1

𝜈2

)︃
=

(︃
𝑢11 − 𝑘1

𝑘2
𝑢12

𝑢21 − 𝑘1
𝑘2
𝑢22

)︃
𝜈1 +

(︃
𝑢12

𝑢22

)︃
𝑘3
𝑘2

. (3.1)

It is possible to �nd a transformation 𝒰 such that for all frequencies 𝜈 on the resonance

𝑘1 : 𝑘2 : 𝑘3 one of the transformed frequencies is rational, without loss of generality

𝜈 ′
2 = 𝑛/𝑚 with 𝑛,𝑚 ∈ 𝑍 and gcd(𝑚,𝑛) = 1. In this new angle coordinates Θ′ all

orbits on the 2d torus densely �ll 𝑚 disjoint lines which are described by Θ′
1 ∈ [0, 2π)

and Θ′
2 = 2π · 𝑖/𝑚 + Θ0 with 𝑖 ∈ 𝑁 , 0 ≤ 𝑖 < 𝑚, and some orbit speci�c o�set

Θ0 ∈ [0, 2π). The previous arguments apply also if instead of a resonant 2d torus,

a 1d torus originating from such a resonant 2d torus with resonance 𝑘1 : 𝑘2 : 𝑘3, see

Sec. 3.2.2, is considered. Then the period𝑚 and the frequency 𝜈 ′
1 de�ne the longitudinal

frequency 𝜈𝐿 of this 1d torus. More precisely, the 1d torus consists of 𝑚 disjoint rings

and the frequency on one of these rings, that is with respect to the 𝑚-th iterate, is

𝜈𝐿 = 𝑚 · 𝜈 ′
1.

A suitable transformation is not uniquely de�ned, as there are four integers and the

sign of I to be determined and only two conditions for them. The condition 𝜈 ′
2 = 𝑛/𝑚

requires the 𝜈1 dependent term in Eq. (3.1) to vanish

𝑢21 =
𝑘1
𝑘2

𝑢22 =
𝑘1

𝑘2
𝑢22 (3.2)

with gcd(𝑘1, 𝑘2) = 1. Substituting 𝑢21 by Eq. (3.2) in the condition det𝒰 = I leads to

I = (𝑢11𝑘2 − 𝑢12𝑘1)
𝑢22

𝑘2
. (3.3)
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A simple ansatz ful�lling both equations Eqs. (3.2) and (3.3) is 𝑢22 = 𝑘2𝑙 with 𝑙 ∈ Z.
Choosing 𝑙 = 1 the remaining integers 𝑢11, 𝑢12, and the sign of I in Eq. (3.3) have to be

determined by brute force. For a unimodular transformation 𝒰 is found the period 𝑚

is determined by

𝑛

𝑚
=

𝑘3
𝑘2

𝑢22 =
I𝑘3

𝑢11𝑘2 − 𝑢12𝑘1
. (3.4)

Once a suitable transformation 𝒰 is determined, the frequency analysis can be performed

with respect to the resonance 𝑘1 : 𝑘2 : 𝑘3 for all 1d tori belonging to this resonance

and their surrounding 2d tori. Firstly, for each of these objects the frequencies (𝜈1, 𝜈2)

are obtained straightforward from frequency analysis. Then, the longitudinal frequency

𝜈𝐿 is computed by transformation. For 2d tori the second frequency is the next most

relevant frequency obtained by frequency analysis, which is linearly independent of

the other frequencies 𝜈1, 𝜈2, and 𝜈𝐿. Note that in time-continuous systems the normal

frequencies can be obtained by averaging out the resonant motion [184, 185]. If there

is a period 𝑚 > 1, the frequency analysis has to be performed with respect to the

𝑚-th iterate, analogous to the frequency analysis with respect to ee periodic orbits.

Note that there is a problem when straightforward frequency analysis is used for 2d

tori surrounding periodic objects, i.e. which consist of several disjoint but dynamically

connected 2d tori. When selecting regular orbits by a frequency criterion, see Eq. (2.17),

these frequencies seem to be less stable in case of such 2d tori. More precisely, in the

frequency space of the deeper class, which takes into account the period, stripes which

are depleted of 2d tori appear. This numerical artifact is avoided by taking into account

the period 𝑚 already for the frequency criterion, i.e. using only every 𝑚-th iterate for

the frequency analysis.

The junction of two resonances 𝑘𝑎
1 : 𝑘𝑎

2 : 𝑘𝑎
3 and 𝑘𝑏

1 : 𝑘𝑏
2 : 𝑘𝑏

3 is a point in frequency

space (𝜈1, 𝜈2) = (𝑛1/𝑚1, 𝑛2/𝑚2) with gcd(𝑛1,𝑚1) = gcd(𝑛2,𝑚2) = 1 and the period 𝑚

of the resulting periodic orbits is 𝑚 = lcm(𝑚1,𝑚2). The point (𝜈1, 𝜈2) is given by

𝜈1 =
𝑛1

𝑚1

= −𝑘𝑎
2𝑘

𝑏
3 − 𝑘𝑎

3𝑘
𝑏
2

𝑘𝑎
1𝑘

𝑏
2 − 𝑘𝑎

2𝑘
𝑏
1

𝜈2 =
𝑛2

𝑚2

=
𝑘𝑎
1𝑘

𝑏
3 − 𝑘𝑎

3𝑘
𝑏
1

𝑘𝑎
1𝑘

𝑏
2 − 𝑘𝑎

2𝑘
𝑏
1

(3.5)

with one exception. If the denominator is zero 𝑘𝑎
1𝑘

𝑏
2 − 𝑘𝑎

2𝑘
𝑏
1 = 0 and all the involved

coe�cients not, the two resonances are parallel. This expression works for any of the

in�nite resonances intersecting at a junction.
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3.3.3 Hierarchy of regular tori

Based on the organization of 2d tori around families of elliptic 1d tori and the di�erent

origins of such families, a hierarchy of classes can be described analogous to the island-

around-island hierarchy in 2d maps, see Sec. 2.4. In this section, the labeling of the

classes analogous to 2d maps [139] is discussed. The basic principle is that an object has

a deeper class or higher label than the object it is organized around. As an example the

labeling is applied to the previously discussed families and their associated phase-space

structures. The cases (𝛼1,𝛽,𝛼2) introduced in Sec. 3.3.1 are used to mark the distinct

possibilities. In addition, the meaning of trapping in a deeper class is discussed.

Consider an ee �xed point of class 𝑐. The two Lyapunov families originating from it

are class 𝑐+ 1 and the 2d tori organized around these families are class 𝑐+ 2. (𝛼1) The

periodic orbits present at each resonance junction within the set of 2d tori of class 𝑐+2

are also class 𝑐 + 2. The labeling can be continued at each of the ee periodic orbits of

class 𝑐 + 2 as for the ee �xed point of class 𝑐. (𝛽) For each of the resonances crossing

the set of class 𝑐 + 2 2d tori the associated families of elliptic and hyperbolic 1d tori

also are class 𝑐 + 2. The 2d tori organized around each of these families of elliptic 1d

tori are class 𝑐 + 3. The labeling can be continued for each class 𝑐 + 2 family of elliptic

1d tori as for one of the class 𝑐 + 1 Lyapunov families. (𝛼2) The ee and eh periodic

orbits that are present wherever the longitudinal frequency on the class 𝑐+ 1 Lyapunov

families crosses a rational value are class 𝑐 + 1. The labeling can be continued at the

ee periodic orbit as in case (𝛼1).

In the 4d map 𝐹SC the ee �xed point 𝑢⃗fp is considered to be class 0. Thus, the

families ℳfp
1 and ℳfp

2 are class 1, ℳres is class 2, the periodic orbit 𝑢⃗p is class 2, ℳ7

are class 3, the ee periodic orbit 𝑢⃗𝛼2 is class 1, and ℳ𝛼2 are class 2. As predicted

the families ℳres, ℳ7, and ℳ𝛼2 represent a deeper class than ℳfp
1 and ℳfp

2 . Note

the consistency of the labeling. For instance, the family ℳ𝛼2
2 can be considered both a

Lyapunov family of the ee periodic orbit 𝑢⃗𝛼2 and the family of the resonance 7 : 0 : 2.

In both interpretations ℳ𝛼2
2 is class 2.

As mentioned at the end of Sec. 3.2.2, the hierarchy of hyperbolic 1d tori is neglected

for brevity, but the labeling works analogous. In particular, since trapping of chaotic

orbits should refer to the trapping at regular structures, trapping in a deeper class

denotes in the following chapters trapping at the elliptic structures of the deeper class.

For example, trapping in the deeper class of a junction means trapping around the

ee periodic orbit of the junction. Note the peculiarity of the proposed labeling in 4d

maps: As presented in Secs. 4.4 and 4.5 an orbit within a sticky region of class 𝑐 can

get trapped in class 𝑐 + 1 of a resonance channel or class 𝑐 + 2 of a resonance junction.
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For instance, a trapped orbit in the �rst sticky region of 𝐹SC, i.e. at the central island,

the outer ring, or the top tower, is class 2 like the KAM tori and can get trapped at the

resonance −1 : 3 : 0, i.e. at the 2d tori surrounding ℳres, becoming class 3 or at the

junction corresponding to 𝑢⃗p, i.e. at the 2d tori surrounding ℳ7, becoming class 4.

3.4 Bifurcations of families of elliptic 1D tori

After having established the origin and hierarchy of the families of 1d tori, it remains

to discuss the features which occur along these families due to crossing resonances.

According to Ref. [186] these features are explained by bifurcations of 1d tori. In this

section, only some details of this joint work with Franziska Onken and co-workers [189]

are outlined in order to establish the following: The horseshoe which is relevant for the

power-law trapping in the 4d map 𝐹SC is the deeper class of the resonance 3 : 1 : 1.

In Ref. [186] it is explained how features of the families of elliptic 1d tori, including

gaps, bends, and branches, see Fig. 3.1, are due to bifurcations of the families caused by

crossing resonances. The families cross resonances since their normal and longitudinal

frequencies vary smoothly along the families, e.g. seeℳfp
1 andℳfp

2 in Fig. 3.1(b). While

bifurcations are usually studied under parameter variation, this crossing of resonances

allows to observe all stages of a bifurcation in a single phase space where the longitudinal

frequency of the elliptic 1d tori plays the role of the bifurcation parameter. Using

2d projections of details of the 3d phase-space slices the remarkable resemblance of

these bifurcations with bifurcations in 2d maps is shown, which is in agreement with

analytical predictions [158,159,161]. In 2dmaps the order |𝑚| of the resonance 𝜈 = 𝑛/𝑚

determines the type of bifurcation, like weak bifurcations |𝑚| ≥ 5, touch-and-go cases

|𝑚| ∈ {4, 3}, period-doubling |𝑚| = 2, and saddle-node bifurcations |𝑚| = 1. In 4d

maps the coe�cient |𝑚𝑁 | of the normal frequency of the resonance 𝑚𝐿𝜈𝐿 + 𝑚𝑁𝜈𝑁 = 𝑛

determines similar types of bifurcation. The di�erent values of |𝑚𝑁 | cause characteristic
features in frequency space and phase space, e.g., branches |𝑚𝑁 | ≥ 3, gaps |𝑚𝑁 | ∈ {2, 0}
and bends |𝑚𝑁 | = 1. In contrast to 2d maps the special case 𝑚𝑁 = 0 is possible, see

Sec. 3.2.2. This bifurcation is the only type possible for hyperbolic 1d tori as they have

a Lyapunov exponent instead of a normal frequency.

In Ref. [186] it is also shown how the branches of a bifurcation, i.e. the families of

hyperbolic and elliptic 1d tori, are the skeleton of the corresponding resonance channel.

In particular, the 1d tori remaining from the break-up of 2d tori with a particular

resonance as reviewed in Sec. 3.2.2 coincide with the branches from the corresponding

bifurcation of the family of elliptic 1d tori. These two di�erent perspectives on the

branches explains the relations found between the elliptic branch and the hyperbolic
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counterpart, see Sec. 3.2.3: The pairs of elliptic and hyperbolic 1d tori with same

longitudinal frequency and similar actions are explained in terms of the break-up of 2d

torus, while the match of their normal frequency and Lyapunov exponent is explained

by the linearized dynamics around the bifurcation point.

Bifurcations of type |𝑚𝑁 | = 1 are peculiar in terms of the frequency analysis on their

deeper class [189], see also Sec. 3.3.2. For instance the prominent bend of the family

ℳfp
1 seen in Fig. 3.1(a) is caused by the resonance 3 : 1 : 1 which has |𝑚𝑁 | = 1, see

Fig. 3.1(b). The bended part of ℳfp
1 coincides to the remnant elliptic 1d tori resulting

from the break-up due to the resonance. Thus, the 2d tori attached to the bended

part of ℳfp
1 belong to the deeper class of that resonance. However, they appear in

the frequency space in Fig. 3.1(b) consistently with the close-by 2d tori of the higher

class. This deeper class of the resonance 3 : 1 : 1 is denoted horseshoe in Sec. 2.6 and

relevant for the trapping in the map 𝐹SC. This resonance also explains the necessity

of subtracting all harmonics up to order three, see Sec. 2.6.2, in order to resolve this

region in frequency space.

3.5 Coupled twist maps

Based on the knowledge about the organization of the regular structures in a generic 4d

symplectic map, as presented in the previous sections, a designed map is proposed in

this section. This designed map consists of two 2d twist maps which are conveniently

coupled. This 4d map exhibits all relevant characteristics of a generic system but at

the same time has simple coordinates, which should allow for an accurate measure-

ment of the chaotic transport. After an introduction of the map and a discussion of

the parameters chosen, the statistics of Poincaré recurrences are presented along with

trapped orbits in the frequency space. As for the generic map 𝐹SC the statistics decay

with a relatively straight power law and the chaotic orbits are trapped at the surface of

the regular structures. The transport of the majority of the trapped orbits resembles

the transport in the sticky region of the generic map 𝐹SC, see Sec. 2.6.3. However, in

Sec. 3.5.1 a region is identi�ed which, due to the peculiar coupling, exhibits a distinctly

di�erent type of trapping mechanism. This mechanism is explained in Sec. 4.3 to be

related to the trapping along the level hierarchy in 2d maps.
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The designed map consists of two 2d twist maps with action�angle coordinates

(𝐼𝑘,Θ𝑘) for 𝑘 = 1, 2 and linear functions 𝜈0
𝑘(𝐼𝑘),

𝐼1 = 𝐼1 Θ̃1 = Θ1 + 2𝜋𝜈0
1(𝐼1)

𝐼2 = 𝐼2 Θ̃2 = Θ2 + 2𝜋𝜈0
2(𝐼2)

(3.6)

leading to intermediate coordinates (𝐼𝑘, Θ̃𝑘). They are symplectically coupled in position�

momentum coordinates 𝑝𝑘 =
√︀

2𝐼𝑘 cos Θ̃𝑘, 𝑞𝑘 =
√︀

2𝐼𝑘 sin Θ̃𝑘, via,

𝑝′1 = 𝑝1 − 𝜉
d𝑉 (𝑞1, 𝑞2)

d𝑞1
𝑞′1 = 𝑞1

𝑝′2 = 𝑝2 − 𝜉
d𝑉 (𝑞1, 𝑞2)

d𝑞2
𝑞′2 = 𝑞2

(3.7)

with a coupling potential 𝑉 (𝑞1, 𝑞2) = 𝑞31𝑞
3
2 and a coupling strength 𝜉. Instead of the

straightforward version expressed by Eqs. (3.6) and (3.7), a symmetric application of

the coupling is chosen analogous to the half-kick version of the standard map. That is

starting with an initial condition (𝐼1, 𝐼2,Θ1,Θ2) the corresponding position�momentum

coordinates (𝑝1, 𝑝2, 𝑞1, 𝑞2) are computed and mapped according to Eq. (3.7) using half

the coupling strength 𝜉/2 leading to a point (𝑝′′1, 𝑝
′′
2, 𝑞

′′
1 , 𝑞

′′
2). Then the twist according to

Eq. (3.6) is applied to the corresponding action�angle coordinates (𝐼 ′′1 , 𝐼
′′
2 ,Θ

′′
1,Θ

′′
2) lead-

ing to (𝐼1, 𝐼2, Θ̃1, Θ̃2). Finally, the corresponding coordinates (𝑝1, 𝑝2, 𝑞1, 𝑞2) are mapped

again according to Eq. (3.7) using the other half of the coupling strength 𝜉/2 leading to

a point (𝑝′1, 𝑝
′
2, 𝑞

′
1, 𝑞

′
2). The �nal action�angle coordinates are then 𝐼 ′𝑘 = (1/2)

√︀
𝑞′2𝑘 + 𝑝′2𝑘

and Θ′
𝑘 = arctan(𝑝′𝑘/𝑞

′
𝑘). In the following, this map is referred to as coupled twist maps

𝐹Twist with the parameters chosen in the following.

The coupling potential 𝑉 (𝑞1, 𝑞2) is chosen such that the planes 𝐼1 = 0 and 𝐼2 = 0

correspond to the uncoupled twist maps of Eq. (3.6) independently of any parameters.

The exponents in the coupling potential are chosen to be three, which is the smallest

exponent for which also the linearization around the uncoupled planes is independent

of the coupling. This implies three major advantages of the map 𝐹Twist, which are

independent of the coupling strength 𝜉. Firstly, there is always an ee �xed point at

𝐼1 = 𝐼2 = 0 and the uncoupled planes 𝐼1 = 0 and 𝐼2 = 0 represent its two Lyapunov

families. Secondly, the action�angle coordinates of the uncoupled twist maps are a

reasonable �rst approximation of the action�angle coordinates of the coupled maps

even away from this Lyapunov families, see also Appendix A.5. Thirdly, the frequencies

(𝜈1, 𝜈2) of the regular tori are controllable: If one of the actions 𝐼1 or 𝐼2 is small, their

frequencies are directly given by the frequencies 𝜈0
1(𝐼1), 𝜈0

2(𝐼2) of the uncoupled twist
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Figure 3.6: Frequencies of regular tori of the map Eq. (3.6)–Eq. (3.8) for different 𝜉 shown
in gray. Out of 107 initial points started uniformly in the phase space (𝐼1, 𝐼2,Θ1,Θ2) ∈
[0, 10)2 × [−π,π)2 there are 𝑁reg regular ones according to Eq. (2.17). The uncoupled
twist maps Eq. (3.8) are indicated as dashed lines.
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maps. In Fig. 3.6 the frequency space of the map 𝐹Twist with regular tori in gray is

shown for di�erent coupling strengths 𝜉. In all cases the same linear functions 𝜈0
𝑘(𝐼𝑘)

are chosen

𝜈0
1(𝐼1) = (

√
5 − 1)/2 + 𝐼1/100 𝜈0

2(𝐼2) =
√

3 − 1 + 𝐼2/50 (3.8)

such that 𝜈1 < 𝜈2 is guaranteed and the frequencies are away from the resonance

−1 : 1 : 0. The frequencies corresponding to either 𝐼1 = 0 or 𝐼2 = 0 are indicated

by two dashed lines. The edges in frequency space corresponding to the Lyapunov fam-

ilies nicely coincide with these dashed lines. In order to de�ne Poincaré recurrences the

phase space is chosen to be con�ned to (𝐼1, 𝐼2,Θ1,Θ2) ∈ [0, 10)2× [−π,π)2. Thus, there

are no regular tori at and beyond the upper and right borders of the frame shown in

Fig. 3.6.

The frequency spaces of 𝐹Twist in Fig. 3.6 look particularly simple in comparison

with the frequency space for the generic map 𝐹SC in Fig. 3.1(b). Nevertheless, all

the generic features are present such as a chaotic region and resonance channels with

an embedded part ℰ and an outer part 𝒪. More precisely, with increasing coupling

strength 𝜉 the fraction of regular tori decreases and they get more con�ned to the

vicinity of the Lyapunov families. In this sense the coupling also acts as a perturbation

of the integrable twist maps. For 𝜉 ≥ 1/500 folds become visible, i.e. regular tori with

frequencies on the other side of the Lyapunov families. Such folds destroy the uniqueness

of the frequencies, see also Appendix A.5. In order to both avoid them and ensure a

su�ciently large chaotic sea, the coupling strength 𝜉 = 1/500 is chosen. The Poincaré

recurrences are obtained for 1011 initial conditions with uniformly distributed random

actions 𝐼1, 𝐼2 ∈ [4.8, 9.2] and angles Θ1,Θ2 ∈ [−π,π). The resulting 20775 chaotic orbits

with recurrence times 𝑇 > 106 are shown in frequency space in Fig. 3.7 according to

Sec. 2.6.2. Some important resonances are indicated with orange lines. The chaotic

orbits are trapped at the surface of the regular region analogous to the observations for

the two coupled standard maps 𝐹SC, see Sec. 2.6. Moreover, the Poincaré recurrence

statistics for the map 𝐹Twist, shown in Fig. 3.9 in the next section, also exhibit a relatively

straight power law.

3.5.1 Sticky regions

In this section, two regions A and B with di�erent types of chaotic transport are dis-

tinguished within the coupled twist maps 𝐹Twist, cf. Figs. 3.8(a) and 3.8(b). The region

B exhibits the same characteristics as the sticky region of the generic map 𝐹SC. It is

explained how the region A resembles a 3d map due to the coupling. The Poincaré re-
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Figure 3.7: Trapped orbits of the map 𝐹Twist in frequency space with the iteration time
𝑡 ∈ [0, 𝑇 > 106] encoded in color for each of the 20775 orbits, as shown in Fig. 2.4(b) for
a single orbit. For comparison the regular tori from Fig. 3.6(c) are shown in gray. Some
important resonances 𝑚1 : 𝑚2 : 𝑛 are indicated as orange lines.

currence statistics for the individual regions exhibits in both cases straight power laws

similar to the statistics of the system, but region B is the dominant sticky region. The

trapping mechanism for region A is sketched later in Sec. 4.3.

In Figs. 3.8(a) and 3.8(b) two disjoint regions of the frequency space in Fig. 3.7 are

shown which are denoted in the following as region A and region B, respectively. The

transport between these two regions is observed to be negligible. For both regions

the chaotic orbits are trapped at the surface of the regular region represented by the

regular tori in gray. However, the trapped orbits of region A in Fig. 3.8(a) seem to

be almost exclusively transported in the direction of 𝜈1, while the second frequency

𝜈2 hardly changes for these orbits. Note that since the surface of the regular region

in Fig. 3.8(a) runs relatively parallel to the 𝜈2-axis, the transport in 𝜈1 coincides with

transport towards or away from the regular region. On the contrary, for region B in

Fig. 3.8(b) the chaotic orbits are transported relatively fast along the surface of the

regular region and much slower away from this region, as seen by the orientation of the

colored bands. In this sense, region B resembles the sticky region of the horseshoe of

the generic map 𝐹SC, see Sec. 2.6. The di�erence between the two regions shown in

Fig. 3.8 is supported by the observation, that the most relevant resonances a�ecting the

trapped orbits run relatively parallel to the 𝜈2-axis for region A, cf. Fig. 4.9(b), and

somewhat away from the 𝜈2-axis for region B.
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(a) Region A: 𝜈2 > 0.88
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(b) Region B: 0.77 < 𝜈2 ≤ 0.88

Figure 3.8: Sticky regions of the map 𝐹Twist in frequency space. (a) and (b) are mag-
nifications of Fig. 3.7 illustrating region A and region B, respectively. While the trapped
orbits in (b) show the generic behavior known from the horseshoe of the two coupled stan-
dard maps 𝐹SC, in (a) the orbits mainly propagate along 𝜈1 with 𝜈2 being approximately
constant.
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The region A is a special case due to the chosen coupling, while region B can be

considered as a generic sticky region. The transport in region A can be understood

from the kick term of Eq. (3.7) which maps (𝑝1, 𝑝2, 𝑞1, 𝑞2) to (𝑝′1, 𝑝
′
2, 𝑞

′
1, 𝑞

′
2)

𝛿𝑝𝑗 = 𝑝′𝑗 − 𝑝𝑗 = −𝜉
d𝑉 (𝑞1, 𝑞2)

d𝑞𝑗
𝛿𝑞𝑗 = 𝑞′𝑗 − 𝑞𝑗 = 0

with 𝑗 ∈ {1, 2}. In terms of one of the original uncoupled twist maps, the kick 𝛿𝑝𝑗 is

a non-integrable propagation changing the action 𝐼𝑗 and thus roughly translates to a

transport 𝛿𝜈𝑗 ∼ 𝛿𝑝𝑗 in the frequency 𝜈𝑗. For a coupling potential 𝑉 (𝑞1, 𝑞2) = 𝑞𝑚1
1 𝑞𝑚2

1

this reads

𝛿𝑝𝑗 = 𝑝′𝑗 − 𝑝𝑗 = −𝜉 ·𝑚𝑗
𝑉 (𝑞1, 𝑞2)

𝑞𝑗

and thus it follows for the case |𝑞1| ≪ |𝑞2|

|𝑞1| ≪ |𝑞2| ⇔ 1

|𝑞1|
≫ 1

|𝑞2|
⇒ |𝛿𝑝1| ≫ |𝛿𝑝2| ⇒ |𝛿𝜈1| ≫ |𝛿𝜈2| .

In region A the condition |𝑞1| ≪ |𝑞2| holds on average as 𝐼1 ≪ 𝐼2. An examination of

the average ratio |𝛿𝑝1/𝛿𝑝2| on the regular tori of each region con�rms this, but is not

shown here. This explains the very small transport in 𝜈2. A model for the transport

in region A would be the 3d map in the coordinates (𝐼1,Θ1,Θ2) resulting from setting

𝛿𝑝2 = 0 in Eq. (3.7) as considered in Sec. 4.3. Note that the reverse situation 𝐼1 ≫ 𝐼2

is observed for trapped orbits with 𝜈1 > 0.67 in Fig. 3.7.

The Poincaré recurrence statistics for the map 𝐹Twist are obtained from two di�erently

large sets of initial conditions both with uniformly distributed random actions 𝐼1, 𝐼2 ∈
[4.8, 9.2] and angles Θ1,Θ2 ∈ [−π,π). Note that the initial region is chosen di�erently

from the exit region Γ = {(𝐼1, 𝐼2,Θ1,Θ2) : 𝐼1, 𝐼2 > 10} for numerical advantages. While

this technically means that escape times rather than recurrences 𝑇 are computed, the

latter notion is used in the following to avoid confusion when comparing the maps

𝐹Twist and 𝐹SC. For each trapped orbit 𝑥(𝑡) with very long recurrence time 𝑇 the two

frequencies (𝜈1, 𝜈2) of the middle segment {𝑥(𝑡𝑖)} with 𝑡𝑖 ∈ [(𝑇 −∆𝑡)/2, (𝑇 + ∆𝑡)/2] are

computed. These frequencies are used to assign each of these chaotic orbits to the region

they are trapped at. The �rst set are 1011 initial conditions and for the resulting 20775

chaotic orbits with recurrence times 𝑇 > 106 the two frequencies of the middle segment

are computed. The second set are 1.8 · 1011 initial conditions and for the resulting

1652930 chaotic orbits with recurrence times 𝑇 > 4 · 104, including 37777 orbits with

𝑇 > 106, the two frequencies of the middle segment are computed. As suggested by
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Figure 3.9: Statistics of Poincaré recurrences 𝑃 (𝑇 ) for the map 𝐹Twist. The overall
statistics is shown in blue. Orbits with 𝑇 > 4 · 104 are assigned to regions A, B, and C
giving corresponding statistics shown in red, green, and bright blue. The statistics for
the individual sticky regions are normalized according to their share of all trapped orbits,
i.e. their sum gives the overall statistics. The gray line behind the blue one is the overall
statistics including 25 orbits which are most likely regular, see text. For the statistics a
total of 2.8 ·1011 chaotic orbits started uniformly in (𝐼1, 𝐼2,Θ1,Θ2) ∈ [4.8, 9.2]2× [−π,π)2

are used with the exit region Γ = {(𝐼1, 𝐼2,Θ1,Θ2) : 𝐼1, 𝐼2 > 10}, see text. For comparison
the gray, dashed line represents a power-law 𝑃 (𝑡) ∼ 𝑡−𝛾 , with 𝛾 = 1.2.

Fig. 3.8, orbits with 𝜈2 > 0.88 are considered to be trapped in region A and orbits with

0.77 < 𝜈2 ≤ 0.88 in region B and the region with 𝜈2 ≤ 0.77 is denoted as region C. Note

that for the �rst set of initial conditions eight orbits do not recur within 109 iterations

and for the second set 17 orbits. The resulting statistics of Poincaré recurrences 𝑃 (𝑇 )

are presented in Fig. 3.9.

In Fig. 3.9 the statistics for the whole system are shown as gray line which is mostly

covered by a blue line. The gray line includes the not recurred orbits, while they are

ignored in case of the blue line. Without the not recurred orbits the statistics decays

with a relatively straight power law. The frequencies of almost all of the not recurred

orbits stay constant throughout 109 iterations with deviations less than 10−6 and are

thus considered to be regular tori within small regular islands which lie within the initial

region. Judging from the frequencies (𝜈1, 𝜈2), see Eq. (3.5), these islands result from

one of the junctions at (2/3, 5/6), (11/16, 13/16) and (115/174, 5/6). In the following,

the not recurred orbits are neglected. The statistics for the individual sticky regions
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are included with di�erent colors in Fig. 3.9. They are normalized according to their

share of all trapped orbits, i.e. for all times 𝑇 the sum of 𝑃 (𝑇 ) of the colored lines is

equal to 𝑃 (𝑇 ) of the blue line. The decay for all three regions resembles the overall

decay. However, the statistics for region B shown in green almost coincides with the

blue line, implying that this region is the dominant sticky region of the map 𝐹Twist.

The region A shown in red contributes the least to the overall statistics, but exhibits

a very straight power law. The remaining region C shown in blue contains regions of

both kind, i.e. with transport resembling the transport observed for region A or region

B. The majority of the transport in region C seems to be governed by the resonances

1 : 3 : 3, 0 : 4 : 3 and 3 : 0 : 2, see Fig. 3.7. No major transport between region A

and region C is observed. In conclusion, it is assumed that region A and region B are

su�cient to understand the fundamental transport in the coupled twist maps 𝐹Twist and

thus region C is ignored. Thus, for better resolution the frequency space is only shown

for 𝜈1 < 0.67 for the map 𝐹Twist in the following.



4 Transport and trapping

in 4D maps

Despite the importance of chaotic transport in the vicinity of regular structures many

fundamental questions about the nature of this transport in higher-dimensional systems

remain open. In particular, the mechanism of power-law trapping, while quite well

understood for 2d maps, is completely unknown for higher-dimensional systems. In the

preliminary work [72] this mechanism was traced back to sticky regions at the surface

of the regular structures. In this chapter, the chaotic transport within this sticky

region is shown to be organized by overlapping resonance channels. In particular, the

chaotic transport is decomposed into four basic processes: escape from one resonance

channel to another, trapping in a deeper class of hierarchy, transport at junctions of

resonance channels, and transport along resonance channels. The escape from one

resonance channel to another and the transport along the class hierarchy, discussed in

the previous chapter, are shown to be governed by partial barriers. While the class

hierarchy and resonance junctions turn out to be insigni�cant for the sticky region,

the transport between resonance channels provides, in special cases, a mechanism for

power-law trapping in higher-dimensional systems. However, the results suggest that the

trapping in the generic sticky regions is governed by the transport along the resonance

channels. A one-dimensional stochastic model of this transport including a drift along

the channel is proposed. In principle, this model can not only explain the power-law

trapping, but the proposed drift has general implications for the transport in the Arnold

web. This transport is usually considered to be purely di�usive. The drift and the

stochastic model have not been veri�ed yet as the measurement of the transport along

a resonance channel turned out to be extremely di�cult. Nevertheless, the coupled

twist maps 𝐹Twist introduced in the last chapter appear to be a promising model to

quantify this transport. All results presented in the following sections for this map

are consistent with the corresponding results for the map 𝐹SC, which demonstrates the

generic dynamics of this designed system 𝐹Twist.

In Sec. 4.1 it is shown that several sticky regions with di�erent power laws exist for

the map 𝐹SC, but that the horseshoe is the dominant sticky region. Based on the coarse
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quanti�cation of transport properties within a sticky region open resonance channels are

found to organize the chaotic transport in the sticky regions. In Sec. 4.2 this transport

is decomposed into the four basic processes using time�frequency plots and signatures

of partial barriers are identi�ed. In Sec. 4.3 a possible mechanism for the power-law

trapping based on the transport from one resonance channel to another is sketched.

While the trapping in a special region of the twist map 𝐹Twist is explained by this

mechanism, it is ruled out for the generic sticky regions of 𝐹Twist and 𝐹SC. Likewise,

in Secs. 4.4 and 4.5 trapping in the deeper classes of resonance channels and junctions

is demonstrated to be insu�cient as origin of the overall power-law decay. However,

the escape statistics for the deeper classes exhibit power-law decays as expected from

the self-similarity. Instead, in Sec. 4.6 a one-dimensional stochastic process with drift

modeling the transport along a single resonance channel is proposed which generates

the power-law decay. It is derived how such a drift may originate from the change of the

volume of the stochastic layer along the resonance channel. This volume is computed

for the resonance 0 : 6 : 5 of the map 𝐹Twist and the measurement of the drift and

di�usion coe�cients is discussed in Appendix A.1.

4.1 Sticky region and resonance channels

Chaotic orbits in symplectic 4d maps get trapped in so called sticky regions at the

surface of the regular structures, as discussed in Sec. 2.6. Since di�erent regular regions

can be distinguished as discussed in Sec. 2.6.2 and chapter 3 also their attached sticky

regions should be di�erentiated. In fact, it is observed that trapped orbits only visit

one of these sticky regions before returning to the chaotic sea [72]. In this section,

individual power-law decays for the sticky regions of the two coupled standard maps

𝐹SC are obtained by categorizing trapped orbits via frequency analysis. The results

justify the assumption of Ref. [72] that the horseshoe is the most relevant sticky region

of the system. A coarse grained inspection of the transport within the sticky regions of

𝐹SC and the coupled twist maps 𝐹Twist reveals that it is organized by the open resonance

channels which pervade the sticky regions. Analytic results for the number and area of

resonance channels of di�erent order are presented in Appendix A.3.

First, the Poincaré recurrences of 𝐹Twist are obtained as described in Sec. 2.6. Then,

these recurrences are categorized analogously to the recurrences of the coupled twist

maps 𝐹SC in Sec. 3.5.1: For each orbit 𝑥(𝑡) of the 3 · 106 trapped orbits with recurrence

times 𝑇 > 104, see Sec. 2.6, the two frequencies of the middle segment 𝑡 ∈ [(𝑇 −
∆𝑡)/2, (𝑇 +∆𝑡)/2] are computed and the orbit is assigned to the regular region which is

closest to this segment in frequency space. The detailed mapping from areas in frequency
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(c) Zoom of (a) with 𝑃 (𝑇 ) of sticky regions

Figure 4.1: Statistics of Poincaré recurrences 𝑃 (𝑇 ) for the sticky regions of the map
𝐹SC, analogous to Fig. 3.9. (c) Magnification as indicated by the black box in (a) with
the overall statistics shown as thick, blue line and the statistics associated with individual
regular regions shown as thin, colored lines. The statistics for the individual regions are
normalized according to their share of all trapped orbits, i.e. their sum gives the overall
statistics. The individual statistics are colored like their associated regular region in (b).
The thin, gray line corresponds to orbits which could not be assigned. Only the 3354864
chaotic orbits with 𝑇 > 4 ·104 are assigned to individual regions according to their middle
frequency, see Appendix A.7. The exponents for the individual power laws 𝑃 (𝑇 ) ∼ 𝑇−𝛾

range from 𝛾 ≈ 1.6 for the region around the resonance −1 : 3 : 0 (green) to 𝛾 ≈ 1.15 for
the outer ring (black).
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space to regular regions is listed in Appendix A.7. As in Sec. 3.5.1, the transport between

the sticky regions of most of these di�erent regular regions is observed to be small. Thus,

it is assumed that each chaotic orbit is only trapped in a single region before returning

to the chaotic sea. The resulting statistics of Poincaré recurrences 𝑃 (𝑇 ) are presented

in Fig. 4.1. Figure 4.1(a) shows again the statistics for the whole system as blue line.

Figure 4.1(c) is a magni�cation of this statistics for longer times 𝑇 as indicated by the

black box in Fig. 4.1(a). The statistics for the individual sticky regions are included

with di�erent colors in Fig. 4.1(c). They are normalized according to their share of all

trapped orbits, i.e. for all times 𝑇 the sum of 𝑃 (𝑇 ) of the thin colored lines is equal to

𝑃 (𝑇 ) of the thick blue line. The colors of individual sticky regions in Fig. 4.1(c) match

the colors of the associated regular regions in the frequency space in Fig. 4.1(b). These

regions match the ones introduced in Sec. 2.6.2, except here it is further distinguished

between the horseshoe and the inner end of the horseshoe, shown in bright blue and pink

respectively in Fig. 4.1(b). Note that a gallery of chaotic orbits trapped at the di�erent

regular regions can be found in Ref. [72], Section 5.2. The gray line in Fig. 4.1(c)

represents all trapped orbits which could not de�nitely be assigned to one of the big

regular regions for various reasons. The share of these orbits decreases rapidly and can

be neglected for longer times.

Figure 4.1(c) demonstrates that up to the considered time 𝑇 < 109 the statistics

of Poincaré recurrences of 𝐹SC, shown as thick blue line, is dominated by the sticky

region at the horseshoe, shown in bright blue. The next most important contribution

comes from the adjacent inner end of the horseshoe, shown in pink. All sticky regions in

Fig. 4.1(c) exhibit power-law decays 𝑃 (𝑇 ) ∼ 𝑇−𝛾 each with a slightly di�erent exponent

𝛾. For instance the outer ring, shown in black in Fig. 4.1(b), displays a slower decay

of 𝑃 (𝑇 ) than the horseshoe and thus might well be the dominant sticky region for

much longer times. In contrast, the region around the resonance −1 : 3 : 0 has for

shorter times 𝑇 ∼ 105 . . . 106 a larger share of the overall decay than the outer ring but

decays faster. While an explanation of the power-law decay in higher-dimensional maps

ultimately has to address these di�erent exponents, the following investigations for 𝐹SC

will focus on the dominant sticky region of the horseshoe.

In Ref. [72] the transport within the sticky region of the horseshoe is assumed to be

locally a superposition of two stochastic processes in frequency space, which are perpen-

dicular to each other, one roughly oriented along(↔) and the other away from(↕) the
surface of the regular structure. Using ensembles of initial conditions within the sticky

region, a normal di�usion along and a subdi�usion away from the regular structure is

found with the spread along being much more rapid 𝜎2
↔/𝜎2

↕ ≈ 100. Also a small drift

away from the regular structure is detected. However, these measurements use a single



63

manually estimated orientation of the stochastic processes and local distortions by the

present open resonance channels are neglected.

In order to estimate the in�uence of the open resonance channels the distribution of

several entities are obtained from the frequencies of the orbits which are trapped at the

horseshoe. That is, for each of these orbits 𝑥𝑖(𝑡) with 𝑖 ∈ [0, 𝑁horseshoe), 𝑁horseshoe =

61600, 𝑡 ∈ [0, 𝑇𝑖] and Poincaré recurrence times 105 ≤ 𝑇𝑖 ≤ 109 the corresponding

frequencies (𝜈𝑖,1, 𝜈𝑖,2)(𝑡) with 𝑡 ∈ [0, 𝑇𝑖) are computed, see Sec. 2.6.2. This gives a set

Ωhorseshoe = {(𝜈𝑖,1, 𝜈𝑖,2)(𝑡)}𝑖,𝑡 of |Ωhorseshoe| ≈ 5 ·106 frequency pairs. The frequency space

is divided into a grid of squares of width ∆𝜈 = 5 · 10−6 and for each square containing

the frequency pairs

Ω𝜈1,𝜈2 = {(𝜔1, 𝜔2) : 𝜔𝑗 ∈ (𝜈𝑗 − ∆𝜈/2, 𝜈𝑗 + ∆𝜈/2] , 𝑗 = 1, 2} ∩ Ωhorseshoe

the density of the frequency pairs

𝜌(𝜈1, 𝜈2) =
|Ω𝜈1,𝜈2|

|Ωhorseshoe|
(4.1)

is calculated. Considering that each frequency pair (𝜈𝑖,1, 𝜈𝑖,2)(𝑡) ∈ Ωhorseshoe represents

an orbit which escapes to the chaotic sea after 𝑇𝑖 − 𝑡 + ∆𝑇 iterations with the �nite

resolution ∆𝑇 ∈ [0,∆𝑡), the average escape time is calculated as

𝑇 (𝜈1, 𝜈2) =
1

|Ω𝜈1,𝜈2|
∑︁

(𝜈𝑖,1,𝜈𝑖,2)(𝑡)∈Ω𝜈1,𝜈2

(𝑇𝑖 − 𝑡) . (4.2)

Finally, the eigenvalues of the 2 × 2 covariance matrix Cov𝑘,𝑙(𝜈1, 𝜈2) after one iteration

𝑡 ↦→ 𝑡 + ∆𝑡 of the frequency pairs

Cov𝑘,𝑙(𝜈1, 𝜈2) = E[𝜈𝑖,𝑘(𝑡 + ∆𝑡) · 𝜈𝑖,𝑙(𝑡 + ∆𝑡)](𝜈𝑖,1,𝜈𝑖,2)(𝑡)∈Ω𝜈1,𝜈2
−

E[𝜈𝑖,𝑘(𝑡 + ∆𝑡)](𝜈𝑖,1,𝜈𝑖,2)(𝑡)∈Ω𝜈1,𝜈2
· E[𝜈𝑖,𝑙(𝑡 + ∆𝑡)](𝜈𝑖,1,𝜈𝑖,2)(𝑡)∈Ω𝜈1,𝜈2

are calculated for each square of the grid, where the larger eigenvalue corresponds to

𝜎2
↔(𝜈1, 𝜈2) and the smaller one to 𝜎2

↕(𝜈1, 𝜈2). The results are shown in the frequency

space in Figs. 4.2 and 4.3 where their values are encoded as color and the regular tori

are included in gray. Squares with |Ω𝜈1,𝜈2| < 5 or in the case of the density |Ω𝜈1,𝜈2 | = 0

are neglected and left white.

The distribution of densities 𝜌(𝜈1, 𝜈2) in Fig. 4.2(a) shows pronounced peaks along

several lines which match resonance lines. For comparison a set of the recognizable

resonances are indicated by the orange dashed lines in the background. Going away
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(a) Density 𝜌(𝜈1, 𝜈2) ∈ [4 · 10−7, 2 · 10−3]
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(b) Average escape time 𝑇 (𝜈1, 𝜈2) ∈ [5.5 · 103, 7.9 · 107]

Figure 4.2: Distribution of the density 𝜌 and the average escape time 𝑇 in frequency
space for the 61600 chaotic orbits trapped at the horseshoe with 𝑇 ≥ 105, i.e. a total of
|Ωhorseshoe| ≈ 5 · 106 frequency pairs. The values are encoded according to the color bars
with limiting values given in the subcaptions. The resolution of the grid is Δ𝜈 = 5 · 10−6

and grid points are left white if less than (a) 1 or (b) 5 frequency pairs are at the grid point.
For comparison the regular tori from Fig. 2.4(b) are shown in gray and some resonances are
indicated in the background as orange, dashed lines, i.e. in (b) the resonance 29 : −9 : 6.
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(a) Large eigenvalue 𝜎2
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(b) Small eigenvalue 𝜎2
↕(𝜈1, 𝜈2) ∈ [4 · 10−21, 7 · 10−6]

Figure 4.3: Distribution of the eigenvalues 𝜎2
↔, 𝜎2

↕ of the covariance matrix in frequency

space, analogous to Fig. 4.2(b). Note that for a majority of the grid points the ratio
𝜎2
↔/𝜎2

↕ ≈ 100 is obtained which matches the observations in Ref. [72].
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from any resonance the density decays rapidly as demonstrated by the logarithmic

color scale in Fig. 4.2(a). Exceptions are the vicinity of some resonance junctions where

cones of higher density exist between two of the intersecting resonances. This may

be due to a strong overlap of these resonance channels at the junction. The highest

values of density are observed right at the junctions but the peaks are so con�ned to

the point of their junction that they are hardly visible in Fig. 4.2(a). An inspection

in phase space of the orbit segments whose frequencies are located at junctions by 3d

projections con�rms that these points surround ee periodic orbits. The high density

at resonances is partially caused by the fact that due the periodicity a large region of

the phase space is mapped to a single point by frequency analysis. Nevertheless, the

distribution of densities demonstrates that chaotic orbits within the sticky region can

be assigned to open resonance channels or junctions at almost all times.

The rapid decay of density away from resonances along with the requirement of at

least �ve frequency pairs per square for the entities 𝑇 (𝜈1, 𝜈2), 𝜎2
↔(𝜈1, 𝜈2), and 𝜎2

↕(𝜈1, 𝜈2)

causes large white gaps around resonances in the remaining sub�gures of Figs. 4.2

and 4.3. The distribution of escape times 𝑇 (𝜈1, 𝜈2) in Fig. 4.2(b) shows almost no signs

of resonances apart from these gaps. There is a peak of escape times at the resonance

29 : −9 : 6, which is inserted as orange dashed line in Fig. 4.2(b), but otherwise the

escape time decreases monotonously going away from the regular structure. This is

consistent with the observation that the last frequency pair before the recurrence of any

trapped orbit is situated in the area of the lowest escape times or even a further away

from the regular structure. This area also hosts the �rst frequency pairs which are close

to the regular structure. In conclusion, Fig. 4.2(b) demonstrates that the chaotic orbits

enter and exit the vicinity of the horseshoe away from the regular structure and tend

to get closer to it when they are trapped for longer times.

The eigenvalues 𝜎2
↔(𝜈1, 𝜈2) and 𝜎2

↕(𝜈1, 𝜈2) of the covariance matrix in Fig. 4.3 should

give some idea about the local stochastic transport in frequency space in the following

sense. If the transport can be locally described by the superposition of two independent

1d di�usion processes which are perpendicular to each other, it is straightforward to

prove that in the limit of in�nite sample size the eigenvalues of the above de�ned

covariance matrix are the variances resulting from these processes after one time step.

The corresponding eigenvectors are oriented along the direction of the corresponding

di�usion process. It turns out that the eigenvectors of the larger eigenvalue 𝜎2
↔(𝜈1, 𝜈2)

usually point along regular structures as expected from the previous observations of

Ref. [72]. The only exception are again the vicinity of some junctions, mostly on the

resonance 15 : −5 : 5, where the directions of eigenvectors are spatially very unstable.

The smaller eigenvalue 𝜎2
↕(𝜈1, 𝜈2) increases away from the regular structure without
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very pronounced signatures of resonances. In contrast, the larger eigenvalue 𝜎2
↔(𝜈1, 𝜈2)

additionally exhibits some drops appearing in bright blue around resonances close to

the regular structure in particular at larger 𝜈1. Thus, while the overall escape 𝑇 (𝜈1, 𝜈2)

from the sticky region seems to be independent of resonance channels, the local, short

time transport is organized by them.

The distributions for the entities 𝜌(𝜈1, 𝜈2), 𝑇 (𝜈1, 𝜈2), 𝜎2
↔(𝜈1, 𝜈2), and 𝜎2

↕(𝜈1, 𝜈2) are

also computed for the coupled twist maps 𝐹Twist with width ∆𝜈 = 10−4, based on the

𝑁Twist = 20775 trapped orbits with Poincaré recurrence times 𝑇 ≥ 106 which lead to

|ΩTwist| ≈ 1.7 · 107 frequency pairs. The results are shown in Fig. 4.4. For region B,

the major sticky region, and largely for region C observations analogous to Figs. 4.2

and 4.3 can be made. The region A exhibits ungeneric behavior as expected and is not

discussed here.
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Figure 4.4: Distribution of 𝜌, 𝑇 , 𝜎2
↔, 𝜎2

↕ in the frequency space for the coupled twist maps

𝐹Twist, analogous to Figs. 4.2 and 4.3, based on the 20775 trapped orbits with 𝑇 ≥ 106,
i.e. a total of |ΩTwist| ≈ 1.7 ·107 frequency pairs. The resolution of the grid is Δ𝜈 = 10−4.
For comparison the regular tori from Fig. 3.7 are shown in gray while only a detail of
this frequency space is displayed. Note that for a majority of the grid points the ratio
𝜎2
↔/𝜎2

↕ ≈ 100 is obtained which matches the observations in Ref. [72].
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4.2 Four transport processes

in resonance channels (I–IV)

In the sticky region at the surface of the regular structures the chaotic transport is

strongly governed by the web of open resonance channels. In the following, this trans-

port is considered to be composed of the four basic transport phenomena present in an

open resonance channel of a 4d map:

I) Transport across a resonance channel

II) Trapping in deeper class of hierarchy

III) Trapping at a resonance junction

IV) Transport along a resonance channel

The heuristic argument for this decomposition goes as follows: In principle, the 4d

chaotic transport close to the regular structures can be described in the 2d frequency

space. Thus, a possible, local coordinate system is given by the two directions I) across

and IV) along a resonance channel. According to Sec. 3.3, an important phenomenon

which is not properly displayed in frequency space is the trapping in a deeper class

of the hierarchy. Deeper classes only appear as lines and points in frequency space,

i.e. II) resonance lines and III) junctions. Note that at resonance junctions even more

complicated dynamics occur. These dynamics are not considered here.

In order to examine the interplay of the four transport processes and to estimate their

impact onto the overall chaotic transport, trapped orbits are examined in frequency

space and time�frequency plots, see Sec. 2.6.2. While it turns out that the processes I)

and II) resemble the transport due to partial barriers along the levels and classes in 2d

maps, respectively, see Sec. 2.4, the processes III) and IV) are purely higher-dimensional

phenomena. The features of time�frequency plots which are identi�ed in this section for

instance as signatures of partial barriers are also visible for other systems [41,43,44,60]

but have not been properly understood yet, emphasizing the relevance of the �ndings

in this section.

Chaotic transport is usually studied in phase space. There partial barriers in 2d

maps can be detected by drops in density of chaotic orbits iterated for a �nite time, see

Fig. 2.1 in Sec. 2.4. However, for 4d maps with a 4d phase space the 2d frequency space

is more accessible. In order to understand chaotic transport also in the frequency space

of a 4d map, at �rst trapped orbits of the 2d map 𝐹2d with 𝐾 = 2.25 are considered in

phase and frequency space. Figures 4.5(a) and 4.5(b) show a chaotic orbit that is mainly



70 4.2 Four transport processes in resonance channels (I–IV)

0.220

0.222

0.224

0 10000000t

ν

(a) 𝜈(𝑡)-plot

0.01

0.02

0.03

0.26 0.27 0.28q

p

(b) 2d phase space

Figure 4.5: Trapped orbit of the 2d map 𝐹2d with 𝐾 = 2.25, mainly trapped in the class
hierarchy, in (a) time-frequency plot and (b) phase space with iteration time 𝑡 ∈ [0, 𝑇 =
17763757]. The frequency analysis is performed on segments of length Δ𝑡 = 4096, see
Sec. 2.6.2. In (a) frequency intervals are chosen and points within the same interval are
shown with the same color. The corresponding points in (b) are colored accordingly, see
Eq. (2.18). Since in (b) the green, blue, and gray points are very dense, and the gray ones
are plotted first, they are not visible. In (a) the resonance 𝜈 = 2/9 is indicated in the
background as orange, dashed-dotted line. In (b) the inset shows the whole phase space
(𝑝, 𝑞) ∈ [−0.5, 0.5)× [0, 1). A black box indicating the magnification seen in (b) is hardly
visible as black point.

trapped at the resonance 𝜈 = 2/9 in a time�frequency plot and phase space, respectively.

In both �gures the points of the orbit are colored correspondingly. Most points are gray

but certain sets of points, which are chosen in frequency space, are highlighted in other

colors. Note that due to the �nite size of the points in the plots, highlighted points may

cover other points if they are too close to each other. For instance there are no gray

points visible in Fig. 4.5(b) and no blue points visible in the inset of Fig. 4.5(b). The

central part of the orbit is colored green, highlighting nine islands of the resonance chain

𝜈 = 2/9 in phase space, which are visible in the inset of Fig. 4.5(b). The magni�cation

at one of these islands shown in Fig. 4.5(b) reveals further green subislands. This

implies that the orbit is trapped in the deeper classes of the resonance 𝜈 = 2/9. The

frequencies 𝜈(𝑡) of the trapped orbit shown in corresponding colors in Fig. 4.5(a) are

almost constant at 𝜈(𝑡) = 2/9 for the majority of the iterations 𝑡. Only the frequencies

of the initial iterations and the last iterations before the recurrence of the orbit deviate

from 2/9 and �uctuate strongly over time. These points are colored red, while the �rst

and last iterations exhibiting an almost constant frequency are colored blue. There

is a sharp transition between almost constant and strongly �uctuating frequency. In
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the phase space in Fig. 4.5(b) the blue and red points are well separated from each

other with a drop in density from the blue to the red points. As explained in Sec. 2.4,

this transition corresponds to the crossing of the partial barrier belonging to the next

deeper class around the islands of the resonance 𝜈 = 2/9. Note that the frequency 𝜈(𝑡)

also �uctuates during the time the orbit is trapped in the deeper class. However, the

amplitude is several orders of magnitude smaller than for the intervals colored in red.

In general, constant frequencies with a rational number 𝜈(𝑡) = 𝑛/𝑚 correspond to the

orbit being in a deeper class. The reason is that for an orbit trapped at an island chain,

the corresponding rational frequency 𝜈 = 𝑛/𝑚 is very dominant in the Fourier spectrum

of this orbit. This is analogous to resonant frequencies obtained by frequency analysis

in 4d maps, cf. Secs. 3.2.3 and 3.3.1. Within the deeper class the frequencies cannot

resolve further details about the transport of the orbit. For instance, in Fig. 4.5(a)

the blue and green points have the same frequency, but the phase space in Fig. 4.5(a)

shows that the green points are in an even deeper class than the blue points. A further

examination requires a frequency analysis for the points with constant frequency with

respect to an island of the resonance, analogous to Secs. 3.3.1 and 3.3.2. In the time�

frequency plots the point of transition from one class to the next can of course only

be resolved up to the length ∆𝑡 of the segments used for the frequency analysis. In

particular, if the orbit crosses the partial barrier more than once within two segments

∆𝑡, e.g., for partial barriers with high �ux, the transition cannot even be detected.

In the same fashion as Fig. 4.5, Fig. 4.6 shows a chaotic orbit that is mainly trapped

along the levels of the hierarchy. In the magni�cation of the phase space in Fig. 4.6(b)

there is a clear drop in point density between the region with the blue and red points

and the gray stripe to the right. The island visible within the area of red and blue

points belongs to the resonance 𝜈 = 2/9. A further magni�cation of the the gray area,

indicated by the box in Fig. 4.6(b), is shown in Fig. 4.6(d) with di�erent colors. On

this scale another drop in density is visible between the regions with colored points

and the gray stripe to the right. A magni�cation of this stripe, indicated by the box

in Fig. 4.6(d), is shown in Fig. 4.6(f) and reveals further details. The corresponding

time�frequency plots in the left column of Fig. 4.6 display the same hierarchy of scales.

In Fig. 4.6(a) a few initial and last iterations in red and blue, respectively, are scat-

tered over a wide frequency interval. The rest of the iterations in gray are con�ned

to a much smaller frequency interval, indicated by the box. The magni�cation of this

interval in Fig. 4.6(c) reveals several frequency intervals to which the orbit seems to

be con�ned for several consecutive iterations. These intervals are estimated manually

by visual inspection and highlighted with di�erent colors. The most pronounced inter-

vals are the purple and upper gray one. The frequencies 𝜈(𝑡) of the orbit jump twice
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Figure 4.6: Trapped orbit of the map 𝐹2d from Fig. 2.1(b), mainly trapped along the
level hierarchy, displayed analogous to Fig. 4.5. Each row represents a magnification of the
previous one, as indicated by the black boxes, with different sets of points being colored.
Resonances are from top to bottom (c) 𝜈 = {37/165, 13/58, 28/125, 43/192, 15/67} and
(e) 𝜈 = {207/923, 61/272, 98/437, 135/602}.
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from the purple to the gray interval and back, once dwelling in the gray interval for

several million iterations, once for less than one million iterations. The sudden transi-

tions in the time�frequency plots are signatures of partial barriers. A comparison with

the correspondingly colored points in phase space in Fig. 4.6(d) demonstrates that the

frequency intervals represent stochastic layers of resonances. For instance the purple

layer is caused by the resonances 𝜈 = 37/165, 13/58, 28/125 which are indicated by

the orange dashed-dotted lines in Fig. 4.6(c). A comparison of the order of the red,

green and purple layer in Figs. 4.6(c) and 4.6(d) also implies that for this map a higher

frequency is equivalent to being closer to the central regular island. The magni�ca-

tion of the inner gray stripe indicated by boxes in Figs. 4.6(c) and 4.6(d) is shown in

Figs. 4.6(e) and 4.6(f) and allows for highlighting even more stochastic layers. It should

be emphasized that all these stochastic layers are identi�ed by selecting intervals from

time�frequency plots. While the frequencies of the orbit change chaotically within the

frequency interval of the stochastic layer, for short time periods they exhibit trapping

in a deeper class. An example are the points at the resonance 𝜈 = 13/58 highlighted in

orange in Figs. 4.6(c) and 4.6(d) and the green, blue and orange points at the resonance

𝜈 = 61/272 in Figs. 4.6(e) and 4.6(f). The di�erent highlighted island chains in the

latter example in Fig. 4.6(f) illustrate again the ambiguity of frequencies when the orbit

is in a deeper class.

In general, if frequencies are con�ned to some interval around resonances for some

period of time with sudden jumps to adjacent intervals it means that the corresponding

orbit is trapped in the stochastic layer of a �xed class of the hierarchy. In contrast to

being trapped in a deeper class, the frequencies change chaotically within the interval

representing the stochastic layer. As demonstrated with the example in Fig. 4.6, trap-

ping along the levels of the hierarchy is well observable in time�frequency plots. Again

the transitions from layer to layer can only be resolved up to ∆𝑡. In particular, the

layers of di�erent resonances may appear as overlapping, if the �ux in between them is

too big.

The orbit in Fig. 4.6 spends the majority of the iterations in the deeper levels of the

hierarchy that it reaches, i.e. at 𝜈 = 61/272 and adjacent stochastic layers. This is

the typical behavior predicted by the theory for orbits trapped mainly along the levels

of the hierarchy, see Sec. 2.4. However, Fig. 4.7 shows a chaotic orbit that is trapped

in the same system more than twice as long, but reaches at most 𝜈 = 135/602, while

spending most of the iterations in the purple layer around 𝜈 = 13/58. In particular,

the orbit frequently jumps to stochastic layers, which are even further away from the

central regular island. Due to more points in these layers it is possible to resolve �ner

layers in Fig. 4.7 than in Fig. 4.6. It is interesting to acknowledge that also such kind
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Figure 4.7: Trapped orbit of the map 𝐹2d with 𝐾 = 2.25 and 𝑇 = 22742154,
frequently jumping between stochastic layers, displayed analogous to Fig. 4.5. The
stochastic layers recognized from the frequencies 𝜈(𝑡) are similar to the ones rec-
ognized in Figs. 4.6(c) and 4.6(d). The resonances are from top to bottom 𝜈 =
{135/602, 13/58, 28/125, 43/192, 159/710, 58/259, 73/326, 15/67}.

of orbits contribute to the power-law of the 2d map, because frequent jumps between

resonances are generically observed for trapped orbits of 4d maps in the following.

The time�frequency signatures of deeper classes and stochastic layers are also observed

for trapped orbits in 4d maps. It is convenient to demonstrate this for the coupled twist

maps 𝐹Twist as the original 2d twist maps are still recognizable in the coupled system

and thus allow a direct comparison to the observations in 2d maps. Figure 4.8 shows a

chaotic orbit of the coupled twist maps 𝐹Twist trapped in region B. Figures 4.8(a) and

4.8(b) show the orbit in time�frequency (𝑡, 𝜈2) and frequency space (𝜈1, 𝜈2) with points

colored according to their iteration time. Several relevant resonances are indicated by

dashed orange lines in Fig. 4.8(b). The horizontal line is the resonance 0 : 6 : 5 and

the vertical line intersecting with it corresponds to 8 : 0 : 5. Already the familiar

signatures of partial barriers due to these resonances are visible in the course of 𝜈2(𝑡) in

Fig. 4.8(a), that is sudden jumps between frequency intervals and periods of constant

frequency. In order to observe the signatures of partial barriers also in phase space, thin

slices in the angles |Θ1|, |Θ2| < 10−2 are projected to the (𝑝2, 𝑞2)-, (𝑝1, 𝑞1)-coordinates,

respectively. Details of these slices for the chaotic orbit are shown in Figs. 4.8(d)

and 4.8(f). As for the examples of the 2d map, several frequency intervals in 𝜈2 are

highlighted with di�erent colors in Fig. 4.8(c) and these points are colored accordingly

in the slices and the (𝑡, 𝜈1)-plot in Fig. 4.8(e). This highlights di�erent layers with

relatively sharp borders in the Θ1-slice in Fig. 4.8(d), resembling stochastic layers of a
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Figure 4.8: Chaotic orbit trapped in region B of the 4d map 𝐹Twist displayed similar
to Fig. 4.5. In (a), (b) the points are colored according to the iteration time 𝑡 ∈ [0, 𝑇 =
30665958]. The stochastic layers are recognized from 𝜈2(𝑡), see (c), and all points in (c)–
(f) are colored accordingly. The resonances associated with the layers of (c) are indicated
in (b) as orange, dashed lines, i.e. −2 : 5 : 3, 8 : 0 : 5 (red); −6 : 8 : 3, 1 : 4 : 4 (blue);
−3 : 7 : 4 (green); −3 : 19 : 14 (bright blue); and −4 : 3 : 0, 4 : 3 : 5 (purple), 6 : 0 : 5
(orange). The insets in (d),(f) show 𝑝1, 𝑞1 ∈ [−3, 3], 𝑝2, 𝑞2 ∈ [−4, 4].
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2d phase space. Also Fig. 4.8(d) con�rms that the pronounced intervals of constant

frequency 𝜈2 = 5/6 (∼ 0 : 6 : 5) colored orange in Fig. 4.8(c) correspond to the orbit

being trapped at an island chain. More precisely, an island chain of period-six can be

seen in the inset of Fig. 4.8(d) which shows a larger part of the slice. Note that for

𝐹Twist by construction larger 𝜈𝑖 correspond to points in phase space further away from

the center (𝑝𝑖, 𝑞𝑖) = (0, 0), as suggested by the order of colors in Figs. 4.8(c) and 4.8(d).

While the resemblance of these plots and the according plots for 2d maps demon-

strates the existence and impact of partial barriers in 4d maps, the additional degree

of freedom complicates the proper identi�cation and display of the stochastic layers.

Firstly, the resonances in 4d maps are in general coupled, i.e. they involve two frequen-

cies. Hence, except for the uncoupled resonance 0 : 6 : 5 the resonances responsible for

the stochastic layers are not horizontal lines in the time�frequency plot in Fig. 4.8(c)

anymore. Instead a resonance and the frequency interval of its a�liated stochastic layer

have to be identi�ed in the frequency space (𝜈1, 𝜈2) rather than in the time�frequency

plot of a single frequency 𝜈2. Secondly, even if the relevant resonances were uncou-

pled, there is an additional dynamics in the non-resonant degree of freedom, i.e. the

transport along the resonances. This dynamics is visible in the time�frequency plot

(𝑡, 𝜈1) in Fig. 4.8(e). The development of 𝜈1(𝑡) reminds of a random walk with possibly

time-dependent variance. Accordingly, the corresponding slice in Fig. 4.8(f) shows all

colored points distributed relatively randomly over a common area. A time dependence

of the variance could result from the di�erent resonances the orbit visits over time,

which each might have an individual transport rate. Likewise, the frequency interval of

a stochastic layer may change along the corresponding resonance. For this reason the

green and bright blue frequency intervals for 𝜈2 in Fig. 4.8(c) are con�ned to certain

time intervals for which the corresponding frequencies 𝜈1 do not change much.

Besides transport along resonances, also junctions of resonances are only possible in

higher-dimensional maps. An example is the junction of the resonances −2 : 5 : 3 and

8 : 0 : 5 at (𝜈1, 𝜈2) = (0.625, 0.85) in Fig. 4.8(b). Points in the vicinity of this junction

are highlighted in red in Figs. 4.8(c) and 4.8(e). On closer inspection of Figs. 4.8(c)

and 4.8(e), not shown here, it seems the orbit frequently jumps between the stochastic

layers of the resonances −2 : 5 : 3 and 8 : 0 : 5. Also stochastic layers of other

resonances meeting at this junction may be visible. This behavior may be due to the

layers increasingly overlapping in the vicinity of the junction, entering the Chirikov

regime, see Sec. 2.5. However, this behavior does not seem to be universal for the

vicinity of junctions. A counterexample is the junction of the resonances 0 : 6 : 5,

8 : 0 : 5, −4 : 3 : 0, and 4 : 3 : 5 in Fig. 4.8(b). Despite the orbit being right at

the junction, only the stochastic layer of the 0 : 6 : 5 resonance colored in purple in
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Fig. 4.8(c) is visible with a random walk like behavior of 𝜈1 in Fig. 4.8(e). This might

be due the low order of this resonance. Another phenomenon expected at a junction

is trapping directly at the islands around the ee periodic orbits of the junction, see

Sec. 3.3.3, which is not observed for this example. Note that the orange segment with

seemingly constant frequencies 𝜈1(𝑡) = 𝑘 in Fig. 4.8(e) is actually not at the junction

𝑘 < 5/8 = 0.625.

In order to present a possible way to deal with the stochastic layers of uncoupled

resonances in frequency space, Fig. 4.9 shows an example of a chaotic orbit of 𝐹Twist

trapped in region A. While the plots are essentially the same as in Fig. 4.8, there

are a few adjustments. Firstly, since the relevant resonances are almost parallel to

the 𝜈2-axis, see Fig. 4.9(b), the stochastic layers are this time better visible in 𝜈1(𝑡)

in Fig. 4.9(a). Secondly, the axes of the frequency space in Fig. 4.9(b) are switched

to allow a better comparison with Fig. 4.9(a). Since the relevant resonances are not

uncoupled, the stochastic layers are not easily identi�ed in the time�frequency plot in

Fig. 4.9(a). For instance, the most important resonance 5 : 1 : 4, which is the resonance

at lowest 𝜈1-values in Fig. 4.9(b), appears as a non-straight line in Fig. 4.9(a). For a

particular resonance the time�frequency plot can be improved by a transformation, e.g.,

a rotation, which maps the frequencies (𝜈1, 𝜈2) to new coordinates (𝜈1, 𝜈2) in which the

resonance corresponds to a line parallel to one of the axes. The result for the resonance

5 : 1 : 4 is shown in Figs. 4.9(c) and 4.9(e). In the time�frequency plot in Fig. 4.9(c),

where the resonance 5 : 1 : 4 appears now as a straight line, several stochastic layers

can be recognized and are highlighted with di�erent colors. The corresponding slice in

Fig. 4.9(d) shows the expected signatures of stochastic layers, including the trapping at

an island chain of period-�ve highlighted in orange, which corresponds to the resonance

5 : 1 : 4. Note that these islands are actually one connected tube intersecting �ve

times with the slice. A comparison of Figs. 4.9(c) and 4.9(d) with Fig. 4.7 shows a

striking resemblance between one degree of freedom of a trapped orbit of a 4d map

and a trapped orbit of a 2d map. The other coordinate 𝜈2(𝑡) resembles as expected a

random walk with time dependent variance in Fig. 4.9(e). However, as implied by the

di�erent scales of frequencies in Fig. 4.9(b), this random walk is con�ned to a thin layer

in the corresponding slice in Fig. 4.9(f).

Having established the general signatures of partial barriers, it is possible to examine

trapped orbits of any generic 4dmap in frequency space. An example of the two coupled

standard maps 𝐹SC is presented in Fig. 4.10 in the same way as for the coupled twist

maps in Fig. 4.9. The orbit is trapped at the horseshoe around the resonance 17 : 0 : 5.

Since most of the relevant resonances in Fig. 4.10(b) are quite parallel to the 𝜈2-axis,

the axes are again switched to allow a better comparison with Fig. 4.10(a). Three major
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Figure 4.9: Chaotic orbit trapped in region A of the 4d map 𝐹Twist with 𝑇 = 12433054
displayed similar to Fig. 4.8. For (c), (e) the frequencies (𝜈1, 𝜈2) are transformed to (𝜈1, 𝜈2)
such that the resonance 5 : 1 : 4 is along the 𝜈1-axis. The stochastic layers are recognized
from 𝜈1(𝑡), see (c). For (b) the axes are switched. The resonances in (b) are from top to
bottom 23 : 3 : 17, 51 : 7 : 38, 28 : 4 : 21, 33 : 5 : 25, 38 : 6 : 29, 5 : 1 : 4. The insets in
(d),(f) show 𝑝1, 𝑞1 ∈ [−1, 1], 𝑝2, 𝑞2 ∈ [−5, 5].
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stochastic layers can be identi�ed immediately in the time�frequency plot in Fig. 4.10(a)

with fast transitions in between them, which shows the existence and impact of partial

barriers in the generic 4d map 𝐹SC. However, a closer examination in phase space by

highlighting points selected from di�erent layers in Fig. 4.10(c) is hardly possible. There

is no trivial slice which e�ectively captures the relevant degree of freedom. A detail of

the slice de�ned by |𝑝1| < 10−3 and a projection to the (𝑝2, 𝑞2)-coordinates is shown in

Fig. 4.10(d) as an example. The di�erent stochastic layers highlighted in Fig. 4.10(c) lie

all on top of each other. The only recognizable detail are the blue points being trapped

at an period-�ve island chain. This chain corresponds to the resonance 19 : 5 : 7 and

is actually a tube that intersects the slice �ve times at two positions, see also the inset

of Fig. 4.10(d). Since the transport along the resonances is very slow and all but one

resonance are coupled, the time�frequency plot for 𝜈2(𝑡) resembles the one for 𝜈1(𝑡). On

top of that the relevant resonances are not close to being parallel to each other. Hence,

the transport along the resonances cannot easily be viewed in the frequency coordinates

even after a transformation as suggested by the previous example of 𝐹Twist. However,

the frequency space should be su�cient to get a rough quantitative estimate about the

dwell times and �uxes across the resonances.
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Figure 4.10: Chaotic orbit trapped at the horseshoe of the 4d map 𝐹SC with 𝑇 =
63524738 displayed similar to Fig. 4.8. The stochastic layers are recognized from 𝜈1(𝑡),
see (c). For (b) the axes are switched. The resonances associated with the layers of (c)
are indicated in (b) as orange, dashed lines, i.e. 19 : 5 : 7 (blue, red); 17 : 0 : 5 (purple);
54 : 4 : 17 (bright blue); 69 : −1 : 20, 20 : 4 : 7, 35 : −1 : 10 (green); 34 : 75 : 31,
2 : 55 : 16, 32 : 20 : 15 (orange). The inset in (d) shows 𝑝2 ∈ [−0.2, 0.2], 𝑞2 ∈ [0.35, 0.65].
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4.3 I) Transport across a resonance channel

The chaotic transport across the open resonance channels provides a possible mechanism

for the observed trapping with the very straight power law as sketched in the following.

This mechanism is analogous to the model for trapping in 2d maps of Ref. [114]. A

comparison with a 3d map demonstrates that this transport across resonance channels

is responsible for the trapping in region A of the twist map 𝐹Twist. However, the same

mechanism is ruled out for the generic sticky regions of 𝐹Twist and 𝐹SC by using the

average escape time 𝑇 (𝜈1, 𝜈2) from Sec. 4.1 as a measure for the distance to the regular

region. Instead, the course of the isolines of this distance suggests that the trapping is

governed by the transport along the resonance channels.

The relevant resonances in region A of the coupled twist maps 𝐹Twist are almost

parallel to the surface of the regular region in frequency space, as discussed in Sec. 3.5.1

and demonstrated by the example in Fig. 4.9. Thus, transport of a chaotic orbit across

the resonance channels directly a�ects its distance to the regular region. This transport

is similar to the transport along the levels of the hierarchy of a 2d map, since the action

𝐼2 and likewise 𝜈2 of a chaotic orbit in region A do not alter much over time. This

similarity is illustrated by the resemblance of slices in Θ2, as shown in Fig. 4.9(d), and

phase space pictures of 2d maps. One interpretation is that the coordinate 𝐼2 acts

as a perturbation parameter, similar to the kicking strength 𝐾 of the standard map,

de�ning a 2d mixed phase space the chaotic orbit is con�ned to for short time scales.

In this case the trapping mechanism could be described by trapping in a 2d map with

a slowly di�using perturbation parameter, which modulates position and �uxes of the

partial barriers. Such a model should give similar results as the models discussed in

Ref. [114]. For instance, a straight power-law decay with universal exponent 𝛾 ≈ 1.5

is obtained by averaging the survival probabilities of 100 2d symplectic maps. This is

remarkable as the power-law decays of the individual maps still show the characteristic

oscillations on logarithmic scale. In order to demonstrate that the trapping in region A

works analogously, an additional 3d map 𝐹3d is introduced which matches the coupled

twist maps 𝐹Twist as de�ned in Eq. (3.6)�. but with an integrable second degree of

freedom. That is, instead of Eq. (3.7) the perturbation of the 3d map is de�ned by

𝑝′1 = 𝑝1 − 𝜉
d𝑉 (𝑞1, 𝑞2)

d𝑞1
𝑞′1 = 𝑞1

𝑝′2 = 𝑝2 𝑞′2 = 𝑞2 .
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Figure 4.11: Comparison of the statistics of Poincaré recurrences 𝑃 (𝑇 ) for the 4d map
𝐹Twist and the 3d map 𝐹3d. The blue and red line correspond to the statistics of the
map 𝐹Twist and its region A, respectively, see Fig. 3.9. The purple and orange line are
the analogous statistics for the map 𝐹3d with initial region (𝐼1, 𝐼2,Θ1,Θ2) ∈ [6.1, 9.2]2 ×
[−π,π)2, exit region Γ = {(𝐼1, 𝐼2,Θ1,Θ2) : 𝐼1, 𝐼2 > 10} and 2 · 1010 chaotic orbits.

While all parameters match the ones of 𝐹Twist, the initial region Γ for the Poincaré

recurrence is chosen to be Γ = {(𝐼1, 𝐼2,Θ1,Θ2) : 𝐼1, 𝐼2 ∈ [6.1, 9.2]}.
The statistics of Poincaré recurrences 𝑃 (𝑇 ) of the maps 𝐹3d and 𝐹Twist are compared in

Fig. 4.11. The statistics for 𝐹Twist and its region A, shown in blue and red, respectively,

are the same as in Fig. 3.9. The result for the 3d map 𝐹3d shown in purple is a little

bit below the one for 𝐹Twist but the decay is very similar. The results for region A of

𝐹Twist and 𝐹3d, in red and orange, respectively, almost coincide, which con�rms that

the back-coupling is negligible for 𝐹Twist in this region. The time�frequency plots for

chaotic orbits of 𝐹3d trapped at region A exhibit the same signatures of partial barriers

as observed for 𝐹Twist in Fig. 4.9. From these observations it can be inferred that the

trapping mechanism of the maps 𝐹Twist and 𝐹3d is essentially the same in region A.

However, chaotic orbits of the 3d map 𝐹3d have constant action 𝐼2 set by their initial

condition 𝐼2 ∈ [6.1, 9.2] and thus can only get trapped at the regular region by transport

in 𝐼1. This implies that also the trapping in region A of the 4dmap 𝐹Twist depends solely

on the transport in 𝐼1. Furthermore, the 3d map 𝐹3d allows to examine the statistics

for individual actions 𝐼2 as shown in Fig. 4.12. The �ve thin, colored lines depict

𝑃 (𝑇 ) for di�erent initial 𝐼2 ∈ [6.5, 9.0] corresponding to both rational and irrational
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Figure 4.12: Statistics of Poincaré recurrences 𝑃 (𝑇 ) for particular actions 𝐼2 = 𝐼02
of the 3d map 𝐹3d. The statistics 𝑃 (𝑇 ) for 𝐹3d are shown as thick, purple line
as in Fig. 4.11. The thin lines correspond to the statistics 𝑃 (𝑇 ) for 𝐹3d with the
initial regions (𝐼1, 𝐼2,Θ1,Θ2) ∈ [6.1, 9.2] × 𝐼02 × [−π,π)2 with the constant 𝐼02 =
{6.5, 7.5, 7.1475, 7.8419, 9.0} (pink, green, bright blue, gray, dark cyan) which corresponds
approximately to 𝜈2 = {0.8621, 0.8821, 7/8, 8/9, 0.9121}, see Eq. (3.8). In each case 2·1010
chaotic orbits are used. The average of these five statistics shown as thick black line ex-
hibits a much straighter power-law similar to the overall statistics of 𝐹3d.

frequencies 𝜈2. These individual decays exhibit much stronger �uctuations over time

than the relatively straight power-law decay of the overall statistics shown again as

thick, purple line. Only the average of the individual decays included as thick black

line in Fig. 4.12 results in a similarly straight power-law decay. The averaged decay

converges by construction to the overall decay by including an increasing number of

individual decays, but even for the �ve actions considered the black line already almost

coincides with the purple one for small times 𝑇 < 104. This suggests that trapping with

straight power-law decay of 𝑃 (𝑇 ) in a 3d map 𝐹3d and consequently in region A of the

4d map 𝐹Twist can be explained analogous to the straight power-law decay discussed in

Ref. [114]. Of course the outlined argument is just a rough sketch and a more careful,

quantitative analysis is required to rigorously link the trapping in 4d maps caused by

transport across open resonance channels to the models of Ref. [114]. Note that the

one-parameter stacking of 2d maps plus a rotation is not an uncommon model for 4d

maps [11,161].
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Figure 4.13: Isolines of the average escape time 𝑇 (𝜈1, 𝜈2), see Eq. (4.2), for the maps (a)
𝐹SC and (b) 𝐹Twist. The isolines are based on the sets of frequency pairs from trapped
orbits discussed in Sec. 4.1, i.e. (a) |Ωhorseshoe| ≈ 107 frequency pairs obtained from
𝑁horseshoe = 938384 trapped orbits of 𝐹SC with recurrence times 104 ≤ 𝑇𝑖 ≤ 109 and (b)
|ΩTwist| ≈ 9 · 107 = (1.7 + 7.3) · 107, 𝑁Twist = 20775 + 1652930 trapped orbits of 𝐹Twist

with 104 ≤ 𝑇𝑖 ≤ 109 and 4 · 104 ≤ 𝑇𝑖 ≤ 109. The distribution 𝑇 (𝜈1, 𝜈2) is evaluated on
a grid with resolutions Δ𝜈1, Δ𝜈2, see subcaptions. The factor between the escape times
𝑇 of two adjacent isolines is 1.61 and the value 𝑇 is encoded in color according to the
colorbars with the limiting values 103 (blue) and 109 (red). For comparison the regular
tori from (a) Fig. 2.4(b) and (b) Fig. 3.6(c) are shown in gray. In (a) some resonances
are indicated as orange, dashed lines, i.e. from top to bottom 16 : −6 : 3, 31 : −11 : 6,
46 : −16 : 9, 15 : −5 : 3, 29 : −9 : 6, 14 : −4 : 3.
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While the trapping mechanism described above produces straight power-law decays

and explains the trapping in region A of the map 𝐹Twist, it requires that the chaotic

orbits mainly escape from the sticky region by transport across resonance channels. In

this case there is a �xed order in which a chaotic orbit from the chaotic sea reaches

each resonance. This order can be considered as levels, i.e. an orbit has to pass the

resonance of level 𝑛 to get to the resonance of level 𝑛 + 1. Certain recurrence times of

chaotic orbits should on average coincide with certain levels reached by the orbits just

like for trapping along the levels of the hierarchy of 2d maps [100,102]. Thus, one might

expect that the isolines of the average escape time 𝑇 (𝜈1, 𝜈2) as de�ned in Eq. (4.2) do

not cross the relevant resonance lines in frequency space but rather are directed along

them. However, a depiction of these isolines for the generic sticky regions of the maps

𝐹SC and 𝐹Twist in Fig. 4.13 is in stark contrast to this. For Fig. 4.13(a) some isolines are

computed based on |Ωhorseshoe| ≈ 107 frequency pairs obtained from 𝑁horseshoe = 938384

trapped orbits of 𝐹SC with recurrence times 104 ≤ 𝑇𝑖 ≤ 109, see Sec. 4.1. The colors of

the isolines indicate the value of 𝑇 (𝜈1, 𝜈2) on them as in Fig. 4.2(b). The lines run more

or less parallel to each other along the surface of the regular region. Some relatable

resonances are included as orange, dashed lines in Fig. 4.13(a). They are all crossed

by the isolines, even at larger values of 𝜈1 where the isolines seem to be relatively

straight. The independence of the isolines from resonances become even more apparent

for the coupled twist maps 𝐹Twist in Fig. 4.13(b). For Fig. 4.13(b) some isolines are

computed based on |ΩTwist| ≈ 9 · 107 = (1.7 + 7.3) · 107 frequency pairs obtained from

𝑁Twist = 20775 + 1652930 trapped orbits of 𝐹Twist with recurrence times 104 ≤ 𝑇𝑖 ≤ 109

and 4 · 104 ≤ 𝑇𝑖 ≤ 109, respectively. The isolines clearly adapt to the surface of the

regular region of region B and their pattern do not resemble the grid of resonance lines.

In addition to the isolines of the average escape time also the distribution of densities

𝜌(𝜈1, 𝜈2) for orbits with recurrence times 𝑇𝑖 in intervals with constant width on log-scale

are examined, i.e. 𝑇𝑖 ∈ [𝑡𝑗, 2𝑡𝑗] with 𝑡𝑗 = 𝑎𝑗𝑡0, 𝑗 ∈ N, and, e.g., 𝑎 = 1.2, 𝑡0 = 104, but

not shown here. The distribution of these densities looks like it continuously advances

towards the regular region with increasing 𝑗 and exhibits no jumps at resonances. In

cooperation with Matthias Wagner and Prof. Padberg-Gehle the isolines and resonances

of Fig. 4.13(a) are also compared with eigenstates of the transfer operator for one time

step ∆𝑡 = 4096 in frequency space in order to �nd related almost invariant sets [200].

However, no relevant signatures of such sets are found in this frequency space. Note

however that in Appendix A.1 the resonances 0 : 6 : 5 and 4 : 3 : 0 of the coupled

twist maps 𝐹Twist are discussed in between which jumps are observed that may cause

transport towards the chaotic sea. This is despite the fact that these resonances are

directed along the surface of the regular region. In order to investigate this one might
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use the isolines introduced above as coordinate system to measure transport towards

the chaotic sea during jumps between resonances.

4.4 II) Trapping in deeper class of hierarchy

In Sec. 3.3.3 the hierarchy of classes in 4d maps is explained in analogy to 2d maps. The

trapping of chaotic orbits in deeper classes of this hierarchy is established in Sec. 4.2.

In particular, this trapping exhibits signatures of partial barriers as in 2d maps. In

this section however, it is estimated that chaotic orbits are only trapped for short time

periods in deeper classes and reach only a couple of consecutive classes. Thus, this

type of trapping can not explain the power-law trapping. The escape times from deeper

classes exhibit power-law decays with di�erent exponents as expected due to the self-

similarity of the regular structures along the hierarchy: The escape from the regular

region of a deeper class to the stochastic layer of the corresponding resonance channel

should be governed by the same mechanisms as the escape from the major sticky region

of a system to its chaotic sea. In this sense, understanding the power-law trapping

for a generic 4d map automatically implies understanding the trapping at the regular

structures which are present in any resonance channel within the Arnold web. Finally,

the impact of transport within the deeper class on transport along resonance channels

is discussed in this section.

To determine numerically whether a chaotic orbit is trapped in a deeper class, e.g.,

at the regular structures of a resonance channel or a junction, is not straightforward.

The comparison of time�frequency plots and 2d phase-space slices in Sec. 4.2 suggests

that a su�cient criterion is the sudden con�nement of the frequencies of the orbit to a

thin stripe around the resonance line. However, being within this stripe of half-width

∆𝜈 is only a necessary condition. For instance, some chaotic orbits of the twist map

show a sudden change from a con�nement ∆𝜈 ∼ 10−3 due to the stochastic layer of the

resonance to ∆𝜈 ∼ 10−6 . . . 10−7 due to the deeper class. But also during the time span

in which the orbit is in the stochastic layer and explicitly not trapped in the deeper

class the �uctuating frequencies are frequently within the thin stripe ∆𝜈 ∼ 10−6 . . . 10−7

around the resonance line. This can be inferred from the pronounced densities 𝜌(𝜈1, 𝜈2)

at resonances discussed in Sec. 4.1 and seen in the time�frequency plots in Sec. 4.2.

This behavior is an artifact of the frequency analysis, which averages over ∆𝑡 iterates

of an orbit, and thus can assign near resonant frequencies to an orbit which is in the

stochastic layer around a resonant island. One way to verify that the points of the

chaotic orbit are indeed trapped in the deeper class is to compare their positions with

the corresponding elliptic 1d tori of the resonance in a 3d projection. However, this
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is only checked for a few examples and not shown here. A more detailed discussion of

the frequency �uctuations at resonances and widths of resonance channels can be found

in Appendix A.3. In short, the frequencies of a chaotic orbit being within a stripe of

half-width ∆𝜈 ≪ 1 around a resonance line is a necessary condition for this orbit to be

trapped in the corresponding deeper class. This condition is used in the following to

assess the relevance of the deeper classes for the overall power-law trapping. Whenever

the frequencies (𝜈1, 𝜈2)(𝑡) of a chaotic orbit are within a stripe of half-width ∆𝜈 = 10−6

or ∆𝜈 = 10−7 around a resonance line of the maps 𝐹SC and 𝐹Twist, respectively, for

𝑡 ∈ [𝑡0 + 1, 𝑡0 +𝑇 ] and outside for 𝑡 = 𝑡0 and 𝑡 = 𝑡0 +𝑇 + 1 the orbit is considered to be

trapped in the deeper class with an escape time 𝑇 . Only the resonances with the most

frequency pairs trapped in their deeper class are considered, that is 17 : 0 : 5, 16 : 1 : 5,

and 15 : −5 : 3 for 𝐹SC and 0 : 6 : 5, 5 : 1 : 4, 1 : 3 : 3, and −1 : 2 : 1 for 𝐹Twist. Note

that the chosen condition for being trapped in the deeper class of a resonance does not

distinguish between the resonance and junctions on it. However, the separate discussion

of the junctions in Sec. 4.5 reveals that the junctions are even less relevant than the

trapping in the deeper class of resonances. The following results are based on the same

frequency pairs Ωhorseshoe and ΩTwist as in Sec. 4.3.

The results for the horseshoe of the two coupled standard maps 𝐹SC are depicted

in Fig. 4.14. In Fig. 4.14(a) the statistics of Poincaré recurrences 𝑃 (𝑇 ) for the horse-

shoe and the whole system 𝐹SC are shown in bright and dark blue, respectively, as in

Fig. 4.1(c). Additionally, the statistics for the orbits trapped at the horseshoe are di-

vided into two groups: Orbits that are trapped at any time in the deeper class of any

of the resonances 17 : 0 : 5, 16 : 1 : 5 or 15 : −5 : 3 (black) and the remaining orbits

(red). These statistics are normalized according to their share of all trapped orbits,

i.e. for all times 𝑡 the sum of 𝑃 (𝑇 ) of the black and red line is equal to 𝑃 (𝑇 ) of the

bright blue line. Figure 4.14(a) shows that the majority of the orbits that get trapped

in the deeper class of the resonances have longer recurrence times, since the red line has

higher 𝑃 (𝑇 ) for 𝑇 < 2 · 105. However, almost any trapped orbit with recurrence time

𝑇 > 106 has been trapped at least once in a deeper class of the resonances, as seen by

the proximity of the black and bright blue line in the double logarithmic plot. Never-

theless, the three lines have the same decay for 𝑇 > 3 · 106 meaning that the observed

power-law trapping does not require the trapping in a deeper class. In addition, only

about 1% of all frequency pairs |Ωhorseshoe|, see Sec. 4.3, are trapped in a deeper class

of the considered resonances. This small fraction of trapping in deeper classes may also

be deduced from the time�frequency plots in Sec. 4.2. In conclusion, these observations

con�rm the presence of trapping in deeper classes but depict this mechanism as not

essential for the power-law trapping.
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(b) Statistics of individual resonances (black to red)

Figure 4.14: Statistics of escape times 𝑃 (𝑇 ) for individual resonances of the horseshoe
of the map 𝐹SC. For comparison the statistics of Poincaré recurrences 𝑃 (𝑇 ) for the whole
map 𝐹SC (blue) and just the horseshoe (bright blue) from Fig. 4.1 is shown. A chaotic
orbit is considered to be trapped for 𝑇 at a resonance, whenever its frequencies (𝜈1, 𝜈2)(𝑡)
are within a stripe of half-width Δ𝜈 = 10−6 around the resonance line for 𝑡 ∈ [𝑡0+1, 𝑡0+𝑇 ]
and outside for 𝑡 = 𝑡0 and 𝑡 = 𝑡0 + 𝑇 + 1. In (b) the resulting statistics 𝑃 (𝑇 ) for the
resonances 17 : 0 : 5, 16 : 1 : 5, 15 : −5 : 3 (black to red) are shown with a factor 10−6 for
visibility. In (a) the statistics 𝑃 (𝑇 ) of the horseshoe (bright blue) is additionally divided
into orbits trapped at least once at one of the three resonances (black) and the remainder
(red). All results are based on the set Ωhorseshoe of frequency pairs from Fig. 4.13.
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The statistics of escape times 𝑃 (𝑇 ) for the classes of the resonances 17 : 0 : 5, 16 : 1 : 5

and 15 : −5 : 3 are shown in Fig. 4.14(b) along with the statistics for the whole system

𝐹SC in blue. Due to the frequency analysis the escape times 𝑇 for the resonances are

only determined up to ∆𝑡 = 4096 iterations and thus their decay only starts for longer

times. In order to facilitate the comparison with the decay of the whole system, the

statistics of the resonances are shifted along the 𝑃 (𝑇 ) axis. For each resonance the

statistics 𝑃 (𝑇 ) exhibits an individual power-law decay with exponents both bigger and

smaller than the exponent of the whole system. This is in agreement with the fact

that the deeper class of a resonance or junction is a generic regular region and thus is

expected to exhibit power-law trapping. Note that the horseshoe itself represents the

deeper class of the resonance 3 : 1 : 1 as explained in Sec. 3.4. In this sense, the statistics

for the resonances 17 : 0 : 5, 16 : 1 : 5, and 15 : −5 : 3 are analogous to the statistics for

resonance −1 : 3 : 0, the junction (𝜈1, 𝜈2) = (2/7, 1/7), and the horseshoe representing

the resonance 3 : 1 : 1, which are shown in Fig. 4.1 in dark green, orange, and bright

blue, respectively. The only di�erence is that deeper classes of the resonances 17 : 0 : 5,

16 : 1 : 5 and 15 : −5 : 3 represent already the next deeper classes of the hierarchy

of the map 𝐹SC. Taking into account that the �rst classes of the system are observed

to trap orbits for up to ∼ 108 iterations, see Fig. 4.1(c), while the next deeper classes

trap for only up to ∼ 106 iterations, see Fig. 4.14(b), it seems unlikely that orbits reach

an even deeper class within the observed time span. Note that there is an argument

in 2d maps, i.e. if the power-law trapping was majorly caused by the class hierarchy,

certain recurrence times should be related to certain classes reached by the trapped

orbits [100,105].

In Fig. 4.15 the results for the most important resonances 0 : 6 : 5, 5 : 1 : 4, 1 : 3 : 3,

and −1 : 2 : 1 of the coupled twist maps 𝐹Twist are presented analogous to Fig. 4.14. The

results are in principle in agreement with the results discussed above for the horseshoe

of the generic map 𝐹SC. However, about 10% of all frequency pairs |ΩTwist|, see Sec. 4.3,
are trapped in a deeper class of the map 𝐹Twist, which are ten times more than for

the horseshoe. Also the deeper classes of the map 𝐹Twist are observed to trap chaotic

orbits up to ∼ 107 . . . 108 iterations, one to two orders of magnitude longer than the

deeper classes of the horseshoe. These scale di�erences are attributed to the fact that

the horseshoe is already a deeper class of the map 𝐹SC.

The above estimates about the relevance of trapping in the deeper class of a resonance

are interesting for the transport along resonance channels. The transport along the

surface of the regular region of the deeper class coincides with the transport along

the corresponding resonance channel, as pointed out in Sec. 3.3.1 for the resonance

−1 : 3 : 0. Another example is the transport along the surface of the horseshoe, which
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Figure 4.15: Statistics of escape times 𝑃 (𝑇 ) for individual resonances of the map 𝐹Twist

analogous to Fig. 4.14. For comparison the statistics of Poincaré recurrences 𝑃 (𝑇 ) for
the map 𝐹Twist (blue) from Fig. 3.9 is shown. The half-width of the resonances is chosen
Δ𝜈 = 10−7. In (b) the resulting statistics 𝑃 (𝑇 ) for the resonances 0 : 6 : 5, 5 : 1 : 4,
1 : 3 : 3, −1 : 2 : 1 (black to red) are shown with a factor 10−5 for visibility. All results
are based on the set ΩTwist of frequency pairs from Fig. 4.13.
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corresponds to transport along the resonance channel 3 : 1 : 1, see Sec. 3.4. In Sec. 4.3

the former transport is suspected to be described by the transport across the resonance

channels of the horseshoe governed by partial barriers. In this sense, a fraction of the

chaotic transport along resonance channels can be explained by the transport across

a set of partial barriers. However, this fraction is estimated above to be rather small.

On top of that, the transport rate along the surface of the regular region is known

to increase away from the region [72], see also the discussion of 𝜎2
↔(𝜈1, 𝜈2) in Sec. 4.1.

From this one may infer that the transport rate along the resonance channel is bigger

for chaotic orbits within the stochastic layer than for orbits trapped in its deeper class.

In conclusion, the transport due to partial barriers of the deeper class can probably be

neglected as mechanism for transport along the Arnold web.

4.5 III) Trapping at a resonance junction

The transport at junctions of resonances is crucial in the closed part of the Arnold web,

as chaotic orbits can switch from one resonance channel to another only in the vicinity of

the junctions. A junction of resonance channels in 4d maps has an intricate phase-space

structure containing periodic orbits, regular 2d tori, families of 1d tori and invariant

manifolds, see Sec. 3.2.2. Consequently, the dynamics at a junction are complicated,

supposedly governed by several intertwined transport mechanisms, as mentioned in

Sec. 2.5. As the power-law trapping is governed by open resonance channels, only

junctions of open resonance channels are considered here. An examination of the most

prominent junctions yields results analogous to the trapping at resonances, see Sec. 4.4.

Hence, the junctions can be neglected for the power-law trapping. For the escape times

from the junctions power-law decays are observed as expected from the self-similarity

of the regular structures along the class hierarchy.

A chaotic orbit is considered to be trapped at a junction when its corresponding

frequencies (𝜈1, 𝜈2)(𝑡) are within a square of half-width ∆𝜈 for 𝑡 ∈ [𝑡0 + 1, 𝑡0 + 𝑇 ] and

outside for 𝑡 = 𝑡0 and 𝑡 = 𝑡0 + 𝑇 + 1, with 𝑇 denoting the escape time 𝑇 . Only the

junctions with the most frequency pairs trapped at them are considered. The analogous

statistics obtained for resonances in Sec. 4.4 are now obtained for junctions. The results

for the generic map 𝐹SC are shown in Fig. 4.16 for which ∆𝜈 = 10−5 is chosen, which

is ten times the half-width used for the resonances. The six considered junctions, see

caption of the �gure, all lie on the resonance 15 : −5 : 3. In Fig. 4.16(a) the black

line, representing orbits that are trapped at least once at any of the junctions, is well

below the red line which represents the remaining orbits. Thus, even for times up to

𝑇 = 108 over 50% of the orbits trapped at the horseshoe are not trapped even once at
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Figure 4.16: Statistics of escape times 𝑃 (𝑇 ) for individual resonance junctions of the
map 𝐹SC similar to Fig. 4.14. As vicinity of the junctions (𝜈1, 𝜈2) = (𝑛1/𝑚1, 𝑛2/𝑚2) a
square of half-width Δ𝜈 = 10−5 is chosen. In (b) the resulting statistics 𝑃 (𝑇 ) for the
junctions (5/17, 24/85), (53/180, 17/60), (28/95, 27/95), (59/200, 57/200), (31/105, 2/7),
(13/44, 63/220) (black to red) are shown with a factor 10−6 for visibility.
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one of most relevant junctions. Only about 0.5% of all frequency pairs |Ωhorseshoe|, see
Sec. 4.3, are trapped at any of these junctions. This puts the high densities observed

at these junctions in Sec. 4.1 into perspective. On top of that, the decays for both

groups of chaotic orbits resemble the decay for the horseshoe shown as bright blue line.

In conclusion, just like the deeper classes of resonances the junctions do not seem to

be essential for the power-law trapping. The statistics of the escape times 𝑇 from the

individual junctions are shown in Fig. 4.16(b). Again power-law decays are observed

with similar but distinct exponents and orbits are trapped up to ∼ 106 iterations, as

for the resonances in Sec. 4.4. For both maps these power-law decays are attributed to

the regular region around the ee periodic orbit present at each junction. This could be

veri�ed by 3d projections of the trapped points along with the ee periodic orbit. As in

the previous section, this is only checked for a few examples and not shown here. The

regular regions around the ee periodic orbit represent the deeper class of the junction

and are expected to be subject to the same transport mechanisms as any regular region.

In Fig. 4.17 the results for the four most important junctions of the coupled twist

maps 𝐹Twist are presented analogous to Fig. 4.16. The half-width ∆𝜈 = 10−6 is again

chosen ten times bigger than for the resonances in Fig. 4.15. The results are in principle

in agreement with the results discussed above for the horseshoe of the generic map 𝐹SC.

In Fig. 4.17 the fraction of orbits being trapped at least once at any of the junctions is

about 10% at all times. The higher fraction in case of the horseshoe in Fig. 4.16 may

be caused by the fact that the 15 : −5 : 3 runs along the surface of the horseshoe and

closer towards the chaotic sea. Due to this, chaotic orbits have to pass this resonance

when approaching the horseshoe and may be more likely to get trapped at the junctions

on it. About 6% of all frequency pairs |ΩTwist|, see Sec. 4.3, are trapped at any of the

junctions considered for the map 𝐹Twist and these junctions are observed to trap chaotic

orbits up to ∼ 107 . . . 108 iterations. This means a di�erence in scale to the results of

the horseshoe, which is also observed for the resonances in Sec. 4.4.
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Figure 4.17: Statistics of escape times 𝑃 (𝑇 ) for individual resonance junctions of the
map 𝐹Twist similar to Fig. 4.15. As vicinity of the junctions (𝜈1, 𝜈2) = (𝑛1/𝑚1, 𝑛2/𝑚2)
a square of half-width Δ𝜈 = 10−6 is chosen. In (b) the resulting statistics 𝑃 (𝑇 ) for
the junctions (9/14, 11/14, 6), (7/11, 9/11, 6), (2/3, 7/9, 6), (2/3, 3/4, 6) (black to red) are
shown with a factor 10−5 for visibility.
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4.6 IV) Transport along a resonance channel

The previous sections conclude that transport across resonance channels and trapping in

deeper classes of the hierarchy is de�cient to generate the observed power-law trapping.

The remaining transport phenomenon is transport along the resonance channels, which

is exclusive to higher-dimensional maps. Several mechanisms have been proposed in the

literature in order to describe the details of this transport mainly in terms of Arnold

di�usion [48, 49, 52, 54, 55, 201]. A useful paradigm for the transport along a resonance

channel in 4d maps is the chaotic layer of a resonance in one degree of freedom driving

the action of the other degree of freedom, while the back-coupling to the chaotic layer

is negligible [62, 66]. More precisely, the coordinates in the �rst degree of freedom are

located in the layer of the resonance and thus are mapped chaotically. Due to the

coupling this induces a transport in the second degree of freedom, even if this degree

of freedom is integrable in the uncoupled case. The chaotic layer of the resonance is

often treated as a stochastic driving and usually called stochastic layer. While the

following sections also rely on this simpli�cation, note that a chaotic layer is not always

su�ciently modeled by a stochastic layer [66].

In this section, the transport along a single channel is simply viewed as a one-

dimensional stochastic process with local di�usion and drift coe�cients. Using an

absorbing barrier along the channel to simulate the escape to the chaotic sea allows

to investigate the survival probabilities and compare them to the statistics of Poincaré

recurrences from the 4d maps. While a trapped orbit of a 4d map visits many channels,

here it is surmised that the stochastic model for each channel results in a similar power-

law, thus the mechanism of the power-law trapping can be reduced to a single channel.

A relation between drift and di�usion coe�cients is proposed which can generate the

desired power-law decay. Furthermore, a drift which satis�es this relation is conjectured

based on the change of the volume of the stochastic layer along the channel.

Numerical studies are performed on the resonance channel 0 : 6 : 5 of the coupled

twist maps 𝐹Twist with uncoupled coordinates (𝐼1, 𝐼2,Θ1,Θ2). For this channel the

4d transport can be separated into the stochastic layer of a 2d map ∼ (𝐼2,Θ2), a

rotation ∼ Θ1, and the transport along the channel ∼ 𝐼1. The goal is to numerically

extract the local drift and di�usion coe�cients in order to verify the proposed relation

between these coe�cients and to reproduce the observed exponent 𝛾 of the power-

law decay 𝑃 (𝑇 ) ∼ 𝑇−𝛾 predicted by to the corresponding stochastic model. However,

the measurement of the coe�cients turns out to be extremely di�cult. Within the

framework of this thesis several ideas to overcome these di�culties are discussed. The

extraction of the local drift and di�usion coe�cients remains a subject for future studies.
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In Sec. 4.6.1 the decay of survival probabilities for several relevant, one-dimensional

stochastic processes are reviewed. Based on this review, the necessity of a non-zero

drift is conjectured in order to obtain a power-law decay with the desired exponents.

A stochastic model generating these exponents is presented. In Sec. 4.6.2 two possible

physical origins of such a drift are presented, i.e. one known e�ect which is due to the

curvature of the regular tori and one newly proposed e�ect, which is related to the

volume of the stochastic layer. In Sec. 4.6.3 the volume of the layer along the resonance

channel 0 : 6 : 5 of the map 𝐹Twist is measured, revealing a strong increase of this volume

towards the chaotic sea. The measurement of the drift and di�usion coe�cients along

the channel is discussed in Appendix A.1.

4.6.1 Stochastic processes and power-law escape

Chaotic dynamics are often modeled as stochastic Markovian processes, i.e. using a

Fokker-Planck equation [66, 202]. For the chaotic transport along a resonance channel

such a stochastic process should be one-dimensional with an absorbing barrier repre-

senting the escape to the chaotic sea. Possibly a re�ecting barrier can be added which

simulates the �nite length of the resonance channel, i.e. its intersection with the central

family of elliptic 1d tori, see Sec. 3.1. Furthermore, the discussion of the eigenvalues of

the local covariance matrix in frequency space in Sec. 4.1 suggests that the di�usion co-

e�cient should increase towards the absorbing barrier. In the following, some analytic

concepts for stochastic processes are introduced including the survival probability which

is comparable to the statistics of the Poincaré recurrences used for the symplectic maps.

These statistics are discussed for several possible one-dimensional stochastic processes.

Two types of processes are considered: Firstly, heterogeneous processes, i.e. with non-

constant functions for the drift and di�usion coe�cients of the Fokker-Planck equation,

and, secondly, processes with anomalous di�usion, like continuous time random walks

and fractional Brownian motion. The goal is to �nd a process for which the survival

probability exhibits a power-law decay 𝑃 (𝑇 ) ∼ 𝑇−𝛾 with a su�ciently large exponent

𝛾 > 1, as expected from Secs. 3.5.1 and 4.1 and Ref. [37]. It is conjectured that a

drift towards the chaotic sea is required to generate such a power-law. In particular, a

relation between drift and di�usion coe�cients is proposed which is shown to produce

a wide range of power-law decays. A physical motivation for this relation is given in

the next section.
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For one dimension, the Fokker-Planck equation of the probability density 𝜌(𝑥, 𝑡) at

point 𝑥 ∈ R and time 𝑡 reads [203]

𝜕𝜌(𝑥, 𝑡)

𝜕𝑡
= − 𝜕

𝜕𝑥
𝐽(𝑥, 𝑡) =

(︂
− 𝜕

𝜕𝑥
𝑣(𝑥, 𝑡) +

𝜕2

(𝜕𝑥)2
𝐷(𝑥, 𝑡)

)︂
𝜌(𝑥, 𝑡) (4.3)

where 𝐽(𝑥, 𝑡) denotes the probability current, 𝑣(𝑥, 𝑡) is the drift de�ned by the expec-

tation value over possible continuous paths 𝑥(𝑡)

𝑣(𝑥, 𝑡) = lim
Δ𝑡→0

1

∆𝑡
E[𝑥(𝑡 + ∆𝑡) − 𝑥(𝑡)]𝑥(𝑡)=𝑥 , (4.4)

and analogously 𝐷(𝑥, 𝑡) is the di�usion coe�cient de�ned by

𝐷(𝑥, 𝑡) = lim
Δ𝑡→0

1

2∆𝑡
E[(𝑥(𝑡 + ∆𝑡) − 𝑥(𝑡))2]𝑥(𝑡)=𝑥 . (4.5)

An absorbing barrier at 𝑥𝑎 is realized by the condition

𝜌(𝑥𝑎, 𝑡) = 0

and a re�ecting barrier at 𝑥𝑟 by

𝐽(𝑥𝑟, 𝑡) = 𝑣(𝑥𝑟, 𝑡)𝜌(𝑥𝑟, 𝑡) −
𝜕

𝜕𝑥
𝐷(𝑥𝑟, 𝑡)𝜌(𝑥𝑟, 𝑡) = 0 .

The survival probability 𝑆(𝑡) for a process in an interval 𝑥 ∈ [𝑥𝐴, 𝑥𝐸] is de�ned by the

probability within the interval

𝑆(𝑡) =

𝑥𝐸∫︁
𝑥𝐴

d𝑥 𝜌(𝑥, 𝑡) .

The standard setup is 𝑆(0) = 1 with at least one of the boundaries 𝑥𝐴 or 𝑥𝐸 being

an absorbing barrier such that 𝑆(𝑡) decreases over time. Basically, 𝑆(𝑡) corresponds

to the statistics of Poincaré recurrences 𝑃 (𝑇 ) except that for 𝑆(𝑡) usually the initial

condition is within the interval [𝑥𝐴, 𝑥𝐸]. Note that in case of the Poincaré recurrences

starting chaotic orbits outside of the recurrence region results in the same power-law

decay at large times, as long as the orbits start far away from regular structures. For

a transformation to a coordinate 𝑦(𝑥) the Fokker-Planck equation Eq. (4.3) transforms
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to

𝜕𝜌(𝑦, 𝑡)

𝜕𝑡
=

(︂
− 𝜕

𝜕𝑦
(𝑣(𝑥(𝑦), 𝑡)𝑦′ + 𝐷(𝑥(𝑦), 𝑡)𝑦′′) +

𝜕2

(𝜕𝑦)2
𝐷(𝑥(𝑦), 𝑡) · (𝑦′)2

)︂
𝜌(𝑦, 𝑡)

=

(︂
− 𝜕

𝜕𝑦
𝑣(𝑦, 𝑡) +

𝜕2

(𝜕𝑦)2
𝐷̃(𝑦, 𝑡)

)︂
𝜌(𝑦, 𝑡) (4.6)

where 𝑦′ and 𝑦′′ are the �rst and second derivatives of 𝑦(𝑥). Such a transformation does

not change the time scales meaning that the survival probabilities for the processes of

Eq. (4.3) and Eq. (4.6) with corresponding barriers and initial conditions are identical.

Thus, the survival probability 𝑆(𝑡) for a particular setup of drift 𝑣(𝑥, 𝑡) and di�usion

coe�cients 𝐷(𝑥, 𝑡), initial conditions 𝜌(𝑥, 0) and barriers 𝑥𝐴, 𝑥𝐸 applies to a whole class

of setups 𝑣(𝑦, 𝑡), 𝐷̃(𝑦, 𝑡), 𝜌(𝑦, 0) = 𝜌(𝑥(𝑦), 0)/𝑦′, 𝑦(𝑥𝐴), 𝑦(𝑥𝐸) connected by transforma-

tions 𝑦(𝑥) according to Eq. (4.6). As only autonomous processes are of interest here,

the time dependence of the coe�cients is dropped in the following and for brevity the

coordinate 𝑥 is assumed to be unitless.

The survival probabilities for some common setups are presented in the following.

For a random walk 𝑣(𝑥) = 0, 𝐷(𝑥) = 𝐷 with initial condition 𝜌(𝑥, 0) = 𝛿(𝑥 − 𝑥0), an

absorbing barrier at 𝑥𝐴 = 0 < 𝑥0 and 𝑥𝐸 = ∞ follows [204, Section 3.2.2.1] [205, page

21]

𝑆(𝑡) = erfc

(︂
𝑥0√
4𝐷𝑡

)︂
𝑡≫ 𝑥20

4𝐷∼ |𝑥0 − 𝑥𝐴|√
π𝐷

· 𝑡− 1
2 ∼ 𝑡−

1
2 . (4.7)

The Sparre-Andersen theorem states that this asymptotic of 𝑆(𝑡) applies to a wide class

of random walkers [206]. Consequently, a 𝑁 -dimensional random walk has 𝑆(𝑡) ∼ 𝑡−𝑁/2.

For instance, the statistics of residence times 𝑃 (𝑇 ) in the Arnold web has been observed

to decay like a one- or two-dimensional random walk yielding 𝑃 (𝑇 ) ∼ 𝑇−1/2 or 𝑃 (𝑇 ) ∼
𝑇−1 which is attributed to transport just along resonance channels or transport along

and across channels, respectively [64,125]. In case of a �nite interval, i.e. 𝑥𝐸 = 𝐿 < ∞,

the decay of 𝑆(𝑡) is faster [204, Sections 2.2.1.1 and 2.2.2.1] [207]. If there is a re�ecting

barrier at 𝑥𝐸 for the above random walk, then this barrier becomes relevant at times 𝜏

and the current 𝐽(𝑥𝐴, 𝑡) at the absorbing barrier exhibits an exponential cut-o�

𝐽(𝑥𝐴, 𝑡) ∼ 𝑡−
3
2 exp

(︂
− 𝑡

𝜏

)︂
𝜏 ∼ 𝐿2/𝐷 .
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A second absorbing barrier at 𝑥𝐸 causes also an exponential cut-o� at large times

𝑆(𝑡) ∼ exp

(︂
−𝐷π2𝑡

𝐿2

)︂
.

For a random walk with 𝑣(𝑥) = 𝑣, 𝐷(𝑥) = 𝐷, an initial condition 𝜌(𝑥, 0) = 𝛿(𝑥−𝑥0), an

absorbing barrier at 𝑥𝐴 = 0 < 𝑥0, and 𝑥𝐸 = ∞ follows for a drift towards the absorbing

barrier 𝑣 < 0 [143] [204, Section 3.2.2.2]

𝑆(𝑡) =
1

2

(︂
erfc

(︂
𝑇 − 𝛽

𝑇

)︂
− exp(4𝛽) erfc

(︂
𝑇 +

𝛽

𝑇

)︂)︂
with 𝛽 = −𝑥0𝑣

4𝐷
> 0 𝑇 =

√︂
𝑣2𝑡

4𝐷

and for a drift away from the absorbing barrier 𝑣 > 0, see Ref. [204] and own calculations,

𝑆(𝑡) = (1 − exp(4𝛽)) − 1

2

(︂
erfc

(︂
𝑇 − 𝛽

𝑇

)︂
− exp(4𝛽) erfc

(︂
𝑇 +

𝛽

𝑇

)︂)︂
with 𝛽, 𝑇 as before. Note that in the latter case

∫︀∞
0

d𝑡𝐽(0, 𝑡) < 1. For large times 𝑡 ≫ 1

it is estimated [143,204]

𝑆(𝑡) ∼

⎧⎨⎩ 1 − exp
(︀
−𝑣𝑥0

𝐷

)︀
= const. > 0 𝑣 > 0

exp(2𝛽)𝑥0

𝑣2

√︁
4𝐷
π

exp
(︁
−𝑣2𝑡

4𝐷

)︁
𝑡−

3
2 𝑣 < 0

(4.8)

Note that according to Eq. (4.6) this survival probability also applies to the transformed

process 𝑦 = exp(𝑥) with 𝑣(𝑦) = (𝑣 + 𝐷)𝑦, 𝐷̃(𝑦) = 𝐷𝑦2 and corresponding interval

boundaries and initial conditions [143]. In particular, choosing 𝑣 + 𝐷 = 0 this is a

stochastic process with no drift and a di�usion coe�cient increasing quadratic away

from the absorbing barrier square. Furthermore, if there is a second absorbing barrier

at 𝑥𝐸 = 𝐿 < ∞ then the survival probability 𝑆(𝑡) of the above random walk with drift

exhibits an exponential cut-o� at large times [204, Section 2.2.1.2.]

𝑆(𝑡) ∼ exp

(︂
− 𝑡

𝜏

)︂
𝜏 =

𝐿2

𝐷π2

1

1 +
(︀

𝑣𝐿
2π𝐷

)︀2 𝑣≫1∼ 4𝐷

𝑣2

regardless of the direction of the drift. For a stochastic process with linearly increasing

di�usion coe�cient 𝐷(𝑥) = 𝑥, an absorbing barrier at 𝑥𝐴 = 0, as well as 𝑣(𝑥) = 0,
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𝑥0 > 0, 𝑥𝐸 < ∞ leads to [208]

𝑆(𝑡) = 1 − exp
(︁
−𝑥0

𝑡

)︁
𝑡≫1∼ 𝑡−1 . (4.9)

Note that 𝑥𝐴 is a so called natural barrier, i.e. the chosen coe�cients 𝑣(𝑥), 𝐷(𝑥) them-

selves cause a propagation of the probability density 𝜌(𝑥, 𝑡) which simulates an absorp-

tion at 𝑥𝐴 [208]. According to Eq. (4.6) this survival probability also applies to the

transformed process 𝑦 = 2
√
𝑥 with 𝑣(𝑦) = −1/𝑦, 𝐷̃(𝑦) = 1 and corresponding interval

boundaries and initial conditions. The transformed process is a random walk with a

drift towards the absorbing barrier which increases as this barrier is approached. For a

process

𝜕𝜌(𝑥, 𝑡)

𝜕𝑡
=

𝜕

𝜕𝑥
𝑥𝛼𝜕𝜌(𝑥, 𝑡)

𝜕𝑥
= − 𝜕

𝜕𝑥
𝛼𝑥𝛼−1𝜌(𝑥, 𝑡) +

𝜕2

(𝜕𝑥)2
𝑥𝛼𝜌(𝑥, 𝑡) (4.10)

with 𝑣(𝑥) = 𝛼𝑥𝛼−1, 𝐷(𝑥) = 𝑥𝛼, 𝛼 > 2 with initial condition 𝜌(𝑥, 0) = 𝛿(𝑥 − 𝑥0), a

natural boundary at 𝑥𝐴 = 0 < 𝑥0 and an absorbing barrier at some large 𝑥𝐸 > 𝑥0

follows for large times [209]

𝑆(𝑡) ∼ 𝑡−𝛾 𝛾 =
𝛼− 1

𝛼− 2

with an exponent 𝛾 ∈ (1,∞). The drift and di�usion coe�cients increase towards

the absorbing barrier. The survival probability also applies to the transformed process

𝑦 = −𝑥−(𝛼−1)/(𝛼− 1), which has no drift 𝑣(𝑦) = 0, 𝐷̃(𝑦) = ((1−𝛼)𝑦)𝛼/(𝛼−1) and corre-

sponding interval boundaries 𝑦(𝑥𝐴) = −∞, 𝑦(𝑥𝐸) < 0 and initial conditions. However,

the di�usion coe�cient of this process increases away from the absorbing barrier at 𝑦(𝑥𝐸)

with an exponent 𝐷̃(𝑦) ∼ 𝑦𝛽, 𝛽 ∈ (1, 2). Simulations using the Euler-Maruyama scheme

for exponential or quadratic spatial dependence of the di�usion coe�cient roughly show

power-law decays 𝑆(𝑡) ∼ 𝑡−𝛾 with 𝛾 ≈ 1/2. These calculations are not shown here but

see Appendix A.2 for the basic procedure. Exponential, power-law and logarithmic de-

pendencies of the di�usion coe�cient are known to lead to anomalous di�usion [210�212]

and for the latter the survival probability 𝑆(𝑡) ∼ 𝑡−1/2 is observed [212]. Anomalous

di�usion, i.e. E[𝑥2(𝑡)] ∼ 𝑡𝛼 with 𝛼 ̸= 1, is often modeled by continuous time ran-

dom walks (CTRW) and fractional Brownian motion. For 0 < 𝛼 < 2 a Levy-type

CTRW yields 𝑆(𝑡) ∼ 𝑡−𝛼/2 and fractional Brownian motion 𝑆(𝑡) ∼ 𝑡𝛼/2−1 [213], see also

Refs. [214,215]. These exponents 𝛾 ∈ [0, 1] for 𝑆(𝑡) ∼ 𝑡−𝛾 are insu�cient to explain the

power laws observed for the trapping in 4d maps.
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In conclusion, most of the reviewed one-dimensional stochastic processes do either

not lead to a power-law decay of the survival probability 𝑆(𝑡) or to power-law decays

𝑆(𝑡) ∼ 𝑡−𝛾 with exponents that are too small, i.e. 𝛾 ≤ 1. In particular, processes without

drift seem to require a di�usion coe�cient that decreases towards the absorbing barrier

to generate a power-law with a su�ciently large exponent 𝛾 > 1, e.g., more than linearly

or less than quadratically increasing, see the processes of Eqs. (4.8) and (4.9) and the

transformed process of Eq. (4.10). This is opposite to what is expected for the transport

along a resonance channel. The most promising process has both drift and di�usion

coe�cients increasing towards the absorbing barrier, see Eq. (4.10). More precisely, the

coe�cients ful�ll

𝐷(𝑥, 𝛼) = 𝑥𝛼 𝑣(𝑥, 𝛼) =
𝜕𝐷(𝑥, 𝛼)

𝜕𝑥
= 𝛼

𝐷(𝑥, 𝛼)

𝑥

from which an exponent 𝛾 follows which is governed by the parameter 𝛼 > 2. This

process is generalized in the following to

𝐷(𝑥, 𝛼) = 𝑥𝛼 𝑣(𝑥, 𝛼) = 𝛿
𝐷(𝑥, 𝛼)

𝑥
(4.11)

with two independent parameters 𝛼 > 2, 𝛿 > 1. Choosing the same parameters as for

Eq. (4.10), i.e. 𝑥𝐴 = 0, 𝑥𝐴 < 𝑥0 < 𝑥𝐸 and the transformation

𝑦(𝑥) = − 𝑥1−𝛼
2

1 − 𝛼
2

leads according to Eq. (4.6) to 𝐷̃(𝑦) = 1 and

𝑣(𝑦) = − 𝑏

𝑦
𝑏 =

2𝛿 − 𝛼

𝛼− 2
(4.12)

with 𝑦 ∈ [−∞, 0], i.e. the absorbing barrier being at 𝑦(𝑥𝐸) ≤ 0. Guessing an ansatz for

the probability density from numerical simulations for 𝑡 ≫ 1

𝜌(𝑦, 𝑡 ≫ 1) =
𝑦

2𝑡𝑐
exp

(︂
−𝑦2

4𝑡

)︂
(4.13)

it is obtained 𝑐 = (𝑏 + 3)/2 from the Fokker-Planck equation Eq. (4.3). For 𝑥𝐸 → ∞
follows 𝑦(𝑥𝐸) → 0 and for the survival probability for large times

𝑆(𝑡 ≫ 1) =

∞∫︁
0

d𝑦 𝜌(𝑦, 𝑡) = 𝑡−𝛾 𝛾 =
𝛿 − 1

𝛼− 2
(4.14)
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with 𝛼 > 2, 𝛿 > 1, and 𝛾 ∈ (0,∞). Not only is this range of the exponent 𝛾 for

the generalized process Eq. (4.11) wider than for the process Eq. (4.10), but also the

generalized process is capable of generating this range of exponents for any chosen 𝛼 > 2.

There are some special cases for 𝛼 and 𝛿. The transformation 𝑧(𝑦) = 𝑦𝑏+1/(𝑏+ 1) leads

to a process without drift

˜̃𝑣(𝑧) = 0 ˜̃𝐷(𝑧) = (2𝛾𝑧)𝑑 𝑑 =
2𝛿 − 𝛼

𝛿 − 1

with 𝑑 ∈ (−∞, 2). For 𝛼 = 2𝛿 it follows 𝑑 = 0 and 𝛾 = 1/2, i.e. the random walk

Eq. (4.7) is a special case of the generalized process Eq. (4.11). For 𝛼 = 𝛿 + 1 it follows

𝑑 = 1 and 𝛾 = 1, i.e. the process Eq. (4.9) is a special case of Eq. (4.11).

4.6.2 Origin of drift along resonances

According to the previous section a drift is required to generate the desired power-law

trapping from the transport along a single resonance channel. In particular, a power-law

increase of the di�usion coe�cient towards the chaotic sea and a special relation between

drift and di�usion coe�cient is suggested, see Eq. (4.11). It is worth mentioning that

even if the local di�usion coe�cients along a channel are very precisely determined,

the long-term transport along the channel can not be explained [66]. This may also

hint towards the presence of a drift, which has been neglected so far. In the following,

two possible physical origins of such a drift are presented. Firstly, the drift due to the

curvature of the regular tori is reviewed [143, 144, 216]. Secondly, a drift due to the

change of the volume of the chaotic layer along the resonance channel is proposed and

discussed. This also provides an argument for the increase of the di�usion coe�cient of

the transport along the channel towards the chaotic sea.

A drift due to the non-zero curvature of the tori has been quanti�ed for stochastically

perturbed 2d maps [143] and its existence has been rigorously proven for a setting

directly related to the transport along resonance channels [216]. As before, consider

the transport along a resonance channel as the stochastic layer of a resonance in the

�rst degree of freedom driving a transport in the second degree of freedom due to a

coupling. Assume that without the coupling this driven degree of freedom is essentially

a free rotor. In this case the driving due to the �rst degree of freedom may be modeled

by white noise. More precisely, the Ito di�erential equation [203]

d𝑥 = 𝑣(𝑥, 𝑡)d𝑡 + 𝜎(𝑥, 𝑡)d𝑊
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which is equivalent to the multi-dimensional Fokker-Planck equation

𝜕𝜌(𝑥, 𝑡)

𝜕𝑡
=

(︃
−
∑︁
𝑖

𝜕

𝜕𝑥𝑖

𝑣𝑖(𝑥, 𝑡) +
∑︁
𝑖,𝑗

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗

𝜎𝑖𝑘(𝑥, 𝑡)𝜎𝑗𝑘(𝑥, 𝑡)

)︃
𝜌(𝑥, 𝑡)

and which transforms to 𝑦(𝑥) according Ito's formula

d𝑦(𝑥) =

(︃∑︁
𝑖

𝑣𝑖(𝑥, 𝑡)
𝜕𝑦(𝑥)

𝜕𝑥𝑖

+
∑︁
𝑖,𝑗

𝜎𝑖𝑘(𝑥, 𝑡)𝜎𝑗𝑘(𝑥, 𝑡)
𝜕2𝑦(𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗

)︃
d𝑡

+ 𝜎𝑖𝑗(𝑥, 𝑡)
𝜕𝑦(𝑥)

𝜕𝑥𝑖

d𝑊𝑗 (4.15)

with vectors 𝑥,𝑣 ∈ R𝑁 , the 𝑁 ×𝑁 matrix 𝜎 and the di�erential of an 𝑁 -dimensional

Wiener process d𝑊 , reads for the driven degree of freedom

d𝑥 = 𝑓(𝑥, 𝑡)d𝑊 (4.16)

with some functional 𝑓(𝑥, 𝑡) and 𝑁 = 2. The vector 𝑥 = (𝑝, 𝑞) are the momentum-

position coordinates in the free rotor. As only the transport in the action 𝐼 = (𝑝2 +

𝑞2)/2 = 𝑟2/2 is of interest and thus assuming 𝑓(𝑥, 𝑡) = 𝑓(𝑟, 𝑡), the Ito di�erential

equation for the radius 𝑟 follows from transforming Eq. (4.16) according to Eq. (4.15)

d𝑟 =
𝑓(𝑟, 𝑡)2

2𝑟
d𝑡 + 𝑓(𝑟, 𝑡)d𝑊 = 𝑣(𝑟, 𝑡)d𝑡 + 𝜎(𝑟, 𝑡)⏟  ⏞  √

2𝐷(𝑟,𝑡)

d𝑊 (4.17)

where

𝑑𝑊 =
𝑝

𝑟
d𝑊𝑝 +

𝑞

𝑟
d𝑊𝑞 = sin Θ d𝑊𝑝 + cos Θ d𝑊𝑞

is a Wiener process. From Eq. (4.17) a relation between drift and di�usion coe�cients

is extracted

𝑣(𝑟, 𝑡) =
𝐷(𝑟, 𝑡)

𝑟
. (4.18)

This drift towards bigger radius 𝑟 is due to the curvature 1/𝑟 with 𝑣(𝑟, 𝑡) → 0 for

𝑟 → ∞. In particular, in a system without curved regular tori, e.g., 𝐼 = 𝑝, there is no

drift. As 𝑟 = 0 corresponds in this setting to an elliptic �xed point in the driven degree

of freedom, the drift described by Eq. (4.18) points essentially towards the chaotic sea.

For a power-law increase 𝐷(𝑟, 𝑡) = 𝑟𝛼 the drift of Eq. (4.18) corresponds to the limiting
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case 𝛿 = 1 of the generalized process Eq. (4.11). Another interpretation of Eq. (4.18) is

that the drift arises from the fact that there is more volume at bigger radius [143]. The

volume of a circular ring of width ∆𝑟 is 𝑉 (𝑟) = 2π𝑟∆𝑟 with the derivative 𝑉 ′(𝑟) = 2π∆𝑟.

Thus, Eq. (4.18) may be expressed with respect to the relative volume change

𝑣(𝑟, 𝑡) =
𝑉 ′(𝑟)

𝑉 (𝑟)
𝐷(𝑟, 𝑡) . (4.19)

It is worth mentioning that for a 4dmap in which the curvature of the tori is suppressed,

i.e. a 4d version of the designed map of Ref. [28], in some cases an intermediate power-

law trapping 𝑃 (𝑇 ) ∼ 𝑡−𝛾 with 𝛾 = 1 is observed, which is a much slower decay than for

generic 4d maps. However, this power law is only observed for two orders of magnitude

while a faster power-law decay takes over for longer times and thus the results are not

shown here.

While the drift described by Eq. (4.19) is essentially due to a volume change in the

driven degree of freedom, there might be also a drift due to a volume change of the

chaotic layer of the driving degree of freedom. Consider the resonance channel of an

uncoupled resonance 0 : 𝑚 : 𝑛 in action space (𝐼1, 𝐼2), where 𝐼1 is the driven action along

the channel and 𝐼2 the driving action that describes the �uctuations perpendicular

to the channel. Denoting the action corresponding to the rational frequency 𝜈2 =

𝑛/𝑚 as 𝐼𝑛/𝑚 and assuming a symmetric resonance channel around the resonance line,

the borders of the resonance channel are 𝐼2 ∈ [𝐼𝑛/𝑚 − 𝑏(𝐼1), 𝐼𝑛/𝑚 + 𝑏(𝐼1)]. Assuming

further that for the minimal time step ∆𝑡 an ensemble of chaotic initial conditions

{(𝐼1, 𝐼2) : 𝐼1 = 𝐼01 , 𝐼2 ∈ [𝐼𝑛/𝑚 − 𝑏(𝐼01 ), 𝐼𝑛/𝑚 + 𝑏(𝐼01 )]} is uniformly mapped into the region

{(𝐼1, 𝐼2) : |𝐼1 − 𝐼01 | ≤ ∆𝐼1(𝐼
0
1 ), 𝐼2 ∈ [𝐼𝑛/𝑚 − 𝑏(𝐼1), 𝐼𝑛/𝑚 + 𝑏(𝐼1)]} a drift 𝑣(𝐼01 ) along the

channel according to Eq. (4.4) follows

𝑣(𝐼01 ) =
1

∆𝑡
E[𝐼1 − 𝐼01 ]𝐼1 =

𝐼01+Δ𝐼1(𝐼01 )∫︀
𝐼01−Δ𝐼1(𝐼01 )

d𝐼1(𝐼1 − 𝐼01 )
𝐼𝑛/𝑚+𝑏(𝐼1)∫︀
𝐼𝑛/𝑚−𝑏(𝐼1)

d𝐼2

∆𝑡
𝐼01+Δ𝐼1(𝐼01 )∫︀
𝐼01−Δ𝐼1(𝐼01 )

d𝐼1

𝐼𝑛/𝑚+𝑏(𝐼1)∫︀
𝐼𝑛/𝑚−𝑏(𝐼1)

d𝐼2

(4.20)

which reads for ∆𝐼1(𝐼
0
1 ) ≪ 1 using the approximation 𝑏(𝐼1) ≈ 𝑏(𝐼01 ) + 𝑏′(𝐼01 )(𝐼1 − 𝐼01 )

𝑣(𝐼01 ) =
𝑏′(𝐼01 )

𝑏(𝐼01 )

∆𝐼1(𝐼
0
1 )2

3∆𝑡
. (4.21)
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Taking into account that the di�usion coe�cient 𝐷(𝐼01 ) reads according to Eq. (4.5)

𝐷(𝐼01 ) =
1

2∆𝑡
E[(𝐼1 − 𝐼01 )2]𝐼1 =

∆𝐼1(𝐼
0
1 )2

6∆𝑡
(4.22)

and the width 𝑉 (𝐼01 ) of the channel at 𝐼01 is 𝑉 (𝐼01 ) = 2𝑏(𝐼01 ) with the derivative 𝑉 ′(𝐼01 ) =

2𝑏′(𝐼01 ), one can write Eq. (4.21) analogously to Eq. (4.19)

𝑣(𝐼01 ) = 2
𝑉 ′(𝐼01 )

𝑉 (𝐼01 )
𝐷(𝐼01 ) . (4.23)

Note that the derivative in Eq. (4.19) is with respect to the radius 𝑟 and not the action 𝐼.

The expression of Eq. (4.23) is valid for all channels independently of the dimensionality

of the volume 𝑉 (𝐼01 ), as the corresponding term in Eq. (4.20) can be expressed by an

arbitrary volume

𝐼𝑛/𝑚+𝑏(𝐼1)∫︁
𝐼𝑛/𝑚−𝑏(𝐼1)

d𝐼2 ↦→ 𝑉 (𝐼1) ≈ 𝑉 (𝐼01 ) + 𝑉 ′(𝐼01 )(𝐼1 − 𝐼01 ) .

Note that for 𝑏′(𝐼01 ) = 0 a zero drift 𝑣(𝐼01 ) = 0 follows while the di�usion coe�cient

𝐷(𝐼1) is independent of the shape and width of the channel, i.e. Eq. (4.22) is consistent

with the variance of a uniform distribution. The numerics con�rm that Eq. (4.23) not

only applies for uniform distributions, but also for Gaussian distributions and ∆𝑡 → 0,

see Appendix A.2 for details. Also the drift for the case of �nite transport in 𝐼2, i.e.

∆𝐼2(𝐼
0
1 ) < 𝑏(𝐼01 ) is derived and the transition to Eq. (4.23) for ∆𝐼2(𝐼

0
1 ) > 2𝑏(𝐼01 ) is

shown.

The width of the channel is related to the volume of the chaotic layer of the driving

degree of freedom. This volume is not constant as the width of the layer or the size

of the regular islands embedded in the layer vary along the channel. It is reasonable

to assume that the width of the layer increases and the size of the islands decreases

on average towards the chaotic sea with local �uctuations due to crossing resonance

channels. Thus, Eq. (4.23) describes a drift towards the chaotic sea. As the layer

volume 𝑉 (𝐼1) is essentially determined by the width of the layer and this width is

proportional to the amplitude of the driving [62], the di�usion coe�cient 𝐷(𝐼1) should

roughly follow the course of the volume 𝑉 (𝐼1) and increase towards the chaotic sea.
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4.6.3 Numerical results

In the previous section, the presence of a drift along resonance channels is proposed

based on the change of volume of the stochastic layer of the driving degree of freedom.

As demonstrated with the stochastic model in Sec. 4.6.1 such a drift could explain the

power-law trapping by the transport along a single resonance channel. In this section,

the volume of the stochastic layer along the resonance channel 0 : 6 : 5 of the coupled

twist maps 𝐹Twist is numerically computed using a new method. Overall, this volume

is found to increase towards the chaotic sea faster than exponentially, which implies

considerable drift coe�cients in terms of Eq. (4.23). Due to the inhomogeneity of the

volume and the limited accuracy with which the transport can be measured, the presence

of this proposed drift could not be veri�ed numerically. In Appendix A.1 the attempts

to measure the drift and di�usion coe�cients along the channel are discussed in detail.

As announced in Sec. 3.5 the coupled twist maps 𝐹Twist are used for the measurements.

The measurements focus for the uncoupled resonance channel 0 : 6 : 5 from the generic

region B also visible in Figs. 3.7 and 3.8(b). This resonance occurs roughly speaking

in the second uncoupled degree of freedom (𝐼2,Θ2) and thus the transport along the

channel roughly corresponds to transport along the uncoupled action 𝐼1. In order to

focus on the transport along the channel and perform the volume measurements the

escape from the resonance channel as described in Secs. 4.2 and 4.3 should be avoided.

Hence, the measurements are restricted to the closed part of the channel, e.g., in terms of

the frequency space 𝜈1 < 0.625. As mentioned in Sec. 3.4 a resonance channel contains

a family of hyperbolic and a family of elliptic 1d tori. In the vicinity of hyperbolic 1d

tori along the channel initial regions Ω(𝐼01 ) ∈ [0, 10)2 × [−π,π)2 are de�ned which give

rise to chaotic orbits, i.e.

Ω(𝐼01 ) = {(𝐼1, 𝐼2,Θ1,Θ2) : 𝐼1 = 𝐼01 , 𝐼2 = 50 · (5/6 −
√

3 + 1) + 10−3 · ∆(𝐼01 ),

|Θ1 − π/2| < 10−2, |Θ2 − 0.01| < 10−3}
∆(𝐼01 ) = {3.8, 4.6, 4.6, 5, 6, 8, 8.5, 9, 9}
for 𝐼01 = {0.3, 0.325, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.605}

(4.24)

where ∆(𝐼01 ) for intermediate actions 𝐼01 follows from interpolation. Figure 4.18 shows

the uncoupled coordinates (𝐼1,Θ1,Θ2) and (𝐼2,Θ2,Θ1) of several chaotic orbits with

initial conditions at 𝐼01 = 0.6 according to Eq. (4.24). The chaotic orbits appear to

be scattered on surfaces 𝐼1(Θ1,Θ2), 𝐼
±
2 (Θ1,Θ2). These surfaces are indicated by the

black grids and can be approximated as explained in a moment. The action along the

channel ∼ 𝐼1 is described by a single surface 𝐼1(Θ1,Θ2), see Fig. 4.18(a). In contrast, in
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I1

Θ1

Θ2

time

(a) ∼ Along channel

I2

Θ2

Θ1

(b) ∼ Stochastic layer

Figure 4.18: Chaotic orbits within the resonance channel 0 : 6 : 5 of the coupled twist
maps 𝐹Twist in 3d projections. The 100 orbits from the initial region Ω(𝐼01 = 0.6), see
Eq. (4.24), are projected to the uncoupled action–angle coordinates (a) (𝐼1,Θ1,Θ2) and
(b) (𝐼2,Θ1,Θ2) with the iteration time 𝑡 ∈ [0, 6000] encoded in color. Approximations
(a) 𝐼2(Θ1,Θ2) and (b) 𝐼±2 (Θ1,Θ2) of the layers are indicated as a black grids, see text.
The coordinate axes are at (a) (0.2,−π,−π) and (b) (4.75,π/4,−π) (in (b) Θ1-axis is
inverted).

Fig. 4.18(b) a period-6 island chain is visible along the Θ2-coordinate as expected for the

resonance 0 : 6 : 5. Thus, the other action 𝐼2 requires at least an upper 𝐼
+
2 (Θ1,Θ2) and a

lower surface 𝐼−2 (Θ1,Θ2) with 𝐼+2 (Θ1,Θ2) > 𝐼−2 (Θ1,Θ2) for all Θ1, Θ2. In order to resolve

more details, a slice |Θ1 − π/4| < π/800 of Fig. 4.18(b) is shown in Fig. 4.19(a) with

many more chaotic orbits in green. This slice corresponds to the front of Fig. 4.18(b).

In this representation the resonance resembles the stochastic layer of a period-6 island

chain of a 2d symplectic map. In this sense, the 4d map has two additional dimensions:

a rotation ∼ Θ1 and the dimension along the resonance channel ∼ 𝐼1. Thus, the width

or volume of the resonance channel discussed in Sec. 4.6.2 corresponds to the 3d volume

of the stochastic layer in the coordinates (𝐼2,Θ2,Θ1).

The volume of the stochastic layer is changing considerably along the resonance chan-

nel as illustrated by a comparison of slices with chaotic orbits at 𝐼01 = 0.6 and 𝐼01 = 0.5

shown in Figs. 4.19(a) and 4.19(b), respectively. Despite this, the chaotic orbits in the

slice in Fig. 4.19(a) demonstrate the two main problems of the estimation of the volume

of this layer. Firstly, the volume of a layer is ill de�ned as chaotic orbits which started in

the stochastic layer explore adjacent island chains or go deeper into the island-around-

island hierarchy for longer iterations. For instance, at the bottom of the island chain

in Fig. 4.19(a) another thin island chain corresponding to the resonance −4 : 3 : 0 is

surrounded by chaotic orbits and another island chain is magni�ed in the left inset. As

the escape to other island chains is governed by partial barriers as shown in Sec. 4.2, the

density of chaotic points drops considerably outside the stochastic layer of the resonance

0 : 6 : 5. This is well visible in the right inset in Fig. 4.19(a). Secondly, the width of the

layer is varying over several orders of magnitude along the angle Θ2. This is illustrated
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Figure 4.19: Stochastic layer of the resonance channel 0 : 6 : 5 of the map 𝐹Twist displayed
in a 2d slice |Θ1 − π/4| < π/800 (𝐼1 projected) with 𝑁𝑝𝑡𝑠 points of chaotic orbits shown
in green. The layer is shown for two positions 𝐼01 ∈ {0.6, 0.5} along the channel, i.e. (a)
corresponds to the front of Fig. 4.18(b). The estimated borders of the stochastic layer
with 𝑁 = 800 and 𝑡 = 3000, see text, are indicated as black lines. The insets magnify
details of the layers.
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by comparison of the width in between the islands and the width magni�ed in the right

insets in Fig. 4.19. This fact makes a simple box-count approach unfeasible for the

volume estimate. It should be pointed out that the estimation of the layer volume for

2d maps faces the same problems.

In the following, a new procedure is presented which gives an estimate of the upper

and lower borders of the stochastic layer based on the chaotic orbits. These estimates

are included as black lines for both examples in Fig. 4.19 to demonstrate how well the

two mentioned problems are addressed: On the one hand the estimated borders ignore

outer regions and islands chains with less chaotic points. On the other hand the width

of the layer is well approximated both for thick and thin parts of the layer. In order to

obtain the borders, �rstly a grid in the angle coordinates with resolution 𝑁 is chosen.

For each grid point Ω𝑖𝑗, 𝑖, 𝑗 ∈ {0, 1, . . . 𝑁 − 1} with

Ω𝑖𝑗 =
{︁

Θ1,Θ2 ∈ [−π,π) : |Θ1 + 𝜃𝑖| <
π

𝑁
, |Θ2 + 𝜃𝑗| <

π

𝑁
,

𝜃𝑘 = π

(︂
2𝑘 + 1

𝑁
− 1

)︂}︂ (4.25)

the mean action E[𝐼2] of the layers, the mean actions E[𝐼up2 ] and E[𝐼 lo2 ] of the upper

and lower layer, and the standard deviation 𝜎up,lo of each of these layers are obtained

in three consecutive step. Each step uses an individual set Ω1
𝑖𝑗,Ω

2
𝑖𝑗, and Ω3

𝑖𝑗 of chaotic

orbits. For each step at the chosen position 𝐼01 along the resonance channel chaotic

orbits are iterated up to 𝑡. The �rst third of the iterations is considered to scatter the

chaotic orbits uniformly over the stochastic layer and is therefore neglected. Chaotic

orbits are started until at each grid point Ω𝑖𝑗 for each average at least 100 points of

the orbits are available. In the �rst step, the uncoupled action 𝐼2 of all points at a grid

point Ω1
𝑖𝑗 are averaged giving E[𝐼2]Ω1

𝑖𝑗
. In the second step, all points at a grid point Ω2

𝑖𝑗

are separated into upper 𝐼2 ≥ E[𝐼2]Ω1
𝑖𝑗
and lower points 𝐼2 < E[𝐼2]Ω1

𝑖𝑗
. The average of

the uncoupled action 𝐼2 for each set gives E[𝐼up2 ]Ω2
𝑖𝑗
and E[𝐼 lo2 ]Ω2

𝑖𝑗
, respectively. In the

third step, all points at a grid point Ω3
𝑖𝑗 are separated again into upper and lower points

and for each set the corresponding standard deviation is computed

𝜎up

Ω3
𝑖𝑗

=
√︁

E[(𝐼2 − E[𝐼up2 ]Ω2
𝑖𝑗

)2]Ω3
𝑖𝑗

𝜎lo
Ω3

𝑖𝑗
=
√︁

E[(𝐼2 − E[𝐼 lo2 ]Ω2
𝑖𝑗

)2]Ω3
𝑖𝑗
. (4.26)

Based on the presence of partial barriers, it is assumed that at each grid point Ω𝑖𝑗 the

points of the chaotic orbits are distributed uniformly within the borders of the stochastic

layer. As a one-dimensional, uniform distribution over �nite interval of length 2𝐿 has
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the variance 𝜎2 = 𝐿2/3, it follows for the borders of the stochastic layer

|𝐼2(𝜃𝑖, 𝜃𝑗) − E[𝐼up2 ]Ω2
𝑖𝑗
| ≤

√
3𝜎up

Ω3
𝑖𝑗

or |𝐼2(𝜃𝑖, 𝜃𝑗) − E[𝐼 lo2 ]Ω2
𝑖𝑗
| ≤

√
3𝜎lo

Ω3
𝑖𝑗

(4.27)

where for intermediate values of the angles linear interpolation is used. The resulting

borders for the examples in Fig. 4.19 are shown as black lines. Note that all the described

averages can in principle be obtained from the same set of chaotic orbits. However,

by dividing the procedure into three steps memory problems are avoided as not all

chaotic orbits but only the number of points and one sum at each grid point has to be

stored. The volume measurement is discussed in more detail in Appendix A.1 including

a comparison with results for a 2d map.

The volume 𝑉 (𝐼01 ) of the stochastic layer at 𝐼01 follows from its borders according to

Eqs. (4.25) and (4.27)

𝑉 (𝐼01 ) = 2
√

3

(︂
2π

𝑁

)︂2 𝑁−1∑︁
𝑖,𝑗=0

(︁
𝜎up

Ω3
𝑖𝑗

(𝐼01 ) + 𝜎lo
Ω3

𝑖𝑗
(𝐼01 )

)︁
. (4.28)

The volume 𝑉 (𝐼01 ) is computed along the channel 𝐼01 ∈ [0.3, 0.6] for a step size ∆𝐼01 =

5 · 10−3 with 𝑁 = 500, for a step size ∆𝐼01 = 5 · 10−2 with 𝑁 = 800, and 𝑡 =

{3000, 6000, 9000}. The results are displayed in Fig. 4.20(a), where for N = 800 large

squares are shown and for N = 500 the points are connected with lines as guide to the

eye. The colors red, green and blue correspond to the di�erent iteration times 𝑡. While

the volume increases with the times 𝑡, the overall trend of the volume 𝑉 (𝐼01 ) along the

channel appears to be relatively independent of them. Also the results for the di�erent

resolutions 𝑁 are consistent. The volume 𝑉 (𝐼01 ) increases relatively smooth towards the

chaotic sea apart from major distortions at small actions 𝐼01 < 0.37 and at 𝐼01 ∼ 0.56.

As suggested by Eq. (4.23) the relative volume change in between two adjacent points

along the channel 𝐼01 > 𝐼01 is computed according to

𝐼01 =
1

2

(︁
𝐼01 + 𝐼01

)︁
d𝐼01 =

(︁
𝐼01 − 𝐼01

)︁
𝑉 ′(𝐼01 )

𝑉 (𝐼01 )
=

2

𝑉 (𝐼01 ) + 𝑉 (𝐼01 )

𝑉 (𝐼01 ) − 𝑉 (𝐼01 )

d𝐼01
.

(4.29)

The results obtained from the data of Fig. 4.20(a) are depicted in Fig. 4.20(b) in cor-

responding fashion. For 𝑁 = 500 the relative volume change 𝑉 ′(𝐼01 )/𝑉 (𝐼01 ) �uctuates

considerably on small spatial scales with increasing amplitude towards the chaotic sea.

Even the sign of 𝑉 ′(𝐼01 )/𝑉 (𝐼01 ) �ips frequently. In particular, at the distortion 𝐼01 ∼ 0.56

the values range from −38 up to 135. Nevertheless, overall the relative volume change
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Figure 4.20: (a) Volume 𝑉 (𝐼01 ) of the stochastic layer along the resonance channel
0 : 6 : 5 of the map 𝐹Twist according to Eq. (4.28). The volume is estimated for
𝑡 ∈ {3000, 6000, 9000} (red, green, blue) and 𝑁 = 500 (lines) or 𝑁 = 800 (squares
without lines). (b) Relative volume change 𝑉 ′(𝐼01 )/𝑉 (𝐼01 ) computed from (a) according to
Eq. (4.29). Zero is indicated by the dashed line.



112 4.6 IV) Transport along a resonance channel

𝑉 ′(𝐼01 )/𝑉 (𝐼01 ) increases which is con�rmed by the squares representing the values for

𝑁 = 800 with lower resolution along the channel. This implies according to Eq. (4.23)

an overall drift towards the chaotic sea. Further, the squares for 𝑁 = 800 demonstrate

that the values of 𝑉 ′(𝐼01 )/𝑉 (𝐼01 ) increase faster than linear along the channel, implying

that the volume 𝑉 (𝐼01 ) increases faster than ∼ exp(𝐼01 )2. This is worth pointing out as

common assumptions for the width or size of the stochastic layer are ∼ exp(−𝐴/
√
𝜖) [62]

or ∼ √
𝜖 [39, 40], where 𝜖 denotes the perturbation strength. In the case of the reso-

nance 0 : 6 : 5 of the coupled twist maps 𝐹Twist this perturbation may be asserted,

see Sec. 3.5.1, as 𝜖 ∼ 𝑞31𝑞
2
2 ∼ 𝐼

3/2
1 . Thus, it seems that the common assumptions used

for near-integrable settings severely underestimate the volume increase along a generic

resonance channel. Rapidly widening resonance channels can also be seen in the �gures

of Ref. [38].

The relative volume change displayed in Fig. 4.20(b) predicts according to Eq. (4.23)

the relation between the local drift and di�usion coe�cients for the transport along the

resonance channel. However, all attempts to test this relation so far failed as the mea-

surement of the local coe�cients is very di�cult. This has two major reasons: On the

one hand, the �uctuations of the volume of the stochastic layer implies corresponding

�uctuations of the drift and di�usion coe�cients. As these rapid changes of the coe�-

cients appear on very small spatial scales, a very precise measurement of the transport

for very short times is required. On the other hand, the correct coordinates to measure

the transport are not available. Substitutes approximating these coordinates like the

uncoupled action 𝐼1 or the frequency 𝜈1 always have �nite precision. Thus, the trans-

port in these coordinates has to be measured for longer iteration times to diminish the

in�uence of these errors. Basically, these two competing time-scales inhibit a numerical

con�rmation of the stochastic process transport proposed in Sec. 4.6.2. In Appendix A.1

some approaches to quantify the transport along the channel are outlined including in-

sights gained from these approaches. Further, it is explained that ∆𝐼01 = 5 · 10−3 is

the minimal resolution achieved for the described setting and that the volume increases

with 𝑡, i.e. 𝑉 (𝐼01 ) ∼ log 𝑡. Finally, note that for the position along the channel instead

of 𝐼01 from Eq. (4.24) the average uncoupled action 𝐼1, i.e. E[E[𝐼1]Ω1
𝑖𝑗

]𝑖𝑗 for 𝑡 iterations

using the initial conditions Ω(𝐼01 ), is used. However, due to the choice of the initial

regions Ω(𝐼01 ) these two values match very well 𝐼01 ≈ E[E[𝐼1]Ω1
𝑖𝑗

]𝑖𝑗 and for brevity they

are not explicitly distinguished in Fig. 4.20.



5 Summary and outlook

In this thesis the chaotic transport near regular structures in generic 4d symplectic maps

is investigated. Such 4d maps serve as a prototype for higher-dimensional Hamiltonian

systems as they are the lowest dimensional maps which exhibit Arnold di�usion. The

organization and hierarchy of the regular structures is explained. A power-law decay

of the statistics of Poincaré recurrences is observed and attributed to chaotic orbits

being trapped in sticky regions at the surface of the regular structures. The chaotic

transport within such sticky regions is found to be moderated by a set of overlapping

resonance channels. The transport across resonance channels and deeper into the hier-

archy is shown to be governed by partial transport barriers similar to 2d maps. For the

transport along resonance channels a drift is conjectured, which however could not be

veri�ed numerically due to technical di�culties. For the transport both across and along

resonance channels models are proposed which can explain the power-law trapping in

4d maps. A part of the results has already been published [138,182,186].

The regular 2d tori are shown to be organized around a skeleton consisting of families

of elliptic 1d tori [138]. The origins of these families are explained and it is demonstrated

how they form a hierarchy similar to the island-around-island hierarchy in 2d maps.

In particular, such families are present in any resonance channel centering the regular

structures of the channel around them [186]. Analogously, these families occur at any

resonance junction.

Two coupled standard maps are investigated as an example for a generic 4d symplec-

tic map with a large chaotic sea. Using a combination of 3d phase-space slices [182] and

frequency analysis a sticky region at the surface of the regular structures is identi�ed.

The chaotic transport in this region is found to be governed by a set of overlapping

resonance channels which reach far out into the chaotic sea. The dynamics is locally

decomposed into four phenomena, namely I) transport across resonance channels, II)

trapping deeper into the hierarchy at resonances, III) trapping at resonance junctions,

and IV) transport along resonance channels. Using time�frequency plots it is demon-

strated how the transport processes I), II), and III) are regulated by partial transport

barriers similar to 2d maps. In contrast to 2d maps, the trapping deeper in the hier-

archy turns out to be insigni�cant for the power-law trapping. Instead, the transport
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across resonance channels is shown to generate a power-law decay similar to the aver-

aging over many 2d maps. However, the trapping in the generic sticky regions seems to

be rather regulated by IV) the transport along resonance channels. For this transport

the presence of a drift due to the geometry and change of width along the channel is

proposed and it is demonstrated how such a drift could generate a power-law decay of

recurrence times. Despite the use of a new designed map which facilitates the quan-

ti�cation of the chaotic transport, the slow dynamics along the channel could not be

measured precisely enough to verify the drift.

It should be emphasized that due to the self-similarity of the mentioned hierarchy the

generic power-law trapping has an impact on the transport along any resonance channel

even in the near-integrable regime. That is chaotic orbits within any resonance channel

can get trapped at the regular structures by the same mechanism and thus inhibit

the transport along the channel. Also the proposed drift along resonance channels has

general implications for the transport in the Arnold web as this transport is usually

considered to be purely di�usive.

While the question about the mechanism of the power-law trapping is not de�nitely

answered in this thesis, the comprehensive picture obtained for the dynamics of the 4d

phase space and the used methods may guide future studies. In particular, the transport

across and along resonance channels has to be described quantitatively. For the former

this may be accomplished using time�frequency plots, which make the partial barriers,

which are complicated objects in phase space, recognizeable in the frequency space.

Furthermore, the isolines of the local escape time from the sticky region could serve as

a global coordinate system in the frequency space. By this the impact of the jumps

between resonances on the escape from the sticky region could be determined. The

introduced coupled twist maps 𝐹Twist provide a promising system which should facilitate

the measurement of the transport along resonance channels. After the extraction of

the relevant stochastic properties of the chaotic transport, their origins in terms of

invariant phase-space structures should be determined. This includes among others the

computation of stable and unstable manifolds composing the partial transport barriers

and the calculation of the 4d volumes enclosed by their intersections. Focus should be

put on the understanding of 4d maps. Since all higher-dimensional systems share the

crucial property that regular tori are no barriers in phase space, the results obtained for

4d maps should be generalizable to even higher-dimensional systems with reasonable

e�ort. For instance, the hierarchy of the regular tori can in principle be constructed

analogously in a 2𝑁 -dimensional map with 𝑁 > 2 by taking into account that the

frequencies on a 𝑘-dimensional regular torus with 0 < 𝑘 ≤ 𝑁 are able to ful�ll 𝑖 ∈
{1, 2, . . . , 𝑘} resonance conditions and thus can break up into tori of dimension 𝑘 − 𝑖.



A Appendix

A.1 Measuring transport along resonance channels

In Sec. 4.6 the transport along a resonance channel is discussed in terms of a 1d het-

erogeneous stochastic process. In particular, a drift due to the change of the volume

of the stochastic layer along the channel is proposed. Based on such a drift a model is

presented which could explain the observed power-law trapping in 4d maps. However,

it remains to demonstrate the validity of this model by verifying the relation predicted

for the drift and di�usion coe�cient Eq. (4.23) numerically. While the volume along

the channel is computed in Sec. 4.6.3, the estimate of the drift and di�usion coe�cient

proves to be very di�cult. In this section, some approaches to obtain these coe�cients

are discussed. The transport along the channel is monitored both in adapted action

coordinates and frequencies. Some statistical insights about this chaotic transport and

problems of its quanti�cation are outlined. Note that the adapted action coordinates

are a by-product of the computation of the layer volume from Sec. 4.6.3 and some de-

tails of this procedure are presented here including a comparison to a 2d map. The

discussions in this section may guide future investigations to a successful description of

the transport along resonance channels. As in Sec. 4.6.3 all following discussions focus

on the example of the resonance 0 : 6 : 5 of the coupled twist maps 𝐹Twist.

One approach is to measure the chaotic transport along the resonance channel via

the adapted action coordinates introduced in Sec. 4.6.3. More precisely, local action

coordinates 𝐼2(Θ1,Θ2) are obtained by iterating ensembles Ω(𝐼01 ) of chaotic orbits, see

Eq. (4.24), up to times 𝑡 by averaging their action 𝐼2 on a 𝑁 × 𝑁 grid of the angles

(Θ1,Θ2) ∈ [−π,π)2. In this sense, the average position 𝐼2(Θ1,Θ2) of the stochastic

layer at a certain position 𝐼01 along the resonance channel is approximated. The result

at 𝐼01 = 0.6 is shown as black grid in Fig. 4.18(b). Analogously, for the transport

along the channel the average position 𝐼1(Θ1,Θ2) is used, e.g., the result at 𝐼01 = 0.6 is

shown as black grid in Fig. 4.18(a). This approximation for 𝐼1 is displayed by a slice

at Θ1 = π/4 in Fig. A.1(a), analogously to the slice shown for the approximation of

𝐼2 in Fig. 4.19(a). In Fig. A.1(a) the points of the chaotic orbits from the ensemble

Ω(𝐼01 = 0.6) are shown in green and the approximation 𝐼1(Θ1,Θ2) as black line. While
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Figure A.1: Resonance channel 0 : 6 : 5 of the map 𝐹Twist displayed in a 2d slice
|Θ1 − π/4| < π/800 (𝐼2 projected) with the chaotic orbits from Fig. 4.19 shown in green.
In (a),(c) the channel is shown for two positions 𝐼01 ∈ {0.6, 0.5} along the channel. The
approximations for constant action along the channel with𝑁 = 800 and 𝑡 = 3000, see text,
are indicated as black lines. In (b),(d) the same points are shown in the corresponding
adapted action 𝐼1, see Eq. (A.1). While the fluctuations along Θ2 are decreased by an
order of magnitude, period-6 island-like patterns are visible. Additionally, in (b) another
island chain is visible above this pattern which is due to the resonance −4 : 3 : 0 and also
appears in Fig. 4.19(a) below the islands.
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each chaotic orbit is only iterated up to 𝑡 = 3000 iterations and thus all his points

remain approximately at the same position along the channel, the uncoupled action

coordinate 𝐼1 of the points varies strongly d𝐼1 ∼ 2 · 10−1. Thus, the slow transport

along the channel is not measured in 𝐼1 but rather with respect to the approximation

𝐼1 = (𝐼1 − 𝐼1(Θ1,Θ2)) + 𝐼01 . (A.1)

In Fig. A.1(b) the points of Fig. A.1(a) are presented in this new coordinate 𝐼1. While

this coordinate seems to be an order of magnitude less sensitive to the angle coordinates,

i.e. d𝐼1 ∼ 2 · 10−2, it reveals signatures of the resonance 0 : 6 : 5, i.e. a period-6 island-

chain-like distribution of the points along the Θ2 coordinate. This feature is even more

pronounced in Figs. A.1(c) and A.1(d) which show the analogous slices for 𝐼01 = 0.5.

In Fig. A.1(d) six intervals can be distinguished, i.e. at |Θ2| ∼ {0,π/3, 2π/3,π}, at
which the range of 𝐼1 is much more con�ned than in between these intervals, where

islands with no chaotic points appear. These features resemble the island chain vis-

ible in Figs. 4.19(a) and 4.19(b) and suggest that the uncoupled degree of freedoms

(𝐼1,Θ1) and (𝐼2,Θ2) do not su�ciently separate the stochastic layer from the direction

along the resonance channel. This implies a lower bound for how accurate the coor-

dinate 𝐼1 can express the position along the channel. More precisely, the distribution

𝜌(𝐼1) of 𝐼1 for an initial ensembles of chaotic orbits Ω(𝐼01 ), see in principle Fig. A.3(c),

shows that the minimal achieved resolution along the channel is ∆𝐼1 = 5 · 10−3. Note

that the shift by 𝐼01 in the de�nition of 𝐼1 in Eq. (A.1) is added in order to enable a

distinction of this local coordinate 𝐼1 for di�erent positions along the channel. Fur-

thermore, instead of 𝐼01 from Eq. (4.24) the average uncoupled action of the approxi-

mation 𝐼1(Θ1,Θ2), i.e. E[𝐼1(Θ1,Θ2)]Θ1,Θ2 for 𝑡 iterations using the initial region Ω(𝐼01 ),

is used. Due to the choice of the initial regions Ω(𝐼01 ) these two values match very

well 𝐼01 ≈ E[𝐼1(Θ1,Θ2)]Θ1,Θ2 and for brevity they are not explicitly distinguished in this

thesis.

Another approach is to measure the chaotic transport along the resonance channel via

frequency analysis. In Fig. A.2 a detail of the resonance channel 0 : 6 : 5 in frequency

space is shown. The resonance line lies at 𝜈2 = 5/6 and the channel is ultimately

con�ned to the top and the bottom by regular tori as indicated by the gray points.

Also the frequencies of two ensembles of chaotic orbits started at 𝐼01 = 0.5 and 𝐼01 = 0.6

are shown as points colored according to the iteration time 𝑡 of each orbit, according

to Sec. 2.6.3. The �rst segments 𝑡 ∈ [0,∆𝑡) of the chaotic orbits are approximately at

𝜈1 = 0.623 and 𝜈1 = 0.624, respectively, as seen by the location of the dark blue points

in Fig. A.2. In principle, the frequency 𝜈2 of the orbits varies rapidly and corresponds
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Figure A.2: Resonance channel 0 : 6 : 5 of the map 𝐹Twist in frequency space. The
regular tori from Fig. 3.6(c) are shown as gray points. At each of the two positions
𝐼01 ∈ {0.5, 0.6}, see Eq. (4.24), which translates roughly to frequencies 𝜈1 ∈ {0.623, 0.624},
30 chaotic orbits are iterated 𝑡 ∈ [0, 513 · 4096) and shown in frequency space each orbit
colored according to its iteration time. Some relevant resonances indicated by orange
dashed lines are from top to bottom at 𝜈1 = 0.624 −3 : 31 : 24, −3 : 37 : 29, −3 : 49 : 39,
−3 : 55 : 44, −8 : 24 : 15, −3 : 43 : 34, −4 : 3 : 0, plus the vertical resonance 8 : 0 : 5. The
channel of the resonance −4 : 3 : 0 is well visible at the bottom with gray points on the
resonance line.

roughly to the transport within the stochastic layer, while the frequency 𝜈1 varies much

less and corresponds roughly to the transport along the channel. The di�erent expansion

of each ensemble already illustrates the change of the transport rates along the channel.

The left ensemble, from 𝐼01 = 0.5, is further away from the chaotic sea, which is to the

right of Fig. A.2. The ensemble is con�ned along 𝜈2 due to the width of the channel,

while it is even more con�ned along 𝜈1 due to the slow transport along the resonance

channel. The right ensemble, from 𝐼01 = 0.6, expands slightly more along 𝜈2 as the

width of the channel increases towards the chaotic sea, see also Sec. 4.6.3. At the same

time this right ensemble spreads an order of magnitude more along 𝜈1 than the left

ensemble demonstrating the considerably increased transport rate along the channel. It

is important to point out that the considered channel is not exclusively spanned by the

resonance 0 : 6 : 5 as higher order resonances, shown as orange dashed lines in Fig. A.2,

are frequently visited by the chaotic orbits. These resonances correspond to the adjacent

island chains discussed in the context of Fig. 4.19. For instance, the resonance −4 : 3 : 0

appears in the (𝐼2,Θ2)-plot of Fig. 4.19(a) as the period-6 island chain below the island
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chain of the resonance 0 : 6 : 5. This resonance appears likewise as the period-6 island

chain above the black line in the (𝐼1,Θ2)-plots in Figs. A.1(a) and A.1(b). Note that

the position of this islands chain is consistent with its position in the frequency space in

Fig. A.2 as for the coupled twist maps 𝐹Twist bigger/smaller 𝐼1, 𝐼2 roughly correspond

to bigger/smaller 𝜈1, 𝜈2, respectively. An advantage of the frequency space is that the

additional, higher order resonances are well separated from the main resonance 0 : 6 : 5.

For instance, one might assume only frequencies with 0.833 < 𝜈2 < 0.83375 are located

at the resonance 0 : 6 : 5 and thus avoiding other resonances. A coarse transformation

between actions and frequencies is obtained by averaging over the frequencies of the

initial segments 𝑡 ∈ [0,∆𝑡) of chaotic orbits at 𝐼01 giving 𝜈1(𝐼
0
1 ) ≈ (

√
5 − 1)/2 + 𝐼01/100

for 𝐼01 ∈ [0.3, 0.6], in accordance with Eq. (3.8). While the �rst approach is to measure

the transport along the channel via 𝜈1, the frequencies (𝜈1, 𝜈2) are not independent

of each other within the channel. This is for instance visible in the vicinity of the

−4 : 3 : 0 resonance in Fig. A.2 around (𝜈1, 𝜈2) ≈ (0.624, 0.832). There the fast

motion is not directed along 𝜈2 anymore but rather perpendicular to the resonance line

−4 : 3 : 0. Thus, the fast motion in this region a�ects both frequencies. Note that

the transition from the resonance 0 : 6 : 5 to −4 : 3 : 0 is again governed by transport

across partial barriers, see Sec. 4.2. It should be emphasized that in this particular case

this transition also causes higher frequencies 𝜈1, i.e. seemingly a transport along the

resonance channel towards the chaotic sea. This is also seen in the action coordinates 𝐼1
and 𝐼1 in Figs. A.1(a) and A.1(b), where the resonance −4 : 3 : 0 appears as a period-6

island chain above the black line. This observation introduces the possibility that the

trapping mechanism described in Sec. 4.3 might also explain the trapping in the generic

sticky regions.

The general problem of measuring the transport along the channel is the inhomo-

geneity of the coe�cients in combination with the limited accuracy of the measurement

as discussed at the end of Sec. 4.6.3. In the following some numerical results for the

transport along the resonance channel 0 : 6 : 5 are outlined in order to highlight these

challenges. The calculations have been performed for several positions along the channel

but the discussion uses only one position as prototypical example. The initial region at

𝐼01 = 0.52 is chosen, see Eq. (4.24), as the drift coe�cient �uctuates less at this position

and is exclusively positive according to Fig. 4.20(b). In order to allow a comparison

between the frequency and action coordinates, the actions are averaged over segments

of length ∆𝑡 like the frequencies, see Eq. (2.18). The �rst segment 𝑡 ∈ [0,∆𝑡) is con-

sidered to scatter the chaotic orbits uniformly over the stochastic layer and therefore

neglected. The next segment 𝑡 ∈ [∆𝑡, 2∆𝑡) is considered to be the initial condition

with 𝑡 = 0. In Figs. A.3 and A.4 the results are shown for ∆𝑡 = 1024 and ∆𝑡 = 4096,
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Figure A.3: Transport along resonance channel 0 : 6 : 5 at 𝐼01 = 0.52 for 100020 chaotic
orbits iterated Δ𝑡 in advance and then 𝑡 ∈ [0, 524287), each decomposed into segments
of length Δ𝑡 = 1024. (a)-(d) Distributions at times 𝑡 = 𝑖Δ𝑡, 𝑖 ∈ {0, 1, 2, 4, ..., 512} (or
𝑖 ∈ {1, ..., 512}, red to blue) with Δ𝑥(𝑡) = 𝑥(𝑡)−𝑥(0), 𝑥 ∈ {𝜈1, 𝐼1} (continue on Fig. A.4).
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Figure A.4: Analogous to Fig. A.3 with Δ𝑡 = 4096, 𝑖 ≤ 128, i.e. same final time for
both Figs. A.3 and A.4. (continue from Fig. A.3) Distributions normalized. Gaussian
with mean 𝜇 and variance 𝜎2 from final segment shown as dashed line. (e) Diffusion 𝐷(𝑡)
(dashed line) and negative drift −𝑣(𝑡) (solid line) Eq. (A.2) for 𝐼1 (black) and 𝜈1 (gray,
additional factor 100, 1002 for 𝑣, 𝐷). The dashed straight line represents ∼ 𝑡−1.



122 A.1 Measuring transport along resonance channels

respectively. The results are similar in both cases demonstrating that the measurement

is relatively independent of ∆𝑡. In Figs. A.3(a) and A.3(b) the distributions 𝑃 (𝜈1),

𝑃 (∆𝜈1) for the frequency 𝜈1(𝑡) and the frequency change ∆𝜈1(𝑡) = 𝜈1(𝑡)−𝜈1(0) are dis-

played. The corresponding iteration time 𝑡 is encoded in color as indicated by the color

bar in Fig. A.3(a). In Figs. A.3(c) and A.3(d) the analogous results for the adapted

action 𝐼1 are shown. Most of the time the distributions are not Gaussian. Especially at

short times the distributions in Figs. A.3(a) and A.3(c) look like plateaus with widths

d𝜈1 ≈ 5 · 10−5 and d𝐼1 ≈ 5 · 10−3, respectively. The factor 100 between these widths is

consistent with Eq. (3.8). The reason for this �nite spatial resolution is discussed for

𝐼1 in the context of Fig. A.1, i.e. the incomplete decoupling of the two degrees of free-

dom. However, it is unclear how this a�ects the frequency 𝜈1 as the frequencies should

decouple for an uncoupled resonance 0 : 6 : 5. In any case, the drift 𝑣 and di�usion

coe�cients 𝐷 can only be computed according to Eqs. (4.4) and (4.5) for 𝑡 > 0

𝑣(𝑡) =
1

𝑡
E[𝑥(𝑡) − 𝑥(0)] 𝐷(𝑡) =

1

2𝑡
E[(𝑥(𝑡) − 𝑥(0))2] . (A.2)

with 𝑥 = 𝜈1, 𝐼1, if the distributions are Gaussian. Nevertheless as a demonstration, the

coe�cients are computed with respect to the initial segment and displayed in Fig. A.3(e).

The results for 𝐼1 and 𝜈1 are displayed with black and gray points, respectively, where

the results for the drift coe�cient are connected with solid lines and for the di�usion

coe�cient with dashed lines. In particular, the coe�cients 𝐷 and 𝑣 for the frequency 𝜈1

are multiplied with 1002 and 100, respectively, to relate them to the actions according

to Eq. (3.8). Despite this, the coe�cients obtained from actions and frequencies di�er

up to an order of magnitude. Note however, that for some reason multiplying the drift

for the frequency only with 10 makes the drift results almost coincide. All coe�cients

have in common that they are not constant over time but decrease with increasing

distance to the initial segment. For comparison the power-law decay ∼ 𝑡−1 is indicated

as dashed line. In case the measured transport is a sum of a time-constant error, e.g.,

due to the �nite precision of the coordinates, and the actual transport, the coe�cients

should decay with this power law and converge to the correct values over time. Such

a 𝑡−1-decay has been observed at other position along the channel. Of course already

the non-Gaussian shape of the initial distributions makes the meaning of the obtained

coe�cients questionable. In particular, the drift is negative, i.e. directed away from the

chaotic sea and opposite to the prediction in Sec. 4.6.3. In case of the frequency this

drift is even visible in the distributions. The distributions for the adapted action have

a slight asymmetry which seems to cause the negative drift. However, for long times

this drift is regularly observed change to a positive drift, see for instance Fig. A.5(e) in
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the following. In particular, for measurements closer to the chaotic sea 𝐼01 ∈ [0.6, 1.0]

positive drifts are also obtained for shorter times.

At longer times all distributions seem to approach Gaussian form. This is illustrated

by the Gaussian �ts of the �nal distribution at 𝑡 = 512 · 1024 = 128 · 4096 = 524288

indicated by the dashed curve. The corresponding mean 𝜇 and variance 𝜎2 written in the

subcaptions match very well between Figs. A.3 and A.4 demonstrating the independence

of the results from ∆𝑡. In Fig. A.5 the transport is measured in principle by using the

�nal distribution of Fig. A.4 as initial ensemble. More precisely, about 106 chaotic orbits

from 𝐼01 = 0.52 iterated for 524288 are used as initial ensemble. While the distributions

in Figs. A.5(a) and A.5(c) resemble Gaussians, the distributions of ∆𝜈1 and ∆𝐼1 in

Figs. A.5(b) and A.5(d) on which the transport coe�cients are based, look considerably

di�erent. For all times they exhibit sharp peaks around 0 which reach for short times

up to ten times the height of the �gures. Such peaks are already visible for the setup of

Figs. A.3 and A.4. For some positions along the channel chaotic orbits whose frequencies

stay close to the resonance line 0.833 < 𝜈1(𝑡) < 0.83375, ∀𝑡 are observed to produce

distributions without such peaks, while the remaining orbits still exhibit this feature.

Thus, the peaks are attributed to the fact that the chaotic orbits regularly visit adjacent

higher-order resonances, see Fig. A.2, at which the transport along the channel is much

slower than at the resonance 0 : 6 : 5. The di�usion coe�cients in Fig. A.5(e) are very

similar to the ones in Fig. A.4(e). The magnitude of the drift coe�cients however is

much smaller. In particular, the drift for the action 𝐼1 is positive and increasing over

time, while the dip at the end of the still negative drift for the frequency 𝜈1 indicates

that also this value is about to change sign for longer times. While these indications of

a drift towards the chaotic sea are closer to the predictions of Fig. 4.20, the results are

still very problematic. Firstly, both di�usion and drift coe�cients are far from being

constant over time. Secondly, the used distributions in Figs. A.5(b) and A.5(d) are still

not Gaussian. Thirdly, the ensemble in Fig. A.5 is spread so far along the channel that

according to Fig. 4.20 a superposition of many di�erent transport coe�cients is expected

anyway. Due to the last point longer iteration times are not a real option to improve the

measurement. Also other positions along the channel do not seem to solve this problem

as slower transport allows for longer iteration times, but requires also more accurate

measurements. Designing another convenient, near-integrable system to measure the

transport in is non-trivial as its channels still have to exhibit the generic widening

towards the chaotic sea. However, systems allowing a semi-analytical estimate of the

transport coe�cients might be a solution [66] or measuring the transport with novel

normal form approaches [39]. The adjacent resonances should be easily identi�ed by

frequency analysis in case they pose a problem. In order to make the frequency analysis
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Figure A.5: Transport along resonance channel 0 : 6 : 5 analogous to Figs. A.3 and A.4
for 1000020 chaotic orbits with Δ𝑡 = 4096 with are iterated initially for 128Δ𝑡, i.e. the
initial distributions in (a), (b)correspond to the final ones of Fig. A.4 (a), (b). Note that
in (e) the drift for 𝜈1 is negative and for 𝐼1 positive.
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more reliable for measuring transport, its accuracy for di�using chaotic orbits should be

investigated using designed time series. The issue of the heterogeneity of the transport

coe�cients may be overcome by examining designed heterogeneous stochastic processes,

i.e. comparing their probability distributions and coe�cients in terms of Eq. (A.2) to

the results within the channel.

Finally, some numerical features of the measurement of the volume 𝑉 (𝐼01 ) of the

stochastic layer, presented in Sec. 4.6.3, are outlined in the following. In Figs. A.6(a)

and A.6(b) the dependence of the estimated volume 𝑉 (𝐼01 ) on the resolution 𝑁 of the

used grid and on the iteration time 𝑡 of the chaotic orbits, respectively, is shown. In

Fig. A.6(a) the estimated volume at 𝐼01 = 0.3 is marked with colored points connected

by a solid line. The colors red, green, and blue correspond to the used iteration time

𝑡 = {3000, 6000, 9000}. For all of these three cases, the volume 𝑉 (𝑁) quickly converges

from above to a �nite value for increasing 𝑁 . However, note that the volume still

slowly decreases with increasing 𝑁 , e.g., for 𝑡 = 3000 the volume 𝑉 (𝑁) decreases from

𝑁 = 1100 to 𝑁 = 1500 seemingly linear by 1.7%. Also the volume 𝑉 (𝑁) increases with

𝑡 for constant 𝑁 . In Fig. A.6(b) the volume 𝑉 (𝑡) is shown for 𝐼01 = 0.4 and 𝑁 = 500

with black points connected by a solid line. In the half-logarithmic plot these points

almost lie on a straight line suggesting a logarithmic dependence 𝑉 (𝑡) ∼ log 𝑡. The

slope of this line is observed to depend on 𝐼01 and not shown here. For comparison the

method described in Sec. 4.6.3 is used to estimate the volume of the stochastic layer of

the resonance 𝜈 = 2/3 for the 2d standard map with 𝐾 = 0.7. In contrast to Sec. 2.3

the domains are 𝑝 ∈ [0, 1) and 𝑞 ∈ [−0.5, 0.5), the intial points are uniformly chosen in

{(𝑝, 𝑞) : 𝑝 = 4.412/(2π), |𝑞| < 5 ·10−3}, and the resulting 2d volume is multiplied by 2π

to make it comparable to the 3d stochastic layer from the 4d map 𝐹Twist. The results of

the 2d map are shown in Figs. A.6(a) and A.6(b) as points connected by a dashed line.

Features analogous to the case of the 4d map are observed. In particular, the increase

of 𝑉 (𝑡) for the stochastic layer of the 2d map looks very close to being logarithmic. In

Figs. A.6(c) and A.6(d) the distribution of the volume of the stochastic layer over the

two angles is shown for di�erent positions 𝐼01 along the resonance channel 0 : 6 : 5 of

the map 𝐹Twist. The volume 𝑉 (Ω𝑖𝑗) at each grid point Ω𝑖𝑗 is known from Eq. (4.28)

𝑉 (Ω𝑖𝑗) = 2
√

3

(︂
2π

𝑁

)︂2 (︁
𝜎up

Ω3
𝑖𝑗

(𝐼01 ) + 𝜎lo
Ω3

𝑖𝑗
(𝐼01 )

)︁
. (A.3)
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Figure A.6: Sensitivity of 3d volume 𝑉 (𝐼01 ) of the stochastic layer of a resonance channel
on parameters of algorithm, see Sec. 4.6.3, for the resonance channel 0 : 6 : 5. In (a),(b)
additionally the results for the resonance 𝜈 = 2/3 of the 2d standard map with 𝐾 = 0.7,
see text, are shown as points connected by dashed lines. (a) 𝑉 (𝑁) for resolution 𝑁 of the
grid with 𝐼01 = 0.3 and 𝑡 ∈ {3000, 6000, 9000} (red, green, blue). (b) 𝑉 (𝑡) for the maximal
iteration time 𝑡 with 𝐼01 = 0.4 and 𝑁 = 500 (𝑁 = 800 for 2d map). (c), (d) Relative
deviation from the average volume per angle Δ𝑉/𝑉 , see Eq. (A.5), along Θ1, Θ2. The
position along the channel 𝐼01 ∈ {0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6} is encoded by color (red
to blue), and for 𝑡 ∈ {3000, 6000, 9000} the symbols +, ×, ∘ are used of which mostly the
last one is visible as dark dots.
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and can be summed up over one of the angles, e.g.,

𝑉 (Θ1 = 𝜃𝑖) =
𝑁−1∑︁
𝑗=0

𝑉 (Ω𝑖𝑗) . (A.4)

For the distributions in Figs. A.6(c) and A.6(d) the relative deviation from the average

volume per angle is used, e.g.,

∆𝑉

𝑉
(𝐼01 ,Θ1 = 𝜃𝑖) =

𝑁 · 𝑉 (Θ1 = 𝜃𝑖) − 𝑉 (𝐼01 )

𝑉 (𝐼01 )
(A.5)

with 𝑉 (𝐼01 ) from Eq. (4.28). In both �gures the points are colored according to their

position 𝐼01 along the channel according to the colorbar displayed in Fig. A.6(c) and

for the used iteration time 𝑡 = {3000, 6000, 9000} the symbols +, ×, and circle are

used, respectively. The points for all three iteration times appear so close to each

other in Fig. A.6(d) that they are not distinguishable in the plot. In Fig. A.6(c) the

symbols + and × appear as small points scattered around the big circles for 𝑡 = 9000.

These circles reveal oscillations of the volume along the angle Θ1 whose phase and

period change along the channel and are not yet understood. The amplitude of these

oscillations decreases towards the chaotic sea but is overall small with 2 − 8%. In

contrast, Fig. A.6(d) displays peaks with up to 300% coinciding with the approximate

position of the hyperbolic 1d tori at |Θ2| ∼ {0,π/3, 2π/3,π} in between the islands.

These peaks seem to be relatively independent of the position 𝐼01 along the channel. In

contrast, the values for the intervals in between vary, ranging from −60 to 10%. Similar

results are obtained for the example of the resonance 𝜈 = 2/3 of the 2d map, where

three peaks are observed with amplitudes up to 1000% and values in between the peaks

as low as −40%. In conclusion, the distribution of the volume of the stochastic layer

along the angle Θ2 a�ected by the resonance shows the same features as for the 2d

map. Along the other angle Θ1 the volume is relatively evenly distributed with some

oscillations.

A.2 Model for channel transport

In Sec. 4.6.2 the drift and di�usion for transport along a 2d channel with varying width

are derived as one model for the drift along a resonance channel. In this section, the

drift for the case of �nite transport perpendicular to the channel is derived and the

consistency with Eq. (4.23) for this transport being large is shown. These results are

con�rmed numerically using an Euler-Maruyama-scheme. It is also numerically shown
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that the expression for the drift Eq. (4.23), derived in Sec. 4.6.2 assuming a single,

�nite time step ∆𝑡 with a uniform distribution, works for ∆𝑡 → 0 and for a Gaussian

distribution. In particular, for the setting of Sec. 4.6.2 drift and probability distributions

are discussed for more than one time step. While the numerical results are omitted for

brevity the method to obtain them is outlined.

The setting is a symmetric channel Ω ⊂ R2 in action space, i.e.

Ω = {(𝐼1, 𝐼2) : 𝐼2 ∈ [−𝑏(𝐼1), 𝑏(𝐼1)]} .

For a time step ∆𝑡 an initial condition (𝐼01 , 𝐼
0
2 ) ∈ Ω is uniformly mapped into the region

ΩΔ𝑡(𝐼
0
1 , 𝐼

0
2 ) = Ω0

Δ𝑡(𝐼
0
1 , 𝐼

0
2 ) ∩ Ω

Ω0
Δ𝑡(𝐼

0
1 , 𝐼

0
2 ) = {(𝐼1, 𝐼2) : |𝐼1 − 𝐼01 | ≤ ∆𝐼1(𝐼

0
1 ), |𝐼2 − 𝐼02 | ≤ ∆𝐼2(𝐼

0
1 )} .

A reasonable assumption for such a channel is small transport along the channel ∆𝐼1(𝐼
0
1 ) ≪

1, such that the approximation 𝑏(𝐼1) ≈ 𝑏(𝐼01 )+ 𝑏′(𝐼01 )(𝐼1− 𝐼01 ) can be used. Without loss

of generality it is assumed 𝑏′(𝐼01 ) > 0. Furthermore, a broad channel ∆𝐼2(𝐼
0
1 ) ≪ 𝑏(𝐼01 )

whose width is slowly varying 𝑏′(𝐼01 ) ≤ ∆𝐼2(𝐼
0
1 )/∆𝐼1(𝐼

0
1 ) is assumed. Thus, within an

ensemble of chaotic initial conditions Ω0(𝐼
0
1 ) ⊂ Ω

Ω0(𝐼
0
1 ) = {(𝐼1, 𝐼2) : 𝐼1 = 𝐼01} ∩ Ω

there are three kind of distinct initial conditions (𝐼01 , 𝐼
0
2 ) ∈ Ω0(𝐼

0
1 ). Due to the symmetry

of the channel, only points with 𝐼02 > 0 are discussed: Firstly, for points for which

Ω0
Δ𝑡(𝐼

0
1 , 𝐼

0
2 ) ⊂ Ω the corresponding drift 𝑣1(𝐼01 , 𝐼

0
2 ) is zero according to Eq. (4.4)

𝑣1(𝐼
0
1 , 𝐼

0
2 ) =

𝐼01+Δ𝐼1(𝐼01 )∫︀
𝐼01−Δ𝐼1(𝐼01 )

d𝐼1(𝐼1 − 𝐼01 )
𝐼02+Δ𝐼2(𝐼01 )∫︀
𝐼02−Δ𝐼2(𝐼01 )

d𝐼2

𝑉 (Ω0
Δ𝑡(𝐼

0
1 , 𝐼

0
2 ))∆𝑡

= 0

where 𝑉 (Ω̃) denotes the area of a set Ω̃. Secondly, points for which the edge of the

channel intersects with the edges of Ω0
Δ𝑡(𝐼

0
1 , 𝐼

0
2 ) at the two points

(𝐼𝑐11 , 𝑏(𝐼𝑐11 )) = (𝑏−1(𝐼02 + ∆𝐼2(𝐼
0
1 )), 𝐼02 + ∆𝐼2(𝐼

0
1 ))

(𝐼𝑐21 , 𝑏(𝐼𝑐21 )) = (𝐼01 − ∆𝐼1(𝐼
0
1 ), 𝑏(𝐼01 − ∆𝐼1(𝐼

0
1 ))) .
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For such points the corresponding drift 𝑣2(𝐼01 , 𝐼
0
2 ) reads

𝑣2(𝐼
0
1 , 𝐼

0
2 ) =

⎛⎜⎝ 𝐼𝑐11∫︁
𝐼01−Δ𝐼1(𝐼01 )

d𝐼1(𝐼1 − 𝐼01 )

𝑏(𝐼1)∫︁
𝐼02−Δ𝐼2(𝐼01 )

d𝐼2

+

𝐼01+Δ𝐼1(𝐼01 )∫︁
𝐼𝑐11

d𝐼1(𝐼1 − 𝐼01 )

𝐼02−Δ𝐼2(𝐼01 )∫︁
𝐼02−Δ𝐼2(𝐼01 )

d𝐼2

⎞⎟⎠
/
(︀
𝑉 (ΩΔ𝑡(𝐼

0
1 , 𝐼

0
2 ))∆𝑡

)︀
.

Thirdly, points for which the edge of the channel intersects with the edges of Ω0
Δ𝑡(𝐼

0
1 , 𝐼

0
2 )

at the two points

(𝐼𝑠11 , 𝑏(𝐼𝑠11 )) = (𝐼01 + ∆𝐼1(𝐼
0
1 ), 𝑏(𝐼01 + ∆𝐼1(𝐼

0
1 )))

(𝐼𝑠21 , 𝑏(𝐼𝑠21 )) = (𝐼01 − ∆𝐼1(𝐼
0
1 ), 𝑏(𝐼01 − ∆𝐼1(𝐼

0
1 ))) .

For such points the corresponding drift 𝑣3(𝐼01 , 𝐼
0
2 ) reads

𝑣3(𝐼
0
1 , 𝐼

0
2 ) =

𝐼01−Δ𝐼1(𝐼01 )∫︀
𝐼01−Δ𝐼1(𝐼01 )

d𝐼1(𝐼1 − 𝐼01 )
𝑏(𝐼1)∫︀

𝐼02−Δ𝐼2(𝐼01 )

d𝐼2

𝑉 (ΩΔ𝑡(𝐼01 , 𝐼
0
2 ))∆𝑡

.

The drift 𝑣(𝐼01 ) for the ensemble of initial conditions Ω0(𝐼
0
1 ) then reads

𝑣(𝐼01 ) = 2

⎛⎜⎝ 𝑏(𝐼01+Δ𝐼1(𝐼01 ))−Δ𝐼2(𝐼01 )∫︁
𝑏(𝐼01−Δ𝐼1(𝐼01 ))−Δ𝐼2(𝐼01 )

d𝐼02𝑣2(𝐼
0
1 , 𝐼

0
2 )

+

𝑏(𝐼01 )∫︁
𝑏(𝐼01+Δ𝐼1(𝐼01 ))−Δ𝐼2(𝐼01 )

d𝐼02𝑣3(𝐼
0
1 , 𝐼

0
2 )

⎞⎟⎠ /(2𝑏(𝐼01 ))

= 𝑣2(𝐼
0
1 ) + 𝑣3(𝐼

0
1 ) (A.6)

After a cumbersome but straightforward evaluation of this expression, it is obtained for

the term 𝑣2(𝐼
0
1 ) due to the contribution of 𝑣2(𝐼01 , 𝐼

0
2 )

𝑣2(𝐼
0
1 ) = − 1

3𝑏∆𝑡

(︀
4𝑏′∆𝐼21 − 4∆𝐼1∆𝐼2 ln(1 −𝐵)

+3
√︁

2𝑏′∆𝐼31∆𝐼2 ln

(︃
1 −

√
𝐵

1 +
√
𝐵

)︃)︃
(A.7)
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and for the term 𝑣3(𝐼
0
1 ) due to the contribution of 𝑣3(𝐼01 , 𝐼

0
2 )

𝑣3(𝐼
0
1 ) =

𝑏′∆𝐼21
3𝑏∆𝑡

ln(2(1 −𝐵)) (A.8)

where

𝐵 =
𝑏′∆𝐼1
2∆𝐼2

(A.9)

and the 𝐼01 dependence of the entities 𝑏(𝐼01 ), 𝑏′(𝐼01 ), ∆𝐼1(𝐼
0
1 ), and ∆𝐼2(𝐼

0
1 ) is dropped for

brevity. For ∆𝐼2(𝐼
0
1 ) ≫ ∆𝐼1(𝐼

0
1 ), i.e. 𝐵 ≪ 1, these expressions are in lowest order

𝑣2(𝐼
0
1 ) = − 1

3𝑏∆𝑡
(4𝑏′∆𝐼21 + 2𝑏′∆𝐼21 − 6𝑏′∆𝐼21 ) = 0 (A.10)

𝑣3(𝐼
0
1 ) =

𝑏′∆𝐼21
3𝑏∆𝑡

ln(2) (A.11)

While the limit ∆𝐼2(𝐼
0
1 ) ≫ 𝑏(𝐼01 ) is equivalent to the setting in Sec. 4.6.2, the drift

here 𝑣(𝐼01 ) = 𝑣3(𝐼
0
1 ) has in comparison with Eq. (4.21) an additional factor ln(2). This

deviation can be explained by the fact that the above expression is only valid up to

∆𝐼2(𝐼
0
1 ) ∼ 𝑏(𝐼01 ), i.e. when initial conditions (𝐼01 , 𝐼

0
2 ) ∈ Ω0(𝐼

0
1 ) start to exists for which

Ω0
Δ𝑡(𝐼

0
1 , 𝐼

0
2 ) is intersected by both borders of the channel. On the other hand, Eq. (4.21)

is only beginning to be valid around ∆𝐼2(𝐼
0
1 ) ∼ 2𝑏(𝐼01 ), when for all initial conditions

Ω0
Δ𝑡(𝐼

0
1 , 𝐼

0
2 ) is intersected by both borders of the channel. The numerics nicely show

the transition between these two domains. The transition is even visible for a Gaussian

distribution with the same di�usion coe�cient as the uniform distribution, i.e. for the

corresponding Euler-Maruyama-scheme.

In the following the performed but for brevity not presented numerics are outlined.

A stochastic process as described by a Fokker-Planck equation Eq. (4.3) is numerically

realized by the Euler-Maruyama-scheme for which the Ito stochastic di�erential equation

corresponding to Eq. (4.3) reads [203]

d𝑥 = 𝑣(𝑥, 𝑡)d𝑡 +
√︀

2𝐷(𝑥, 𝑡)d𝑊 (A.12)

with the di�erential d𝑊 of a Wiener process, and is used to map a point 𝑥(𝑡) over a

�nite time step ∆𝑡 to a point 𝑥(𝑡 + ∆𝑡) = 𝑥(𝑡) + ∆𝑥(𝑡) with

∆𝑥(𝑡) = 𝑣(𝑥(𝑡), 𝑡)∆𝑡 +
√︀

2𝐷(𝑥(𝑡), 𝑡)∆𝑡 𝒩 (0, 1) (A.13)
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where 𝒩 (0, 1) is a normal random variable with expectation value zero and variance

one. Using Eq. (A.13) the stochastic process can be performed on an ensemble of ini-

tial conditions. Then, stochastic properties, like the probability distribution, di�usion,

and drift, can be extracted from the ensemble in order to double-check the analytical

solutions of the Fokker-Planck equation. An absorbing barrier is realized by removing

members of the ensemble when they cross this barrier. It always has to be checked

that for a �xed target time 𝑡max > 𝑡, 𝑡max = 𝑛 · ∆𝑡, 𝑛 ∈ N these numerical results are

stable for ∆𝑡 → 0. For a uniform distribution, e.g., as assumed for the derivation of

Eq. (4.23), the second term in Eq. (A.13) is replaced by ∆𝐼𝑖𝒰([−1, 1]), 𝑖 ∈ {1, 2}, using
the notation of this section, with a uniform random 𝒰([−1, 1]) variable in the interval

[−1, 1]. By using the di�usion coe�cient 𝐷𝑖(𝐼
0
1 ) = ∆𝐼𝑖(𝐼

0
1 )2/(6∆𝑡) from Eq. (4.22) this

term reads
√︀

6𝐷𝑖(𝐼01 )∆𝑡∆𝒰([−1, 1]). In order to simulate the �nite channel, every time

a point of the ensemble would be mapped to the outside of the channel, this point is not

mapped but instead the uniform random variable is drawn again. By this the prediction

for the transition of the drift mentioned above for 𝐼2(𝐼01 ) → ∞ is numerically con�rmed

for a single iteration of the Ito stochastic di�erential equation. This transition is also

observed with the Gaussian distribution Eq. (A.13) with the same di�usion coe�cients

𝐷𝑖(𝐼
0
1 ) = ∆𝐼𝑖(𝐼

0
1 )2/(6∆𝑡), 𝑖 = 1, 2.

For the setting of Sec. 4.6.2 and Eq. (4.21) also the probability distribution after the

�rst and second time step ∆𝑡, 2∆𝑡 is presented and it is analytically shown that the drift

stays the same after two time steps. The initial probability density along the channel

is 𝜌0(𝐼1) = 𝛿(𝐼1 − 𝐼01 ) and consequently after the �rst time step ∆𝑡 it is

𝜌Δ𝑡(𝐼1) =
2𝑏(𝐼1)

2
𝐼01−Δ𝐼1(𝐼01 )∫︀
𝐼01−Δ𝐼1(𝐼01 )

d𝐼1𝑏(𝐼1)

IΩΔ𝑡
=

𝑏(𝐼01 ) + 𝑏′(𝐼01 )(𝐼1 − 𝐼01 )

2𝑏(𝐼01 )∆𝐼1(𝐼01 )
IΩΔ𝑡

. (A.14)

Furthermore, for a su�ciently slow transport along the channel one may assume a

constant derivative 𝑏′(𝐼1) = 𝑏′(𝐼01 ) and a constant transport ∆𝐼1(𝐼1) = ∆𝐼1(𝐼
0
1 ) = ∆𝐼1.

Hence, while the drift 𝑣Δ𝑡(𝐼
0
1 ) after the �rst time step is expressed by Eq. (4.21), the
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drift 𝑣2Δ𝑡(𝐼
0
1 ) after the second time step reads

𝑣2Δ𝑡(𝐼
0
1 ) =

1

2∆𝑡

∫︁
d𝐼1
(︀
𝑣Δ𝑡(𝐼1)∆𝑡 + 𝐼1 − 𝐼01

)︀
∆𝑡𝜌Δ𝑡(𝐼1)

=

𝐼01+Δ𝐼1∫︀
𝐼01−Δ𝐼1

d𝐼1
(︀
1
3
𝑏′(𝐼01 )∆𝐼21 + 𝑏(𝐼01 )(𝐼1 − 𝐼01 ) + (𝐼1 − 𝐼01 )2𝑏′(𝐼01 )

)︀
4𝑏(𝐼01 )∆𝐼1∆𝑡

=
𝑏′(𝐼01 )

𝑏(𝐼01 )

∆𝐼21
3∆𝑡

(A.15)

which is the same as 𝑣Δ𝑡(𝐼
0
1 ). The probability density 𝜌2Δ𝑡(𝐼1) after the second time

step reads with |𝐼1 − 𝐼01 | ≤ 2∆𝐼

𝜌2Δ𝑡(𝐼1) =

𝐼1+Δ𝐼1∫︁
𝐼1−Δ𝐼1

d𝐼1𝜌Δ𝑡(𝐼1)prob(𝐼1 → 𝐼1)

=

𝐼1+Δ𝐼1∫︁
𝐼1−Δ𝐼1

d𝐼1𝜌Δ𝑡(𝐼1)

(︃
𝑏(𝐼1) + (𝐼1 − 𝐼1)𝑏

′(𝐼01 )

2𝑏(𝐼1)∆𝐼1

)︃

=
𝑏(𝐼01 ) + (𝐼1 − 𝐼01 )𝑏′(𝐼01 )

2𝑏(𝐼01 )∆𝐼1

(︂
1 − |𝐼1 − 𝐼01 |

2∆𝐼1

)︂
. (A.16)

The probability for one time step Eq. (A.14) can be used to simulate the transport

along the channel numerically, i.e. to map an initial condition 𝐼01 to 𝐼1 after one time step.

For this a transformation is employed which maps a uniform distribution 𝜌𝒰([0,1])(𝑥) = 1,

𝑥 ∈ [0, 1] to 𝜌Δ𝑡(𝐼1). According to

𝜌Δ𝑡(𝐼1)d𝐼1 = 𝜌𝒰([0,1])(𝑥)d𝑥 = 𝑥′(𝐼1)d𝐼1

the derivative 𝑥′(𝐼1) = d𝑥(𝐼1)/d𝐼1 is

𝑥′(𝐼1) = 𝜌Δ𝑡(𝐼1) =
𝑏(𝐼01 ) + 𝑏′(𝐼01 )(𝐼1 − 𝐼01 )

2𝑏(𝐼01 )∆𝐼1(𝐼01 )
IΩΔ𝑡

from which follows by integration

𝑥(𝐼1) =
2𝑏(𝐼01 )𝐼1 + 𝑏′(𝐼01 )(𝐼1 − 𝐼01 )2

4𝑏(𝐼01 )∆𝐼1(𝐼01 )
+ 𝐶
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where the constant 𝐶 is obtained from the condition 𝑥(𝐼01+∆𝐼1) = 1 (or 𝑥(𝐼01−∆𝐼1) = 0)

𝐶 = 1 − 2𝑏(𝐼01 )(𝐼01 + ∆𝐼1) + 𝑏′(𝐼01 )∆𝐼21
4𝑏(𝐼01 )∆𝐼1

. (A.17)

Consequently, for a point at position 𝐼01 along the channel a new position 𝐼1 after one

time step ∆𝑡 is obtained by drawing a uniform random variable 𝑥 = 𝒰([0, 1]) and

transform this by

𝐼1(𝑥) = −𝐴±
√︃

𝐴2 − (𝐼01 )2 +
4𝑏(𝐼01 )∆𝐼1𝑦(𝑥)

𝑏′(𝐼01 )

𝐴 =
𝑏(𝐼01 ) − 𝑏′(𝐼01 )𝐼01

𝑏′(𝐼01 )

(A.18)

with 𝑦(𝑥) = 𝑥−𝐶. Choosing the positive sign for the corresponding numerical simula-

tions, the distributions Eqs. (A.14) and (A.16) are checked. Furthermore, it is found that

for even more iterations 𝑛 ∈ 𝑁 and rescaled time, i.e. setting the squared step width

for 𝑛-steps ∆𝐼2(𝑛) = ∆𝐼2(𝑛 = 1)/𝑛, the distribution quickly converges to a Gaus-

sian distribution with mean E[𝐼1(𝑛∆𝑡) − 𝐼01 ] ≈ 𝑏′(𝐼01 )/𝑏(𝐼01 ) · ∆𝐼21 (𝑛)𝑛/(3∆𝑡), variance

E[(𝐼1(𝑛∆𝑡) − E[𝐼1(𝑛∆𝑡)])2] ≈ ∆𝐼21 (𝑛)𝑛/3 − E[𝐼1(𝑛∆𝑡) − 𝐼01 ]2 and E[(𝐼1(𝑛∆𝑡) − 𝐼01 )2] ≈
∆𝐼21 (𝑛)𝑛/3. This implies that the expressions for the di�usion and drift Eqs. (4.22) and

(4.23) are valid for ∆𝑡 → 0. Note that for the simulation it has to be ensured that the

chosen parameters prevent the ensemble from reaching the tip of the channel, i.e. where

the walls meet, as this causes artifacts.

A.3 Resonances

Resonance channels govern the chaotic dynamics in the vicinity of regular structures, see

Sec. 4.1. In particular, the sticky regions of 4d maps consist of a large set of overlapping

resonance channels. In view of the relevance of such sets of resonances, some of their

number-theoretic properties are presented in this section. An estimate for both the

number of resonances and the area covered by their channels is derived with respect to

the order of the resonances. These analytic results are shown to describe the numerical

results very well. An application of the latter result is illustrated, i.e. to assess up to

which order resonances are relevant for the chaotic transport of a system. Moreover,

the distances between numerically obtained frequencies and a certain resonance are

examined. It is discussed to what extent they contain information about trapping in

the deeper class of the resonance.
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A resonance condition 𝑘1𝜈1 + 𝑘2𝜈2 = 𝑘3 is de�ned by the three coe�cients 𝑘1 : 𝑘2 : 𝑘3

or 𝑘 = (𝑘1, 𝑘2, 𝑘3) ∈ Z3 with order 𝑘 = |𝑘1|+ |𝑘2|. Two resonance conditions 𝑘1,𝑘2 ∈ Z3

are considered to be equal, if ∃ 𝑐 ∈ 𝑍 : 𝑘1 = 𝑐𝑘2, see also Appendix A.4. Thus, any

resonance condition 𝑘 ∈ Z3 is assumed to be reduced to gcd(𝑘1, 𝑘2, 𝑘3) = 1. In this

sense, an estimate for the number 𝑁(𝑘) of distinct resonances in the frequency space

(𝜈1, 𝜈2) ∈ [0, 1) × [0, 1) for a �xed order 𝑘 is derived in the following. For brevity of

the derivation assume 𝑘1, 𝑘2 ̸= 0, while analogous results are obtained for the special

cases 𝑘1 = 0 and 𝑘2 = 0. A resonance line 𝑘1 : 𝑘2 : 𝑘3 in frequency space can then be

expressed by

𝜈2(𝜈1) =
𝑘3
𝑘2

− 𝑘1
𝑘2

𝜈1 . (A.19)

There is a whole set of resonances with identical 𝑘1 and 𝑘2 but distinct 𝑘3. In order for

a resonance to intersect with the frequency space (𝜈1, 𝜈2) ∈ [0, 1) × [0, 1) on a non-zero

set the following conditions have to be ful�lled

𝑘1
𝑘2

≥ 0 :
𝜈2(0) > 0 → 𝑘3

𝑘1
> 0

𝜈2(1) < 1 → 𝑘3−𝑘2
𝑘1

< 1

}︃
→
{︃

𝑘2 > 0 : 0 < 𝑘3 < 𝑘1 + 𝑘2

𝑘2 < 0 : 0 > 𝑘3 > 𝑘1 + 𝑘2

𝑘1
𝑘2

< 0 :
𝜈2(0) < 1 → 𝑘3

𝑘1
< 1

𝜈2(1) > 0 → 𝑘3−𝑘2
𝑘1

> 0

}︃
→
{︃

𝑘2 > 0 : 𝑘1 < 𝑘3 < 𝑘2

𝑘2 < 0 : 𝑘1 > 𝑘3 > 𝑘2

(A.20)

Note that intersection with a non-zero set implies that resonances which only intersect

with the frequency space at its corners are not included. The above inequalities can

be adjusted to a frequency space (𝜈1, 𝜈2) ∈ [0, 1] × [0, 1] which includes the corners by

replacing <,> with ≤,≥. The number 𝑁(𝑘1, 𝑘2) of possible 𝑘3 values for �xed 𝑘1, 𝑘2

are inferred from the inequalities Eq. (A.20)

𝑘1
𝑘2

≥ 0 : 𝑁(𝑘1, 𝑘2) = |𝑘1 + 𝑘2| − 1
𝑘1
𝑘2

< 0 : 𝑁(𝑘1, 𝑘2) = |𝑘1 − 𝑘2| − 1

}︃
𝑁(𝑘1, 𝑘2) = |𝑘1| + |𝑘2| − 1 . (A.21)

From Eq. (A.21) an upper bound for the number 𝑁(𝑘) of resonances of a certain order

𝑘 ≥ 1 can be estimated as

𝑁max(𝑘) =
𝑘∑︁

𝑘2=−𝑘+1

𝑁(𝑘 − |𝑘2|, 𝑘2) =
𝑘∑︁

𝑘2=−𝑘+1

(𝑘 − 1) = 2𝑘(𝑘 − 1)

⇒ 𝑁(𝑘) ≤ 2𝛿𝑘,1 + 2𝑘(𝑘 − 1) (A.22)
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including the Kronecker delta for the two resonances 1 : 0 : 0 and 0 : 1 : 0. Note that

the upper bound 𝑁max(𝑘) includes resonances with | gcd(𝑘1, 𝑘2, 𝑘3)| > 1. In particular,

any resonance 𝑘1 : 𝑘2 : 𝑘3 with order 𝑘 is also included as resonance 𝑘1𝑙 : 𝑘2𝑙 : 𝑘3𝑙 with

order 𝑘𝑙 for all 𝑙 ∈ N. Thus, from the upper bound 𝑁max(𝑘) the contributions 𝑁(𝑘′)

with 𝑘 = 𝑘′𝑙, 𝑙 ≥ 2 have to be subtracted

𝑁(𝑘) = 𝑁max(𝑘) −
∑︁
𝑘′∈N:

∃𝑙∈N,𝑙≥2:
𝑘=𝑘′𝑙

𝑁(𝑘′) . (A.23)

The function 𝑁(𝑘) can be computed from Eq. (A.23) in an iterative manner for increas-

ing 𝑘. An obvious lower bound for 𝑁(𝑘) which can be written explicitly is

𝑁(𝑘) ≥ 𝑁max(𝑘) −
∑︁
𝑘′∈N:

∃𝑙∈N,𝑙≥2:
𝑘=𝑘′𝑙

𝑁max(𝑘
′) .

Consider that every resonance of order 𝑘′ with 𝑘 = 𝑘′𝑙 where 𝑙 is not a prime number, i.e.

𝑙 = 𝑙′𝑙′′ with 𝑙′, 𝑙′′ ≥ 2, is also considered in 𝑁max(𝑘
′′) with 𝑘′′ = 𝑘′𝑙′′ since 𝑘 = 𝑘′𝑙 = 𝑘′′𝑙′.

Thus, for a re�nement of the lower bound only prime numbers should be considered for

𝑙, i.e. if the prime factorization of 𝑘 reads 𝑘 = 𝑙1𝑙2 · · · 𝑙max with 𝑙𝑖 ≤ 𝑙𝑗 for 𝑖 ≤ 𝑗

𝑁(𝑘) ≥ 𝑁max(𝑘) −
∑︁

𝑙 prime number
2≤𝑙≤𝑙max

𝑁max

(︂
𝑘

𝑙

)︂
. (A.24)

In Fig. A.7 the upper bound from Eq. (A.22), shown in red, and the lower bound

from Eq. (A.24), shown up to di�erent prime numbers, are compared with the actual

number 𝑁(𝑘) of resonances, shown by green points, for 1 ≤ 𝑘 ≤ 100. The green points

are connected by green lines as guide to the eye. It seems that for the lower bound

already 𝑙max = 2 or 𝑙max = 3 is su�cient to describe 𝑁(𝑘) up to large orders.

Each resonance line in a 4d symplectic map is surrounded by a resonance channel in

which the chaotic transport takes place. Thus, an interesting quantity is the area in

frequency space (𝜈1, 𝜈2) ∈ [0, 1)× [0, 1) covered by resonance channels of a certain order.

The area 𝐴[0,1)×[0,1)(𝑘) covered by a resonance channel of the resonance 𝑘 = (𝑘1, 𝑘2, 𝑘3) ∈
Z3 can be expressed in terms of the length of the resonance line 𝐿[0,1)×[0,1)(𝑘) within the

frequency space and the width 2𝜖(𝑘,𝜈) of the channel. Assuming 𝜖(𝑘,𝜈) = 𝜖(𝑘) the
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Figure A.7: Number𝑁(𝑘) of unique resonances 𝑘1 : 𝑘2 : 𝑘3 per order 𝑘 = |𝑘1|+|𝑘2| shown
as points connected by green lines for visibility. The upper estimate is shown as red line,
see Eq. (A.22). Some lower estimates are shown as black lines for 𝑙max ∈ {2, 3, 5, 7, . . . , 29}
(top to bottom) see Eq. (A.24).

area reads

𝐴[0,1)×[0,1)(𝑘) = 2𝜖(𝑘)𝐿[0,1)×[0,1)(𝑘) (A.25)

From Eqs. (A.19) and (A.20) follows that for any �xed 𝑘1, 𝑘2 a resonance 𝑘 = (𝑘1, 𝑘2, 𝑘3)

within the frequency space exists such that

𝑘1
𝑘2

≥ 0, 𝑘3 = 𝑘2 : 𝜈2(0) = 1 or
𝑘1
𝑘2

< 0, 𝑘3 = 0 : 𝜈2(0) = 0 .

For brevity only the �rst case is discussed, while the arguments apply analogously to the

second one. Also assume initially gcd(𝑘1, 𝑘2) = 1. Taking into account the periodicity of

the frequency space the line de�ned by 𝜈2(𝜈1) according to Eq. (A.19) with the resonance

𝑘 closes itself for 𝜈max
1

𝜈2(𝜈
max
1 ) = 1 − 𝑘1

𝑘2
𝜈max
1 = 𝑛 ∈ Z

⇒𝜈max
1 = |𝑘2| 𝜈2(𝜈

max
1 ) = 1 − |𝑘1| .
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Without the periodicity of the frequency space the length of this line is determined by

𝐿(𝑘) =

⃦⃦⃦⃦
⃦
(︃

𝜈max
1

𝑣2(𝜈
max
1 )

)︃
−
(︃

0

𝑣2(0)

)︃⃦⃦⃦⃦
⃦ =

√︁
𝑘2
1 + 𝑘2

2 . (A.26)

Due to the periodicity of the frequency space this line is folded back into [0, 1) × [0, 1).

This implies that the segments of this line appear as resonances with identical slope

−𝑘1/𝑘2 and di�erent o�set 𝑘′
3/𝑘2 with 𝑘′

3 ̸= 𝑘3, see Eq. (A.19). More precisely, the

original line in (𝜈1, 𝜈2) ∈ [1 − 𝑘1, 1) × [0, 𝑘2) is decomposed into 𝑁̃(𝑘) segments. This

number of segments is equal to the number of unit squares within a rectangle of size

|𝑘1|× |𝑘2| which are intersected by the diagonal on a non-zero set. As |𝑘1|−1 horizontal

and |𝑘2| − 1 vertical boundaries of such unit squares are crossed by the diagonal this

gives, including the initial square,

𝑁̃(𝑘) = |𝑘1| + |𝑘2| − 1 .

This number matches with the number of possible resonances 𝑁(𝑘1, 𝑘2) = 𝑁̃(𝑘) for �xed

𝑘1, 𝑘2, cf. Eq. (A.21), which implies that the segments coincide with these resonances.

Hence, the accumulated length 𝐿(𝑘1, 𝑘2) of all resonances for �xed 𝑘1, 𝑘2 is given by

𝐿(𝑘)

𝐿(𝑘1, 𝑘2) = 𝐿(𝑘) =
√︁

𝑘2
1 + 𝑘2

2 = |𝑘| . (A.27)

For the case gcd(𝑘1, 𝑘2) = 𝑛 > 1 one obtains analogously

𝐿(𝑘) =
√︁

𝑘′2
1 + 𝑘′2

2 𝑁̃(𝑘) = |𝑘′
1| + |𝑘′

2| − 1

with 𝑘𝑖 = 𝑘′
𝑖𝑛. As 𝑁̃(𝑘) < 𝑁(𝑘1, 𝑘2), this leaves some resonances 𝑘′ = (𝑘1, 𝑘2, 𝑘

′
3) with

𝜈2(0) ∈ [0, 1), in the sense of Eq. (A.19), which are not segments of the resonance 𝑘

which has 𝜈2(0) = 1. For a resonance 𝑘′ arguments analogous to 𝑘 apply. However,

since such resonance 𝑘′ is shifted away from the corner of the unit square in contrast to

𝑘 one more square is crossed by the corresponding diagonal. Thus, one obtains

𝐿(𝑘′) =
√︁

𝑘′2
1 + 𝑘′2

2 𝑁̃(𝑘′) = |𝑘′
1| + |𝑘′

2| .

The resonances corresponding to the segments of 𝑘 and 𝑘′ are disjoint, since a single

coincidence implies the coincidence of the complete resonance lines 𝑘 and 𝑘′. As there

are 𝑁(𝑘1, 𝑘2) = |𝑘1| + |𝑘2| − 1 = 𝑛(|𝑘′
1| + |𝑘′

2|) − 1 resonances for �xed 𝑘1, 𝑘2 within
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the frequency space (𝜈1, 𝜈2) ∈ [0, 1) × [0, 1) there have to be 𝑛 − 1 pairwise disjoint

resonances of the type of 𝑘′. The accumulated length of all these resonance lines is

𝐿(𝑘1, 𝑘2) = 𝑛
√︁
𝑘′2
1 + 𝑘′2

2 =
√︁

𝑘2
1 + 𝑘2

2

con�rming Eq. (A.27) also for gcd(𝑘1, 𝑘2) > 1. Using Eqs. (A.25) and (A.27) and

assuming 𝜖(𝑘) = 𝜖(𝑘1, 𝑘2) an upper bound for the area 𝐴(𝑘) in frequency space covered

by resonance channels of a certain order 𝑘 reads

𝐴(𝑘) ≤
∑︁

𝑘=(𝑘1,𝑘2,𝑘3):
𝑘=|𝑘1|+|𝑘2|

𝐴[0,1)×[0,1)(𝑘) =
𝑘∑︁

𝑘2=−𝑘+1

𝐴(𝑘 − |𝑘2|⏟  ⏞  
𝑘1

, 𝑘2) (A.28)

=
𝑘∑︁

𝑘2=−𝑘+1

2𝜖(𝑘1, 𝑘2)𝐿(𝑘1, 𝑘2) . (A.29)

This expression is only an upper bound, as there are areas due to junctions on which

the resonance channels overlap. This fact is neglected so far and hence these areas are

added multiple times.

Note that there appear two norms of Z2 in Eq. (A.28), i.e. the order 𝑘 = |𝑘1| + |𝑘2|
and the euclidean distance |𝑘| =

√︀
𝑘2
1 + 𝑘2

2. All norms in R2 are equivalent, i.e.

𝑘√
2
≤ |𝑘| ≤ 𝑘 |𝑘| ≤ 𝑘 ≤

√
2|𝑘| .

A further evaluation of Eq. (A.28) requires further assumptions about the width 2𝜖(𝑘1, 𝑘2)

of a resonance channel. The width de�nes the resonance channel in the sense that all

points belong to the resonance channel whose distance to the resonance line is smaller

than 𝜖(𝑘1, 𝑘2). Usually, the distance 𝑑 of a point (𝜈1, 𝜈2) to a resonance 𝑘 = (𝑘1, 𝑘2, 𝑘3)

is expressed by how well this point ful�lls the resonance condition 𝑑(𝜈,𝑘) = |𝑘1𝜈1 +

𝑘2𝜈2−𝑘3|, see the diophantine condition below or, e.g., Ref. [125]. This distance 𝑑(𝜈,𝑘)

can be related to the euclidean distance 𝐷(𝜈,𝑘) between the point (𝜈1, 𝜈2) and the

resonance line of Eq. (A.19) by considering that the point lies on a parallel line with a

third coe�cient 𝑘′
3 ∈ R. A sketch of the situation demonstrates the relation with the
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angle 𝜑 between the 𝜈2-axis and the resonance line 𝑘

𝐷(𝜈,𝑘) =
|𝑘′

3 − 𝑘3|
|𝑘2|

sin(𝜑) =
|𝑘1𝜈1 + 𝑘2𝜈2 − 𝑘3|

|𝑘2|
d𝜈1√︂

d𝜈2
1 +

(︁
d𝜈2(𝜈1)
d𝜈1

d𝜈1

)︁2
=

𝑑(𝜈,𝑘)

|𝑘2|
d𝜈1√︂

d𝜈2
1 +

(︁
𝑘1
𝑘2

d𝜈1

)︁2 =
𝑑(𝜈,𝑘)

|𝑘2|
|𝑘2|√︀
𝑘2
2 + 𝑘2

1

⇒ 𝐷(𝜈,𝑘) =
𝑑(𝜈,𝑘)

|𝑘| =
|𝑘1𝜈1 + 𝑘2𝜈2 − 𝑘3|√︀

𝑘2
1 + 𝑘2

2

. (A.30)

A simple assumption for the half-width of a resonance channels is 𝜖(𝑘1, 𝑘2) = 𝜖0/𝑘 [49,

Eq. (3.36)]. Assuming exponentially decaying Fourier coe�cients 𝑉𝑘 ∼ exp(−𝜎𝑘) in the

Fourier representation of the non-integrable perturbation of an integrable Hamiltonian

leads to 𝜖(𝑘1, 𝑘2) = 𝜖0 exp(−𝜎𝑘) [39, 62], see also [49, Eq. (4.65)]. The diophantine

condition |∑︀𝑖 𝑘𝑖𝜈𝑖| > 𝛾/𝑘𝜏 from the KAM-theorem for (𝑛+ 1) degrees of freedom with

𝑖 ∈ {0, 1, . . . , 𝑛}, 𝜏 > 𝑛 − 1, and 𝛾 proportional to the square of the perturbation

strength, cf. Ref. [40], suggests 𝜖(𝑘1, 𝑘2) = 𝛾/𝑘 in terms of the distance 𝑑(𝜈,𝑘). In

terms of the euclidean distance 𝐷(𝜈,𝑘) this means 𝜖(𝑘1, 𝑘2) = 𝛾/(𝑘|𝑘|). Finally, a

constant half-width 𝜖(𝑘1, 𝑘2) = 𝜖0 in terms of 𝑑(𝜈,𝑘) is equal to 𝜖(𝑘1, 𝑘2) = 𝜖0/|𝑘| in
terms of 𝐷(𝜈,𝑘). The evaluation of Eq. (A.28) for some of these cases reads

𝐴(𝑘) ≤ 4𝜖0 ·

⎧⎪⎪⎨⎪⎪⎩
𝑘2 for 𝜖(𝑘1, 𝑘2) = 𝜖0

𝑘 for 𝜖(𝑘1, 𝑘2) = 𝜖0
|𝑘| or 𝜖(𝑘1, 𝑘2) = 𝜖0

𝑘

1 for 𝜖(𝑘1, 𝑘2) = 𝜖0
𝑘|𝑘|

(A.31)

where |𝑘| ≤ 𝑘 is used. For the accumulated area 𝐴(𝑘 ≤ 𝐾) up to a certain order 𝐾

follows

𝐴(𝑘 ≤ 𝐾) ≤
𝐾∑︁
𝑘=1

𝐴(𝑘) ≤ 4𝜖0 ·

⎧⎪⎨⎪⎩
𝐾(𝐾+1)(2𝐾+1)

6
∼ 𝐾3

𝐾(𝐾+1)
2

∼ 𝐾2

𝐾 ∼ 𝐾

(A.32)

The resonances that are considered several times in the expressions in Eqs. (A.31) and

(A.32) can be corrected analogously to the lower bound in Eqs. (A.23) and (A.24). In

the following the corrections due to junctions are discussed. At the junction of two

resonances 𝑘,𝑘′ the corresponding channels with half-widths 𝜖(𝑘), 𝜖(𝑘′) overlap on a
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parallelogram with area

𝐴(𝑘 × 𝑘′) =
4𝜖(𝑘)𝜖(𝑘′)

sin^(𝑘,𝑘′)
= 4𝜖(𝑘)𝜖(𝑘′)

|𝑘||𝑘′|
|𝑘1𝑘′

2 − 𝑘′
1𝑘2|

(A.33)

where ^ (𝑘,𝑘′) denotes the angle between the two resonance lines. For two perpen-

dicular resonances it is obtained 𝐴(𝑘 × 𝑘′) = 4𝜖(𝑘)𝜖(𝑘′) and there is the pathological

case 𝑘 → 𝑘′ with 𝐴(𝑘 × 𝑘′) → ∞ which is ruled out. An upper bound for the number

𝑁((𝑘1, 𝑘2) × (𝑘′
1, 𝑘

′
2)) of junctions between all resonances with �xed 𝑘1, 𝑘2 and 𝑘′

1, 𝑘
′
2 is

given by the case that each resonance intersects with every other, i.e. using Eq. (A.22)

𝑁((𝑘1, 𝑘2) × (𝑘′
1, 𝑘

′
2)) ≤ (|𝑘1| + |𝑘2| − 1)(|𝑘′

1| + |𝑘′
2| − 1) ≤ 𝑘𝑘′

which implies for the overlap 𝐴((𝑘1, 𝑘2) × (𝑘′
1, 𝑘

′
2)) of all resonance channels of �xed

𝑘1, 𝑘2 and 𝑘′
1, 𝑘

′
2

𝐴((𝑘1, 𝑘2) × (𝑘′
1, 𝑘

′
2)) = 𝑁((𝑘1, 𝑘2) × (𝑘′

1, 𝑘
′
2))𝐴(𝑘 × 𝑘′)

≤ 4𝜖(𝑘)𝜖(𝑘′)
|𝑘||𝑘′|𝑘𝑘′

|𝑘1𝑘′
2 − 𝑘′

1𝑘2|

≤ 4𝜖(𝑘)𝜖(𝑘′)
𝑘2𝑘′2

|𝑘1𝑘′
2 − 𝑘′

1𝑘2|
(A.34)

For �nite angles 0 ≪ ^(𝑘,𝑘′) ≤ π/2 this gives ∼ 𝜖(𝑘)𝜖(𝑘′)𝑘𝑘′ for the upper bound of

𝐴((𝑘1, 𝑘2)×(𝑘′
1, 𝑘

′
2)). Depending on the choice of the half-width according to Eq. (A.31)

this upper bound ranges from ∼ 𝜖20𝑘𝑘
′ to ∼ 𝜖20. The overlap 𝐴(𝑘 × 𝑘) of all resonances

of the same order 𝑘 is estimated by

𝐴(𝑘 × 𝑘) ≤ 1

2

𝑘∑︁
𝑘2=−𝑘+1

𝑘∑︁
𝑘′2=−𝑘+1
𝑘′2 ̸=𝑘2

𝐴((𝑘 − |𝑘2|, 𝑘2) × (𝑘 − |𝑘′
2|, 𝑘′

2)) .

Hence, the correction terms to Eq. (A.31) due to junctions have an upper bound rang-

ing from ∼ 𝜖20𝑘
4 to ∼ 𝜖20𝑘

2. Thus, for small half-widths 𝜖0 and small orders 𝑘 these

corrections are negligible.

An application of Eq. (A.31) is to estimate up to which order resonances are relevant

for the observed dynamics. This is illustrated in Fig. A.8, showing the fraction of

𝐴(𝑘) of frequencies at resonances of order 𝑘. For Figure A.8(a) 106 random frequency

pairs (𝜈1, 𝜈2) are drawn uniformly distributed over a quarter of the frequency space

(𝜈1, 𝜈2) ∈ [0, 0.5)2. For each frequency pair the lowest order resonance 𝑘 with 𝑘 < 90

is determined such that 𝑑((𝜈1, 𝜈2),𝑘) < 𝜖0 with 𝜖0 = 10−5. The fraction of frequency
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Figure A.8: Fraction 𝐴(𝑘) of frequencies at resonances of order 𝑘 with width 2𝜖0, see
text. For (a) 106 uniformly random distributed frequency pairs (𝜈1, 𝜈2) ∈ [0, 0.5)2 are
used with 𝜖0 ∈ {10−5, 10−6, 10−7} (green, red, blue). For (b) the 20775 trapped orbits of
𝐹Twist with 𝑇 ≥ 106, i.e. a total of |ΩTwist| ≈ 1.7 · 107 frequency pairs, from Sec. 3.5.1
and Fig. 4.4 are used with 𝜖0 ∈ {10−6, 10−7, 10−8, 10−9} (red, blue, orange, green). The
estimate 𝐴(𝑘) ∼ 4𝑘 is indicated in both cases as dashed line, see second row of Eq. (A.31).

pairs assigned in this fashion to resonances of a certain order 𝑘 is an approximation

for the area 𝐴(𝑘) covered by resonances of this order with width 2𝜖0. Using the same

assigned resonances as above, this area is additionally estimated for smaller widths

∼ 𝜖0 = 10−6, 10−7. Finally, these estimates are rescaled with the considered 𝜖0 and

shown by di�erently colored points connected by lines as guide to the eye. In Fig. A.8(a)

the behavior of 𝐴(𝑘)/𝜖0 is linear over three orders of magnitude of the width and nicely

follows the upper bound given by Eq. (A.31). This upper bound is sometimes surpassed

indicating a numerical artifact which is expected to disappear for larger number of

random points. In Fig. A.8(b) analogously obtained results for trapped orbits of the

coupled twist maps 𝐹Twist are shown. While again the scaling of the area 𝐴(𝑘) with the

width ∼ 𝜖0 is con�rmed for large orders 𝑘, the results disagree considerably with the

upper bound for small orders. This is due to the dynamics of the real system, which is

dominated by low order resonance channels accumulating trapped orbits in their vicinity.

Since the upper bound shown as dashed line represents a uniform distribution of points,

it is reasonable to assume that for orders 𝑘 at which 𝐴(𝑘)/𝜖0 is in agreement with the

bound no dynamics but numerical artifacts are resolved. In the present case at most

resonance up to order 𝑘 = 50 can be considered relevant for the observed dynamics.

The discussion of the width of a resonance channel in frequency space is linked to

the problem of detecting whether orbits are within the deeper class of a resonance,
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Figure A.9: Distribution 𝜌(𝑑) of frequencies over the distance 𝑑 to the resonance 𝑘1 : 𝑘2 :
𝑘3 = 0 : 6 : 5 of 𝐹Twist. For the regular tori from Fig. 3.7 the gray curve is obtained, with
a peak around 𝑑 ∼ 10−9 from points on the resonance line and the right tongue from the
other KAM tori. For the trapped orbits from Fig. A.8(b) the dashed line behind the black
one is obtained. By excluding segments of trapped orbits with 𝜈1 ≥ 0.66064 the black
line is obtained, i.e. the two left peaks of the dashed line result from resonance junctions
(𝜈1, 𝜈2) = (𝑛1/𝑚1, 5/6). The peak at 𝑑 ∼ 10−12 results from 𝜈1 = 2/3 and the peak at
𝑑 ∼ 10−9 from 𝜈1 ∈ {329/498, 261/395, 115/174}. The distance 𝑑 = |𝑘1𝜈1 + 𝑘2𝜈2 − 𝑘3| is
used, see discussion of Eq. (A.30).

see Sec. 4.4. It is reasonable to ask whether this can be inferred from the frequencies

themselves. In Fig. A.9 a pro�le 𝜌(𝑑) of the number of frequency segments with respect

to their distance 𝑑 to the resonance 0 : 6 : 5 of 𝐹Twist is displayed in a log-log scale.

While this pro�le is for a particular resonance, equivalent pro�les are obtained for other

resonances not shown here. Firstly, the gray line represents the regular tori also shown

in Fig. 3.6(c). The regular tori seem to be separated sharply into a peak close to

the resonance 10−12 < 𝑑 < 10−5 and tori further away from the resonance 𝑑 > 10−4,

which are the majority. An inspection of the geometry of the regular tori within the

peak by 3d projections reveals that these 2d tori belong to the deeper class of the

resonance as expected from Sec. 3.3.1. Such a sharp separation is not observed for the

segments of the trapped orbits of 𝐹Twist represented by the black dashed line, which

coincides with the black solid line for 𝑑 > 10−8. At larger distance 𝑑 > 10−3 a rapidly

increasing number of segments is observed which analogous to the regular tori can be

considered to be outside of the resonance channel or at most in the stochastic layer of it.
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Closer to the resonance four characteristic peaks can be identi�ed. This suggests that

the distribution is a superposition of four broad peaks resulting from four dynamical

regimes with respect to the resonance. The inner two peaks can be associated to explicit

junctions on the resonance. Segments of the innermost peak are trapped at the junction

with 𝜈1 = 2/3 and the next peak is a superposition of segments trapped at the junctions

with 𝜈1 = 329/498, 261/395, 115/174. Due to this junctions the distribution reaches as

close as 𝑑 ∼ 10−14 to the resonance, even closer than most of the regular tori of the

deeper class. After excluding the segments at the junctions from the set of trapped

orbits, the black solid line remains, which just has two peaks and decays at smaller 𝑑

in a similar fashion as the peak of the regular tori. From comparison with this peak

it may be inferred that the outer peak is due to the stochastic layer of the resonance

channel and the inner peak is due to the deeper class. However, a careful comparison

of segments from each peak, for instance in phase space by 3d projections, is necessary

to a�rm this conjecture and is left for future studies.

A.4 Resonance module and junctions

Resonance junctions are essential to the global transport within the Arnold web as re-

viewed in Sec. 2.5.1. At each junction in�nitely many resonances are crossing composing

the so called resonance module. As the order of a resonance is relevant for its transport

properties, see Appendix A.3, it is interesting to know the lowest order resonances at

a junction. In this section, an e�ective, semi-analytical procedure is derived to obtain

the lowest order resonances for a junction (𝑛1/𝑚1, 𝑛2/𝑚2) of a 4d map. As a possible

application the orientation of Lyapunov families of ee periodic orbits at junctions with

respect to the crossing resonances is discussed.

The resonance module 𝐿 at a point (𝜈1, 𝜈2) in frequency space of a 4d map is the set

of all resonance conditions ful�lled at that point

𝐿(𝜈1, 𝜈2) = {𝑘 ∈ Z3 : 𝑘1𝜈1 + 𝑘2𝜈2 = 𝑘3} .

It is easy to show that the resonance module is a vector space with respect to integer

superposition, i.e. ∀𝑘1,𝑘2 ∈ 𝐿(𝜈1, 𝜈2) : ∀𝑎, 𝑏 ∈ Z : 𝑎𝑘1 + 𝑏𝑘2 ∈ 𝐿(𝜈1, 𝜈2). In this

sense, the dimension of the resonance module is zero, one or two according to the rank

of the resonance condition, see Sec. 3.2.2. However, here two resonance conditions

𝑘1,𝑘2 ∈ 𝐿 are considered to be equal 𝑘1 = 𝑘2, if ∃ 𝑐 ∈ Z : 𝑘1 = 𝑐𝑘2, since these

conditions are ful�lled on the same set of frequencies. Without loss of generality it

is therefore assumed that gcd(𝑘1, 𝑘2, 𝑘3) = 1 for 𝑘 ∈ 𝐿(𝜈1, 𝜈2). In this sense, the
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dimension of the resonance module is only non-zero at a resonance junction, i.e. for rank-

2. More precisely, at a resonance junction (𝜈1, 𝜈2) = (𝑛1/𝑚1, 𝑛2/𝑚2) with 𝑛𝑖,𝑚𝑖 ∈ Z
and gcd(𝑛𝑖,𝑚𝑖) = 1, 0 ≤ 𝑛𝑖 < 𝑚𝑖, the module 𝐿(𝑛1/𝑚1, 𝑛2/𝑚2) is spanned by any two

linearly independent elements of the module, i.e. ∀𝑘1,𝑘2 ∈ 𝐿(𝑛1/𝑚1, 𝑛2/𝑚2) 𝑘1 ̸= 𝑘2

(@𝑐 ∈ Z : 𝑘1 = 𝑐𝑘2 or 𝑘2 = 𝑐𝑘1) : ∀𝑘3 ∈ 𝐿(𝑛1/𝑚1, 𝑛2/𝑚2) ∃ 𝑎, 𝑏, 𝑐 ∈ Z : 𝑎𝑘1+𝑏𝑘2 = 𝑐𝑘3

which are given by

𝑎

𝑐
= −𝑘2

1𝑘
3
2 − 𝑘2

2𝑘
3
1

𝑘1
1𝑘

2
2 − 𝑘1

2𝑘
2
1

𝑏

𝑐
=

𝑘1
1𝑘

3
2 − 𝑘1

2𝑘
3
1

𝑘1
1𝑘

2
2 − 𝑘1

2𝑘
2
1

(A.35)

These expressions for 𝑎/𝑐 and 𝑏/𝑐 can be directly veri�ed for the �rst two components

𝑘3
1, 𝑘

2
2 and for the third component 𝑘3

3 by identifying 𝑛1/𝑚1, 𝑛2/𝑚2 using Eq. (3.5).

It should be pointed out that in a normal form analysis two resonances 𝑘1,𝑘2 ∈ 𝐿 with

𝑘1 = 𝑐𝑘2, 𝑐 ∈ 𝑍 are not equal. In particular, the di�erent orders of these resonances may

lead to di�erent kind of normal forms and thus dynamics [61]. In this sense, not all pairs

of linearly independent resonances of a resonance module span the module, but only so

called minimal generators. For such generators the denominator in Eq. (A.35), which is

the determinant of the Matrix (𝑘𝑗
𝑖 )𝑖,𝑗∈{1,2}, has to ful�ll a certain condition [61, Corollary

3.9] also called minimal representation [183].

In any case, a characterizing property of a junction (𝑛1/𝑚1, 𝑛2/𝑚2) is lowest order

𝑘0 of the crossing resonances 𝑘 ∈ 𝐿(𝑛1/𝑚1, 𝑛2/𝑚2) which is given by 𝑘0 = min{𝑘 :

𝑘 ∈ 𝐿(𝑛1/𝑚1, 𝑛2/𝑚2)} with the order 𝑘 = |𝑘1| + |𝑘2|. This order 𝑘0 has an trivial

upper bound 𝑘0 ≤ 𝑘max deduced from the two uncoupled resonances of the module

𝑘1 = (𝑚1, 0, 𝑛1) and 𝑘2 = (0,𝑚2, 𝑛2), i.e. 𝑘max ≤ min{𝑚1,𝑚2}. This implies that the

number of resonance conditions 𝑘 ∈ 𝐿(𝑛1/𝑚1, 𝑛2/𝑚2) that have to be compared by a

brute force algorithm in order to �nd 𝑘0 are at most
∑︀𝑘max

𝑗=1 2
∑︀𝑗

𝑖=0 = 𝑘max(𝑘max + 3).

Other helpful restrictions for such a brute force algorithm may be found in Ref. [61],

Lemma 3.4 and following Corollary. However, a more e�cient and direct way to obtain

𝑘0 is derived in the following. Any resonance 𝑘 ∈ 𝐿(𝑛1/𝑚1, 𝑛2/𝑚2) can be expressed

by the two uncoupled resonances 𝑘1, 𝑘2 using Eq. (A.35) which leads to the condition

𝑘3 =
𝑛1

𝑚1

𝑘1 +
𝑛2

𝑚2

𝑘2 =
𝑚2𝑛1𝑘1 + 𝑚1𝑛2𝑘2

𝑚1𝑚2

=
𝑥𝑘1 + 𝑦𝑘2

𝑧
(A.36)

with 𝑥, 𝑦, 𝑧 ∈ Z and gcd(𝑥, 𝑦, 𝑧) = 1. In order to determine 𝑘0, a solution 𝑘1, 𝑘2 ∈ Z to

the diophantine equation

𝑧𝑘3 = 𝑍 = 𝑥𝑘1 + 𝑦𝑘2 (A.37)
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has to be found for which 𝑘 = |𝑘1| + |𝑘2| is minimal. For a diophantine equation like

Eq. (A.37) it is straightforward to see that

∀𝑘1, 𝑘2 ∈ Z : ∃ 𝑙 ∈ Z : 𝑥𝑘1 + 𝑦𝑘2 = 𝑙 gcd(𝑥, 𝑦) . (A.38)

In particular | gcd(𝑥, 𝑦)| is the smallest absolute value possible for 𝑍. Also one can

decompose

𝑥𝑦 = gcd(𝑥, 𝑦)lcm(𝑥, 𝑦) . (A.39)

Note that the solution of Eq. (A.37) for a particular 𝑍 is ambiguous as

𝑥𝑘1 + 𝑦𝑘2 = 𝑥𝑘1 + 𝑙𝑥𝑦 + 𝑦𝑘2 − 𝑙𝑥𝑦 = 𝑥(𝑘1 + 𝑙𝑦) + 𝑦(𝑘2 − 𝑙𝑥) = 𝑥𝑘1 + 𝑦𝑘2 (A.40)

with 𝑙 ∈ Z. A generic way to obtain a solution of Eq. (A.37) is Euclid's algorithm

reviewed in Ref. [217]. However, this algorithm can produce very large 𝑘1, 𝑘2. Instead, a

continued fraction procedure which produces minimal solutions [217] is more appropriate

for the purpose here. This algorithm is brie�y reviewed in the following.

At �rst assume gcd(𝑥, 𝑦) = 1 in Eq. (A.37). The case gcd(𝑥, 𝑦) > 1 can be transformed

to new parameters 𝑥′, 𝑦′, 𝑍 ′ by 𝑥 = 𝑥′ gcd(𝑥, 𝑦), 𝑦 = 𝑦′ gcd(𝑥, 𝑦) and 𝑍 = 𝑍 ′ gcd(𝑥, 𝑦) =

𝑧𝑘′
3 gcd(𝑥, 𝑦), where 𝑍 ′ ∈ Z according to Eq. (A.38). Adapt the notation for the iterative

algorithm

𝑍 ′ = 𝑥′𝑘1 + 𝑦′𝑘2 → 𝑐0 = 𝑏0𝑥1 + 𝑏1𝑥0 (A.41)

where without loss of generality |𝑏0| ≥ |𝑏1| is assumed. A solution to Eq. (A.41) is

obtained iterative by

𝑐𝑖 = 𝑏𝑖𝑥𝑖+1 + 𝑏𝑖+1𝑥𝑖 |𝑏𝑖| ≥ |𝑏𝑖+1| (A.42)

where the new coe�cients result from a decomposition

𝑏𝑖 = 𝑞𝑖+1𝑏𝑖+1 + 𝑏𝑖+2 with |𝑏𝑖+2| ≤
1

2
|𝑏𝑖+1|

𝑐𝑖 = 𝑔𝑖+1𝑏𝑖+1 + 𝑐𝑖+1 with |𝑐𝑖+1| ≤
1

2
|𝑏𝑖+1|

(A.43)
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from which follows in combination with Eq. (A.42)

𝑥𝑖 =
𝑐𝑖 − 𝑏𝑖𝑥𝑖+1

𝑏𝑖+1

Eq. (A.43)
= 𝑔𝑖+1 − 𝑞𝑖+1𝑥𝑖+1 +

𝑐𝑖+1 − 𝑏𝑖+2𝑥𝑖+1

𝑏𝑖+1

𝑥𝑖 = 𝑔𝑖+1 − 𝑞𝑖+1𝑥𝑖+1 + 𝑥𝑖+2 (A.44)

with all parameters being integers, in particular 𝑥𝑖+2 ∈ Z. The combination of Eq. (A.42)
with Eqs. (A.43) and (A.44) results in the next step of the iteration

𝑐𝑖+1 = 𝑏𝑖+1𝑥𝑖+2 + 𝑏𝑖+2𝑥𝑖+1 |𝑏𝑖+1| ≥ |𝑏𝑖+2|

as predicted by Eq. (A.42). The procedure is iterated until

0 < |𝑐𝑖| <
1

2
|𝑏𝑖| ∀𝑖 ∈ 1, . . . , 𝑛− 1

and either (𝑎) 𝑐𝑛 = 0 𝑏𝑛 ̸= 0

or (𝑏) 𝑐𝑛 = ±1

2
𝑏𝑛 𝑏𝑛 ̸= 0

(A.45)

In these cases the �nal equation of Eq. (A.42) reads

(𝑎) 𝑏𝑛𝑥𝑛+1 + 𝑏𝑛+1𝑥𝑛 = 0

(𝑏) 𝑏𝑛𝑥𝑛+1 + 𝑏𝑛+1𝑥𝑛 = ±1

2
𝑏𝑛

with the trivial solutions

(𝑎) 𝑥𝑛 = 𝑥𝑛+1 = 0

(𝑏) 𝑥𝑛 = ±1

2
𝑏𝑛 𝑥𝑛+1 = ∓1

2
(𝑏𝑛+1 − 1) .

(A.46)

Note that 𝑏𝑛+1 in case (𝑏) in Eq. (A.46) is odd due to 𝑏𝑛 being even the �rst line of

Eq. (A.43). Using the solutions of Eq. (A.46) the preceding values 𝑥𝑖<𝑛 are obtained by

solving Eq. (A.44) backwards.

The solution of the described algorithm is minimal in the following sense [217]. A

solution (𝑥0, 𝑥1) of Eq. (A.41) with |𝑏0| ≥ |𝑏1| is called minimal solution with respect

to 𝑥1 if |𝑥1| < |𝑏1|/2 and is the only such solution, except when the equality holds. A

solution of Eq. (A.41) is called de�nitely least solution, if and only if both |𝑥1| ≤ |𝑏1|/2

and |𝑥0| ≤ |𝑏0|/2. The algorithm gives a minimal solution with respect to 𝑥1. Either a

solution from the algorithm (𝑥0, 𝑥1) is only minimal with respect to 𝑥1 or there is just one

other and then (𝑥0, 𝑥1) is the one in which |𝑥0| is smaller. This implies that if a de�nitely
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least solution exists and is unique, this solution is obtained by the algorithm. There is a

statement about the uniqueness of the de�nitely least solution (d.l.s.). Consider 𝑏0 > 0,

𝑏1 > 0 odd, gcd(𝑏0, 𝑏1) = 1 and 𝑐0 ≥ 0, then ∃ 𝐿,𝑅 ∈ Z, 𝐿 < 𝑅 de�ned by{︃
𝐿 = 1

2
(𝑏0 + 𝑏1) 𝑅 = 𝑏0𝑏1 − 1

2
(𝑏0 + 𝑏1) : 𝑏0 odd

𝐿 = 1
2
𝑏0 + 𝑏1 𝑅 = 𝑏0𝑏1 − 1

2
𝑏0 : 𝑏0 even

such that

∀𝑐0 < 𝐿 : ∃ 𝑑.𝑙.𝑠.

∀𝑐0 > 𝑅 : @ 𝑑.𝑙.𝑠.

∀𝐿 ≤ 𝑐0 ≤ 𝑅 : ∃ 𝑑.𝑙.𝑠. for half the values of 𝑐0, i.e.

∀𝑐, 𝑐′, 𝑐 + 𝑐′ = 𝐿 + 𝑅 : ∃ 𝑑.𝑙.𝑠. for exactly one 𝑐0 ∈ {𝑐, 𝑐′}
e.g. 𝑐0 = 𝑅 → ∃ 𝑑.𝑙.𝑠. 𝑐0 = 𝐿 → @ 𝑑.𝑙.𝑠.

Once a solution (𝑥0, 𝑥1) of Eq. (A.41) is obtained by the algorithm any other solution

(𝑥̃0, 𝑥̃1) automatically follows from

𝑥̃0 = 𝑥0 + 𝑙
lcm(𝑏0, 𝑏1)

𝑏1

Eq. (A.39)
= 𝑥0 + 𝑙

𝑏0
gcd(𝑏0, 𝑏1)

gcd(𝑏0,𝑏1)=1
= 𝑥0 + 𝑙𝑏0

𝑥̃1 = 𝑥1 − 𝑙
lcm(𝑏0, 𝑏1)

𝑏0

Eq. (A.39)
= 𝑥1 − 𝑙

𝑏1
gcd(𝑏0, 𝑏1)

gcd(𝑏0,𝑏1)=1
= 𝑥1 − 𝑙𝑏1

(A.47)

with 𝑙 ∈ Z. This is a su�cient condition for (𝑥̃0, 𝑥̃1) being a solution, cf. Eq. (A.40).

In the following, it is proven that Eq. (A.47) is also a necessary condition. Consider an

arbitrary other solution (𝑥̃0, 𝑥̃1) of Eq. (A.41). It is always possible to write

𝑐0 = 𝑏0𝑥̃1 + 𝑏1𝑥̃0 = 𝑏0(𝑥1 + ∆1) + 𝑏1(𝑥0 + ∆0)

with ∆𝑖 ∈ Z, ∆𝑖 = 𝑥̃𝑖 − 𝑥𝑖. This implies

𝑏1∆0 = −𝑏0∆1

such that both 𝑏0∆1 and 𝑏1∆0 are multiple of both 𝑏0 and 𝑏1. Thus, both terms can be

expressed by

𝑏1∆0 = −𝑏0∆1 = 𝑙 · lcm(𝑏0, 𝑏1)

with 𝑙 ∈ Z. This proves that Eq. (A.47) is a necessary condition.
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According to Eq. (A.47), in order to obtain a solution (𝑥0, 𝑥1) for Eq. (A.41) with

minimal order 𝑥 the minimum of

𝑥(𝑙) = |𝑥̃0| + |𝑥̃1| = |𝑥0 + 𝑙𝑏0| + |𝑥1 − 𝑙𝑏1|

has to be found. Since (𝑥0, 𝑥1) is already the minimal or de�nitely least solution, the

solution (𝑥̃0, 𝑥̃1) with minimal order is expected to be in the neighborhood of (𝑥0, 𝑥1).

To �nd the actual solution with minimal order of Eq. (A.41) the solutions (𝑥̃0, 𝑥̃1) have

to be obtained for every 𝑍 ′ = 𝑧𝑘′
3, 𝑘

′
3 ∈ [0, 𝑘max

3 ] and the minimal order has to be found

among these solutions. The boundary 𝑘max
3 is determined according to the following

considerations. Let 𝑥min(𝑘′′
3−1) be the minimal order obtained for 𝑘′

3 ∈ [0, 𝑘′′
3−1 < 𝑘max

3 ],

𝑘′′
3 ∈ N. For 𝑏0𝑥1 + 𝑏1𝑥0 = 𝑧𝑘′′

3 the order 𝑥(𝑘′′
3) has a lower boundary

𝑥(𝑘′′
3) ≥ |𝑧𝑘′′

3 |
max(|𝑏0|, |𝑏1|)

=
|𝑧𝑘′′

3 |
|𝑏0|

and since the search can be stopped once this lower boundary is bigger or equal than

𝑥min(𝑘′′
3 − 1), it is obtained that

𝑘max
3 ≤ |𝑏0|

|𝑧| 𝑥min(𝑘′′
3) . (A.48)

The upper bound 𝑘max
3 is successively updated with increasing 𝑘′′

3 until 𝑘max
3 ≤ 𝑘′′

3 .

Then the solution corresponding to the order 𝑥min(𝑘′′
3) is the solution of Eq. (A.41) with

minimal order. In an analogous fashion the solutions with second, third, . . . smallest

order can be additionally computed. The case 𝑘′
3 = 0 in Eq. (A.41) does not require

the algorithm, because the minimal solution is obviously 𝑥0 = 𝑥1 = 0. However, this

solution does not represent a valid resonance. Thus, for the case 𝑘′
3 = 0 according to

Eq. (A.47) the solution with minimal order is (𝑥̃0, 𝑥̃1) = (𝑏0, 𝑏1) with order 𝑥min(0) =

|𝑏0| + |𝑏1| from which the initial upper bound is estimated 𝑘max
3 ≤ |𝑏0|/|𝑧| · (|𝑏0| + |𝑏1|).

Note that an initial solution for an arbitrary 𝑍 ′ = 𝑧𝑘′
3 is trivially given by multiplying

the solution for 𝑍 ′ = 1 with 𝑧𝑘′
3. This solution can be optimized by Eq. (A.47).

As an example the resonances with lowest order are computed for two junctions

present in the two coupled standard maps 𝐹SC. The �rst example is the junction

(𝜈1, 𝜈2) = (2/7, 2/21) at the crossing of the resonances −1 : 3 : 0 and 7 : 0 : 2. In

this case, Eq. (A.36) reads

𝑘3 =
2

7
𝑘1 +

2

21
𝑘2 =

6𝑘1 + 2𝑘2
21

.
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Since gcd(6, 2) = 2 the left side is substituted 𝑘3 = 2𝑘′
3 and Eq. (A.41) reads

21𝑘′
3 = 3𝑘1 + 1𝑘2 .

For 𝑘′
3 = 0 the solution with minimal order is (𝑘1, 𝑘2) = (1,−3) with order 𝑥min(0) = 4

from which according to Eq. (A.48) the upper bound 𝑘′
3 ≤ 𝑘max

3 ≤ 12/21 < 1 follows.

Thus, the resonance −1 : 3 : 0 is indeed the resonance with the smallest order at the

junction and is the only resonance with that order.

The second example is the junction (𝜈1, 𝜈2) = (2/7, 3/35) at the crossing of the

resonances 7 : 0 : 2 and 5 : −5 : 1. In this case, Eq. (A.36) reads

𝑘3 =
2

7
𝑘1 +

3

35
𝑘2 =

10𝑘1 + 3𝑘2
35

.

For 𝑘3 = 0 the solution with minimal order is (𝑘1, 𝑘2) = (3,−10) with order 𝑥min(0) = 13

from which according to Eq. (A.48) the upper bound 𝑘3 ≤ 𝑘max
3 ≤ 10 ·13/35 < 4 follows.

For 𝑘3 = 1 the steps of the algorithm read

𝑘2 =
35 − 10𝑘1

3
= 12 − 3𝑘1−

1 + 𝑘1
3⏟  ⏞  

𝑤

𝑘1 = −1 − 3𝑤 → 𝑤 = 0 𝑘1 = −1 𝑘2 = 15 .

Using Eq. (A.47) the minimal order is found

𝑙 𝑘1 𝑘2 |𝑘1| + |𝑘2|
0 -1 15 16

→ 1 2 5 7

2 5 -5 10

for the resonance 2 : 5 : 1 with order 𝑥min(1) = 7. According to Eq. (A.48) this implies

the upper bound 𝑘3 ≤ 𝑘max
3 ≤ 10 ·7/35 = 2. Thus, the case 𝑘3 = 2 has to be considered,

which can be done by three di�erent ways. Firstly, the steps of the algorithm for this

case read

𝑘2 =
70 − 10𝑘1

3
= 23 − 3𝑘1 +

1 − 𝑘1
3⏟  ⏞  
𝑤

𝑘1 = −1 − 3𝑤 → 𝑤 = 0 𝑘1 = 1 𝑘2 = 20 .

Using Eq. (A.47) the minimal order is found
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𝑙 𝑘1 𝑘2 |𝑘1| + |𝑘2|
0 1 20 21

1 4 10 14

→ 2 7 0 7

3 10 -10 20

for the resonance 7 : 0 : 2 with order 𝑥min(2) = 7. Secondly, one might use the algorithm

to �nd the solution minimized with respect to 𝑘2

𝑘1 =
70 − 3𝑘1

10
= 7 − 3𝑘2

10
→ 𝑘2 = 0 𝑘1 = 7

and realize according to Eq. (A.47) that this solution has the minimal order. Thirdly,

one might multiply the solution for 𝑘3 = 1 with two, which leads to the resonance

4 : 10 : 2. While this resonance is equivalent to 2 : 5 : 1, such reductions do not have

to be considered, since the resulting resonance is already included in the cases 𝑘3 < 2.

From the resonance 4 : 10 : 2 according to Eq. (A.47) the resonance 7 : 0 : 2 is found to

have the minimal order. In conclusion, there are two resonances with minimal order at

the junction that is 7 : 0 : 2 and 2 : 5 : 1.

Knowing the resonances with the lowest order at a resonance junction is interesting, as

these resonances may determine the orientation of the Lyapunov families of the junction:

In Sec. 3.3.1 it is demonstrated that for (𝛼2) the ee periodic orbit from a broken resonant

elliptic 1d torus one of the emanating Lyapunov families is embedded in the original

family of elliptic 1d tori. At (𝛼1) a resonance junction also an ee periodic orbit with

two Lyapunov families is present and additionally the elliptic and hyperbolic families

of 1d tori of all the intersecting resonances. More precisely, the junction represents a

gap in the families of the resonances in which the periodic orbits are located. Thus, it

is reasonable to expect the Lyapunov families of the ee periodic orbit to be embedded

in one of these families as in the case (𝛼2). Indeed, it is observed that one of the

Lyapunov families of the ee periodic orbit at the junction 𝜈 = (2/7, 3/35) is embedded

within the elliptic family of the resonance 7 : 0 : 2. As there is an in�nite number of

resonances at each junction the question is in which two of them the Lyapunov families

are embedded. One conjecture is that these two resonances are the ones of lowest order.

For the junction 𝜈 = (2/7, 3/35) these are the resonances 7 : 0 : 2 and 2 : 5 : 1 and for

𝜈 = (2/7, 2/21) one is −1 : 3 : 0 as calculated above.

Another idea is that the resonances are selected by the order of the uncoupled res-

onance which represents the junction in the frequency space of the resonances, see

Sec. 3.3.2. In detail, the periodic orbits at a junction can be interpreted as the rem-

nants of the break-up of resonant 1d tori from the families of the resonances. For
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instance, the junction 𝜈 = (2/7, 3/35) corresponds in the frequencies of the resonance

7 : 0 : 2 to 𝜈𝐿 = 𝜈 ′′′
1 = 7 · 3/35 = 1 − 2/5 which represents the resonance 5 : 0 : 2.

Indeed, in Fig. 3.5(f) all the points from the junction fall on this resonance. In case

of the resonance 5 : −5 : 1 using the unimodular transformation 𝒰 = ((0, 1), (−1, 1)),

see Sec. 3.3.2, the junction corresponds to 𝜈𝐿 = 5 · 3/35 = 3/7, i.e. 7 : 0 : 3. For the

resonance 2 : 5 : 1 using 𝒰 = ((1, 2), (2, 5)) the junction corresponds to 𝜈𝐿 = 16/35, i.e.

35 : 0 : 16. Likewise, the junction 𝜈 = (2/7, 2/21) in terms of the resonance 7 : 0 : 2 cor-

responds to 𝜈𝐿 = 7 · 2/21 = 1 − 1/3 which is not within Fig. 3.5(f) anymore. The same

junction in terms of the resonance −1 : 3 : 0 using 𝒰 = ((0, 1), (1,−3)) corresponds to

𝜈𝐿 = 𝜈 ′′
1 = 2/21, i.e. 21 : 0 : 2, which is visible in Fig. 3.5(d). Which resonance in fact

governs the orientation of the Lyapunov families is left for future studies.

A.5 Action space

For generic symplectic maps with a mixed phase space it is challenging to �nd the

local action�angle coordinates as introduced in Sec. 2.1. In this section, the method for

computing the actions for 4d symplectic maps from Ref. [38] is reviewed by generalizing

the crucial equation to arbitrary dimensions. The method is used to present regular

tori and a trapped orbit of the two coupled standard maps 𝐹SC in action space, which

demonstrates that the edges in frequency space indeed correspond to the families of

1d tori, see Sec. 3.1. While the action computation only works for non-resonant tori,

a method for estimating the actions on resonances is proposed. It is also explained

how actions of regular tori can be zero and even negative in higher-dimensional maps.

Finally, a comparison with the action space for the coupled twist maps 𝐹Twist illustrates

the generic nature of this map.

In Ref. [38] the Fourier coe�cients of orbits on regular 2d tori in 4d symplectic

maps are used to compute the actions of these tori. In the following, the method

is reviewed by generalizing it to arbitrary dimensions. Consider a 2𝑁 -dimensional

symplectic map with an orbit 𝑥(𝑡) on a regular torus in momentum�position coordinates

𝑥(𝑡) = (𝑝, 𝑞)(𝑡) ∈ R2𝑁 and corresponding action�angle coordinates (𝐼,Θ(𝑡)) ∈ R𝑁×T𝑁

and frequencies 𝜈(𝐼) = 𝜈 ∈ [0, 1)𝑁 , i.e. Θ(𝑡) = 2π𝜈𝑡. The Fourier series of the signal

𝑧(𝑡) also used for the frequency analysis, see Sec. 2.6.2 reads

𝑧(𝑡) = 𝑞(𝑡) − i𝑝(𝑡) =
∑︁
𝑘

𝑎𝑘 exp(i2π𝜈𝑘𝑡)

⇒ 𝑧(Θ) =
∑︁
𝑘

𝑎𝑘 exp(i𝑘Θ)
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with integer vectors 𝑘 ∈ Z𝑁 and Fourier coe�cients 𝑎𝑘 ∈ 𝒞𝑁 . From this follows for

Fourier series of the momentum�position coordinates

𝑞(Θ) =
1

2
(𝑧(Θ) + 𝑧(Θ)) =

1

2

∑︁
𝑘

(𝑎𝑘 exp(i𝑘Θ) + 𝑎̄𝑘 exp(−i𝑘Θ))

𝑝(Θ) = − 1

2i
(𝑧(Θ) − 𝑧(Θ)) = − 1

2i

∑︁
𝑘

(𝑎𝑘 exp(i𝑘Θ) − 𝑎̄𝑘 exp(−i𝑘Θ)) .

The actions 𝐼 can than be calculated using Eq. (2.4) over the closed paths 𝛾𝑗 with

constant angles Θ𝑚 ̸=𝑗

𝐼𝑗 =
1

2π

2π∫︁
0

𝑁∑︁
𝑙=1

𝑝𝑙
d𝑞𝑙
dΘ𝑗

dΘ𝑗 =
𝑁∑︁
𝑙=1

1

2π

2π∫︁
0

𝑝𝑙
d𝑞𝑙
dΘ𝑗

dΘ𝑗 .

Using the Fourier series of the coordinates from above one obtains for single term

1

2π

2π∫︁
0

dΘ𝑗𝑝𝑙
d𝑞𝑙
dΘ𝑗

=
1

2π

2π∫︁
0

dΘ𝑗

(︂
−1

4

)︂∑︁
𝑘,𝑘′

𝑘′
𝑗

× (𝑎𝑙,𝑘 exp(i𝑘Θ) − 𝑎̄𝑙,𝑘 exp(−i𝑘Θ))

× (𝑎𝑙,𝑘′ exp(i𝑘′Θ) − 𝑎̄𝑙,𝑘′ exp(−i𝑘′Θ))

=
1

2π

2π∫︁
0

dΘ𝑗

(︂
−1

4

)︂∑︁
𝑘,𝑘′

𝑘′
𝑗×

(𝑎𝑙,𝑘𝑎𝑙,𝑘′ exp(iΘ(𝑘 + 𝑘′)) + 𝑎̄𝑙,𝑘𝑎̄𝑙,𝑘′ exp(−iΘ(𝑘 + 𝑘′))

−𝑎𝑙,𝑘𝑎̄𝑙,𝑘′ exp(iΘ(𝑘 − 𝑘′)) − 𝑎̄𝑙,𝑘𝑎𝑙,𝑘′ exp(−iΘ(𝑘 − 𝑘′))) .

The crucial step is to realize that the calculation of the action is independent of the

coordinates of the remaining angles Θ𝑚̸=𝑗. Thus, it does not a�ect the result to average

the equation over these angles, i.e. replace

1

2π

2π∫︁
0

dΘ𝑗 →
𝑁∏︁

𝑚=1

1

2π

2π∫︁
0

dΘ𝑚 .

Using the Fourier representation of the Kronecker delta

1

2π

2π∫︁
0

dΘ exp(±iΘ(𝑘 − 𝑘′)) = 𝛿𝑘𝑘′
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the action term reads then

1

2π

2π∫︁
0

dΘ𝑗𝑝𝑙
d𝑞𝑙
dΘ𝑗

=

(︂
1

4

)︂∑︁
𝑘

𝑘𝑗(𝑎𝑙,𝑘𝑎𝑙,−𝑘 + 𝑎̄𝑙,𝑘𝑎̄𝑙,−𝑘 + 2|𝑎𝑙,𝑘|2)

where the �rst two terms vanish over the sum as∑︁
𝑘

𝑘𝑗𝑎𝑙,𝑘𝑎𝑙,−𝑘 =
∑︁
𝑘∈𝐾

∀𝑘,𝑘′∈𝐾: 𝑘 ̸=−𝑘′

(𝑘𝑗𝑎𝑙,𝑘𝑎𝑙,−𝑘 + (−𝑘𝑗)𝑎𝑙,−𝑘𝑎𝑙,𝑘) = 0 .

Thus, for the actions 𝐼 follows

𝐼𝑗 =
1

2

𝑁∑︁
𝑙=1

∑︁
𝑘

𝑘𝑗|𝑎𝑙,𝑘|2 . (A.49)

In order to compute the action for a regular torus, an orbit 𝑥(𝑡) on this torus is required

from which using frequency analysis, see Sec. 2.6.2, the fundamental frequencies 𝜈

and Fourier coe�cients 𝑎𝑘 up to some maximal order 𝑘max =
∑︀𝑁

𝑖=1 |𝑘𝑖| are obtained.

Depending on how deformed the regular torus is this order has to be quite large in order

to approximate the torus su�ciently well, see Ref. [189] and references therein. From

these coe�cients the actions are obtained according to Eq. (A.49).

Note that for resonant frequencies this method does not work as an orbit on a resonant

torus is restricted to a closed lines and thus the averaging over all angles is not possible.

However, as mentioned in Secs. 2.1 and 3.2.3, the action along such a closed line is a

superposition of the fundamental actions. For instance, in a 4d map for a torus with

the resonance 𝑘𝑎
1 : 𝑘𝑎

2 : 𝑘𝑎
3 this action is 𝐼𝑎 = 𝑘𝑎

2𝐼1 +𝑘𝑎
1𝐼2. In a non-integrable system this

action can be computed from the 1d tori remnant from the family of broken resonant

2d tori and extrapolated beyond gaps due to junctions, for examples see Sec. 3.2.1 or

Refs. [186,189]. At such a junction another independent equation 𝐼𝑏 = 𝑘𝑏
2𝐼1 + 𝑘𝑏

1𝐼2 from

the crossing resonance 𝑘𝑏
1 : 𝑘𝑏

2 : 𝑘𝑏
3 exists. Consequently, the fundamental actions at the

junction can be computed by

𝐼1 =
𝑘𝑎
1𝐼

𝑏 − 𝑘𝑏
1𝐼

𝑎

𝑘𝑎
1𝑘

𝑏
2 − 𝑘𝑏

1𝑘
𝑎
2

𝐼2 = −𝑘𝑎
2𝐼

𝑏 − 𝑘𝑏
2𝐼

𝑎

𝑘𝑎
1𝑘

𝑏
2 − 𝑘𝑏

1𝑘
𝑎
2

. (A.50)

which resembles Eq. (3.5). Knowing the fundamental actions at su�ciently enough

junctions may then allow to interpolate the actions on the resonances.

In Fig. A.10 the action space for the maps 𝐹SC and 𝐹Twist is shown with some regular

tori in gray and a trapped orbit colored by its iteration time. For all calculations



154 A.5 Action space
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(a) For 𝐹SC
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0.000 0.005I1
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(b) For horseshoe (∼ Fig. 2.4)

0
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(c) For 𝐹Twist (∼ Fig. 3.6(c), no resonances)

Figure A.10: Action space for (a) map 𝐹SC, (b) horseshoe of 𝐹SC, and (c) map 𝐹Twist

computed by Eq. (A.49) up to order 𝑘 = |𝑘1| + |𝑘2| ≤ 20 with regular tori in gray and
the trapped orbit from Fig. 2.4 in color. For (a), (b) the regular tori from Ref. [72] are
used and for (c) the ones from Fig. 3.6(c), from which the most important resonances
are sorted out. In (a),(c) the lines 𝐼1 = 0, 𝐼2 = 0 are indicated as dashed lines in the
background (only 𝐼2 = 0 for (b)).
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the maximal order 𝑘max is used. In Fig. A.10(a) the actions of the regular tori used

in Ref. [72] excluding the horseshoe are shown. The two sharp edges known from

the frequency space and corresponding to the families of 1d tori ℳfp
1 and ℳfp

2 nicely

coincide with the lines 𝐼2 = 0 and 𝐼1 = 0, respectively. This con�rms the explanations

from Sec. 3.1 according to which the edges correspond to either one of the two actions

going to zero. The ee �xed point 𝑢⃗fp corresponds to the tip 𝐼1 = 𝐼2 = 0 in Fig. A.10(a).

In Fig. A.10(b) the actions for the regular tori of the horseshoe of Ref. [72] including the

trapped orbit from Fig. 2.4 are shown. Again, the edge known from the frequency space

coincides with the 𝐼2 = 0 line. Several segments, mostly blue green and orange, of the

trapped orbit are scattered at positions which are not expected from the arrangement

in frequency space. The frequencies of these segments are too close to resonances and

their actions are numerical artifacts. In fact, it is surprising that so many segments

have reasonable actions as chapter 4 states that trapped orbits are exclusively governed

by resonance channels.

Another remarkable feature of the actions of the horseshoe in Fig. A.10(b) is that at

some point also the action 𝐼1 gets zero and even negative. This is despite the regular tori

of the horseshoe being extended objects in the phase space. The explanation is that in

higher-dimensional phase spaces the action equation Eq. (2.4), or see above, essentially

integrates over projections to the individual degree of freedoms. In these projections

regular tori can for instance appear as �gure eights, encircling two separate areas with

opposite sense of rotation. Such scenarios are not possible in 2d maps and can result in

both zero and negative action. This situation may not be confused with fold and cusp

singularities in the frequency space [76, 187], e.g., the bending of the horseshoe away

from the family ℳfp
1 due to the resonance 3 : 1 : 1, see Sec. 3.4 and Figs. 3.1 and 3.2.

Such singularities of the frequency map induce a change of the torsion 𝛿𝜈/𝛿𝐼 [12, 15].

In Fig. A.10(c) the actions for the regular tori of the coupled twist maps 𝐹Twist shown

in Fig. 3.6(c). In contrast to Figs. A.10(a) and A.10(b), regular tori on resonance lines

are sorted out beforehand to avoid artifacts. The relevant resonant lines are obtained

from the results presented in Fig. A.8. The action space strongly resembles the frequency

space as expected from the construction of the map. The resemblance of the action

spaces of Figs. A.10(a) and A.10(c) with the edges and the surface towards the chaotic

sea again nicely illustrate how the coupled twist maps 𝐹Twist displays features of a

generic map. Note how the folds in the frequency space of Fig. 3.6(c) are no longer

present in the action space Fig. A.10(c) as they are due to the frequency map.
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A.6 Action from fixed points in higher dimensions

At any �xed point of a symplectic map of arbitrary dimension, the linearized dynamics

is a combination of elliptic (2d), hyperbolic (2d), and complex unstable (4d) degrees

of freedom. Any elliptic degree of freedom can be approximated in �rst order by an

harmonic oscillator. This produces linear approximations for the actions 𝐼 of the Lya-

punov family belonging to the degree of freedom. In this section, expressions for this

action with respect to di�erent parameters of the family are derived. A comparison

with numerical results is presented in Sec. 3.2.1.

Consider a harmonic oscillator described by the Hamiltonian [1]

𝐻 = 𝐺
𝑝2

2
+ 𝐹

𝑞2

2
= 2π𝐼𝜈 = 𝐼

√
𝐺𝐹

with position�momentum coordinates 𝑞, 𝑝, the action 𝐼, the frequency 𝜈 ∈ [0, 1), and

coe�cients 𝐺,𝐹 , and 𝑅 =
√︀

𝐹/𝐺. The orbits of this system lie on ellipses

𝑞 =

√︂
2𝐼

𝑅
sin Θ = 𝑎 sin Θ 𝑝 =

√
2𝐼𝑅 cos Θ = 𝑏 cos Θ

with an angle coordinate Θ, and the half-lengths 𝑎,𝑏 of the major and minor axes. Thus,

the action on a ellipse can be expressed by its area

𝐼 =
1

2π

∮︁
𝑝d𝑞 =

π𝑎𝑏

2π
=

𝑎𝑏

2

where the integral describes the path around the ellipse Θ ∈ [0, 2π). The action can be

expressed in terms of the average squared radius E[𝑟2] along an ellipse

E[𝑟2] =
1

2π

2π∮︁
0

𝑟2dΘ

𝑟2 = 𝑝2 + 𝑞2⏟  ⏞  
=

𝑎2 + 𝑏2

2

using 𝑅 = 𝑏/𝑎

𝐼(E[𝑟2]) =
E[𝑟2]

𝑅 + 1
𝑅

(A.51)
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The action can also be expressed in terms of the circumference 𝑠 of the ellipse

𝑠 = 4

π/2∫︁
0

√︀
𝑎2 sin2 Θ + 𝑏2 cos2 ΘdΘ = 4𝑎

√
𝑅

π/2∫︁
0

√︂
1

𝑅
sin2 Θ + 𝑅 cos2 ΘdΘ

⏟  ⏞  
𝑠0(𝑅)

that is

𝐼(𝑠) =
𝑠2

32𝑠0(𝑅)
(A.52)

In order to obtain the coe�cient 𝑅, consider the �xed point being at the origin 0 with

the Jacobi-Matrix 𝑀(0) and the two normalized eigenvectors 𝑣±𝜈 , ||𝑣±𝜈 || = 1 belonging

to an elliptic degree of freedom with corresponding eigenvalues 𝜆±𝜈 = exp(±2πi𝜈). Since

the eigenvectors are complex conjugated to each other 𝑣𝜈 = 𝑣−𝜈 , real vectors 𝑣Re ,Im
𝜈

can be de�ned

𝑣Re
𝜈 = Re 𝑣𝜈 𝑣Im

𝜈 = Im 𝑣𝜈 (A.53)

for which the eigenvalue equations transform to

𝑀(0)𝑡𝑣Re
𝜈 = cos(2π𝜈𝑡)𝑣Re

𝜈 − sin(2π𝜈𝑡)𝑣Im
𝜈

𝑀(0)𝑡𝑣Im
𝜈 = sin(2π𝜈𝑡)𝑣Re

𝜈 + cos(2π𝜈𝑡)𝑣Im
𝜈

with an arbitrary 𝑡 ∈ N. Since the frequency 𝜈 is irrational, any angle Θ = 2π𝜈𝑡 is

realized for some iteration 𝑡 and thus any point on the ellipse is reached by the orbit

𝑥(𝑡) = 𝑀(0)𝑡𝑣Re
𝜈 . The angles Θ𝑎,𝑏 at which the orbit is on the major or minor axis of

the ellipse are the extremal points of the norm squared 𝑓(Θ) = ||𝑀(0)𝑡𝑣Re
𝜈 ||2

𝑓(Θ) = cos2 Θ||𝑣Re
𝜈 ||2 + sin2 Θ||𝑣Im

𝜈 ||2 − 2 cos Θ sin Θ(𝑣Re
𝜈 · 𝑣Im

𝜈 )

d𝑓(Θ𝑎,𝑏)

dΘ
= 0

that is

Θ𝑎 =
1

2
arctan

(︂
2(𝑣Re

𝜈 · 𝑣Im
𝜈 )

||𝑣Re
𝜈 ||2 − ||𝑣Im

𝜈 ||2
)︂

Θ𝑏 = Θ𝑎 ±
π

2
(A.54)
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from which the half-widths 𝑎 and 𝑏 follow

𝑎, 𝑏 = || cos(Θ𝑎,𝑏)𝑣
Re
𝜈 − sin(Θ𝑎,𝑏)𝑣

Im
𝜈 || (A.55)

from which 𝑅 = 𝑏/𝑎 follows. Note that the notation of 𝑎 and 𝑏 is arbitrary and nothing

is implied about which is bigger. There are some special solutions for Eq. (A.54): If the

vectors are perpendicular (𝑣Re
𝜈 · 𝑣Im

𝜈 ) = 0, then 𝑅 = ||𝑣Re
𝜈 ||/||𝑣Im

𝜈 ||. If the norms of

the vectors are equal ||𝑣Re
𝜈 ||2−||𝑣Im

𝜈 ||2 = 0, then Θ𝑎,𝑏 ∈ {π/4, 3π/4, . . .}. If the vectors
are both perpendicular and of equal norm, then the ellipse is a circle and 𝑅 = 1.

A.7 Sticky regions of 4D map 𝐹SC

Chaotic orbits are trapped at the surface of regular regions as rehearsed in Sec. 2.6.3. In

Sec. 4.1 the power-law trapping at individual regular regions of the map 𝐹SC is evaluated

by associating each trapped orbit to one of these regions. The regions are introduced

in Sec. 2.6.1. In this section, the protocol for this procedure is listed.

For all trapped orbits 𝑥𝑖(𝑡) with recurrence times 𝑇𝑖 > 104 the two frequencies of the

middle segment 𝑡 ∈ [(𝑇𝑖−∆𝑡)/2, (𝑇𝑖 + ∆𝑡)/2] are computed for the projections onto the

two degrees of freedom (𝑧1, 𝑧2) and only the transformation i) is performed, as explained

in Sec. 2.6.2, giving a set of frequency 4-tuples Ω = {(𝜈𝑖,1,𝜈𝑖,2)}𝑖, 𝜈𝑖,𝑗 ∈ [0, 0.5)2. These

frequency tuples are attributed to the regular region closest to them in frequency space.

Due to artifacts of the frequency analysis some frequencies lie in areas unrelated to

any regular region. For each of these areas the according segments and orbits are

inspected in phase space using 3d projections and compared to regular tori. By means

of proximity and geometry the corresponding regular region is identi�ed. This allows

to assign problematic areas in frequency space to the proper regular region. From these

examinations the following criteria are obtained, which are applied consecutively to the

set Ω, i.e. (𝜈1,𝜈2) ∈ Ω:

for 𝑗 = 1 or 𝑗 = 2: 𝜈𝑗,2 < 1.215 · 𝜈𝑗,1 − 0.066, 𝜈𝑗,2 > 0.273, 0.289 < 𝜈𝑗,1 < 0.2973 ⇒
horseshoe

for 𝑗 = 1 or 𝑗 = 2: 𝜈𝑗,2 < 0.297, 𝜈𝑗,2 > −0.338 · 𝜈𝑗,1 + 0.336, 0.121 < 𝜈𝑗,1 < 0.144 ⇒
central island

for 𝑗 = 2: 𝜈𝑗,2 ≤ 0.14, 𝜈𝑗,2 > −2.969 ·𝜈𝑗,1+0.997, 𝜈𝑗,2 = 0.121, 𝜈𝑗,2 < −3.02 ·𝜈𝑗,1+1.02,

|24𝜈𝑗,1 − 7| > 10−4 ⇒ central island

for 𝑗 = 1 or 𝑗 = 2: 0.108 < 𝜈𝑗,2 < 0.121, 𝜈𝑗,2 > −2.969 · 𝜈𝑗,1 + 0.997, 𝜈𝑗,2 <

−3.02 · 𝜈𝑗,1 + 1.02 ⇒ central island
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for 𝑗 = 1 or 𝑗 = 2: | − 𝜈𝑗,1 + 3𝜈𝑗,2| < 3 · 10−3, 0.25 < 𝜈𝑗,1 < 0.295 ⇒ region around

the resonance −1 : 3 : 0

for 𝑗 = 1 or 𝑗 = 2: −𝜈𝑗,1 + 3𝜈𝑗,2 < −3 · 10−3, 𝜈𝑗,2 > 1.932 · 𝜈𝑗,1 − 0.485 ⇒ top tower

for 𝑗 = 1 or 𝑗 = 2: 0.28 < 𝜈𝑗,2 < 0.295, 0.165 > 𝜈𝑗,2 > 0.146 ⇒ outer ring

for 𝑗 = 1 or 𝑗 = 2: |5𝜈𝑗,1 + 1𝜈𝑗,2 − 1| < 10−3, 0.154 < 𝜈𝑗,1 < 0.166 ⇒ outer ring

for 𝑗 = 1 or 𝑗 = 2: |7𝜈𝑗,1−1| < 5·10−3, (0.162 < 𝜈𝑗,2 < 0.165) or (0.271 < 𝜈𝑗,2 < 0.276)

⇒ period 7 islands

for 𝑗 = 1 or 𝑗 = 2: |7𝜈𝑗,1−2| < 5 ·10−3, (0.162 < 𝜈𝑗,2 < 0.165)𝑜𝑟(0.271 < 𝜈𝑗,2 < 0.276)

⇒ period 7 islands

for 𝑗 = 1 or 𝑗 = 2: 5𝜈𝑗,1 + 5𝜈𝑗,1 − 2 < 0, −𝜈𝑗,1 + 3𝜈𝑗,2 > 3 · 10−3, 0.285 < 𝜈𝑗,2 < 0.295,

and not assigned yet ⇒ inner end of the horseshoe

for 𝑗 = 1 or 𝑗 = 2: 𝜈𝑗,2 < −𝜈𝑗,1 · 3.842 + 1.256, 5𝜈𝑗,1 + 5𝜈𝑗,1− 2 > 0, 0.1 < 𝜈𝑗,2 < 0.135,

and not assigned yet ⇒ horseshoe

for 𝑗 = 1 or 𝑗 = 2: |20𝜈𝑗,1 − 2𝜈𝑗,2 − 5| < 5 · 10−3, 0.26 < 𝜈𝑗,2 < 0.27, and not assigned

yet ⇒ top tower

for 𝑗 = 1: 0.28 < 𝜈𝑗,2 < 0.295, 0.12 < 𝜈𝑗,1 < 0.135, and not assigned yet ⇒ horseshoe
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