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ABSTRACT

We present and discuss a new technique based on information theory to detect in advance favorable
periods of wind activity (positive ramps) for electricity generation. In addition this technique could also
help in the analysis of plant operation and management protocols design. Real data from wind power
plants in Germany is used; this information is freely available in the internet with reliable registers every
15 min. A simple protocol to mix such wind energy production with electricity coming from conventional
sources is proposed as a way to test the proposed algorithm. The eight-year period 2010—2017 is
analyzed looking for different behaviors in wind activity. The first five years (2010—2014) are employed
to calibrate the method, while the remaining three years (2015—2017) are used to test previous cali-
bration without any further variation in the tuning possibilities described below.

Thus, the proposed protocol is tried on under different seasonal wind conditions. Both the algorithm
and the general protocol could be adjusted to optimize performances according to regional conditions. In
addition, this algorithm can also be used in retrospective studies to adjust productivity to operational

conditions.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Wind energy production (WEP) contributes in a moderate way
to the total electricity generation in most of the countries in the
world. We will concentrate here on Germany where 16% of the total
electricity production was due to wind during 2017 according to
recent statistics [1]. In spite of its present modest contribution WEP
is basically free (except for low operation costs) and its installed
capacity grows steadily in most countries. Then, it is possible to
imagine that wind farms will play a very important role in the
future electricity generation all over the world.

During the last five years the percentage of WEP has doubled in
Germany. Thus, in 2017 more than 28 000 wind turbines onshore
and 1000 wind turbines offshore have reached a productivity of
about 105 TWh of electrical energy [1]. This development is part of
a political program of the German government with the aim of
transforming the future energy system to a higher use of renewable
energies (RE) substituting for nuclear and fossil sources.
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Because of the limited predictability of wind power the feed-in
management into the national electricity system faces major
challenges. According to the usual rules in Germany the generation
of electricity by RE sources has priority which should be sustained
by protocols that can guarantee such management. Consequently,
the combination of other forms of energy (the production based on
conventional sources and imports) with RE requires a reliable
protocol to secure the power balance according to the required
load. However, the availability of wind energy in Germany (or any
country) varies enormously throughout the year, even from one
week to next with abrupt changes within hours. At present, often
power gradients of the order of 1 GW/h have to be managed. Coal
and nuclear power plants are designed to work in a continuous
operation regime for the purpose of ensuring the base load. Their
flexibility is limited and complete shut down is undesired espe-
cially in the case of brown coal. Moreover, in the working regime a
minimum power generation should not be undershot. The quality
improvement of wind power prediction can contribute to reduce
the shutoff times of the wind contribution during high wind pe-
riods in order to prevent overload of the power supply system.
About 3500 GWh wind energy (several hundred million dollars)
were lost in Germany during 2016 because of management
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problems [2].

There are basically three approaches to forecast wind activity
intended for energy production [3—6]. First, those methods based
on physical considerations to forecast the temporal development of
the local wind speed [7—10]. Second, the methods based on time
series with the assumption that the power output at any time de-
pends on the previously observed values within a recent time range
[11—14]; our present approach is along this line but we have
replaced autoregressive models and neural network analysis by
information recognition through data compressors techniques [15].
Third, hybrid approaches combining some of the previous methods
by means of appropriate numerical algorithms [5,16].

Most of wind power prediction methods have been developed
mainly for wind farms, namely, for local applications. In the present
paper we follow a different approach by using the entire WEP for a
country like Germany. From this point of view the work by
Gonzalez-Aparicio and Zucker [17] is a bit related to our proposal in
the sense that they looked at the data base for one country: Spain.
However, their focus is more oriented towards the economical as-
pects of this problem. Our approach is to improve numerical and
statistical methods to better mix wind power with other sources of
energy.

The method we propose below is entirely new and it is based on
the determination of the information content within a recent in-
terval in the times series for WEP of a network of wind farms. To our
knowledge, this is the first time information theory is applied to
this problem. We propose to use the wind power production time
series as the input to detect the onset of periods for good usage of
wind energy, which are usually called positive ramps.

The information content determination is done by means of
data compressor wlzip specially designed to recognize meaningful
information within any sequence [15,18]. The tunable features of
this algorithm have been adapted here to deal with the wind en-
ergy power data. This process will be fully discussed in Subsection
2.2. The use of the direct WEP data coming from the system under
study ensures the response to the source of energy directly. Our
approach is based on the actual data produced after the turbine
operation, so the information content of this series reflect the real
contributions of the turbines effectively connected to the system,
with their efficiency and interconnection networks. This is advan-
tageous for detecting changes of performance as compared to in-
direct information from time series previous to the turbine
operation, like weather variables (wind velocity for instance). In
addition, the application of this technique can be done in real time
(hot) in parallel for different geographical places. In this way, net-
works can be locally optimized, favoring the saving of fuels where
WEDP is convenient.

Another new feature of the methodology introduced here is that
performances can also be studied retrospectively in terms of the
desired time spans: years, seasons, months, weeks. For the data
analyzed below it turns out that Summer months (Northern
Hemisphere) are hopeless, while during Winter months WEP is
high so the risk of overshoots is high, which could be prevented by
detecting in advance a positive ramp. During Spring and Autumn
months optimization is possible, which is precisely what it can be
achieved by properly mixing WEP with other sources of energy.

As it will be discussed below, the anticipation for good periods
of wind can be of a few hours and it could be adjusted to the season
and local conditions. The main purpose of the present paper is to
show the way this method can be applied to make better use of the
electricity generated by wind turbines along two ways: anticipation
of good productivity and seasonal analysis for future planning of
WEP.

The method is based on information theory [19—21] which has
been successfully used to detect phase transitions in magnetism

[15,22—24], crisis in economical systems like stock markets [25]
and pension funds [26], as well as in clinical variables like the blood
pressure variations leading to hypertension diagnosis [27,28]. On
the other hand, early results suggest that this method can also be
adapted to seismology, in particular to finding indicators that can
anticipate in a couple of years the approximate location of major
earthquakes [29].

Energy data are public in Germany and can be obtained directly
from the internet [30,31]. In any of these sources the entire WEP in
all Germany is stored in registers every 15 min in an automatic and
continuous way. In the present paper the data for the blue eight
years: 2010—2017 is analyzed. The lustrum 2010—2014 is fully used
to calibrate the several tunable capabilities of the information
theory method presented here. Then, the three remaining years
(2015—2017) are employed to retrospectively test the already
calibrated method without further optimization, so to try its
robustness.

We will begin next section by describing the way the data is
handled and organized for the present study. Then we describe the
methodology in a general way. Section 3 is for results and discus-
sions. The first Subsection is devoted to the optimization of wlzip to
the present problem; since this is the first time this method is
applied to electricity production by wind turbines it requires cali-
bration and tuning as any new instrument does. Then, in
Subsection 3.2 we present an application of the method to antici-
pate good periods of WEP in combination with conventional
sources. Subsection 3.3 goes onto yearly analyzes mostly intended
to long run planning. In Section 4 we give the main conclusions of
this work.

2. Methodology
2.1. Data organization

WEDP data are updated every 15 min, namely, on the hour HH:00,
then HH:15, HH:30, HH:45, (HH+1):00, and so on [30,31]. We will
organize these data in yearly files beginning at 0:00 h of that year
and ending at 24:00 of December 31 that same year. This last
register is the first register of next year and so on. Such sequence
will be denoted by P(t) and it represents the total instant power
produced by all wind turbines connected to the generation of
electricity in Germany. It is reported in megawatts (MW) with a
production that at present reaches over 10 GW in the good periods.
From this point of view P(t) is stored in registers consisting of 7 or
more digits: 5 of them correspond to the integer part, then we have
the decimal point followed by two or more digits. However, the
precision of the information is higher for the digits reflecting more
energy than for the digits representing the smaller contributions,
since there is no guarantee that the measurement in each wind
turbine is done at the highest possible accuracy. So we will restrict
ourselves to integer numbers in units of MW rounding up the
decimal point in the usual way (equal or over .5 is approximated to
the next integer). Examples are given in the third and fourth col-
umns of Table 1, which will be fully explained below.

With the yearly data adjusted to five integer values in decimal
numerical basis, registers are organized in files in the form of
vectors: one entry per line. Then we have files with 35041 registers
(lines) for years 2010, 2011, 2013 and 2014; the file for the leap
years 2012 and 2016 have 35137 lines. It should be noticed that
these data cannot reflect local or regional variations of wind.

2.2. Information recognizer

Data compressor wlzip was created to recognize repeated
meaningful information in a sequence of data, which is different to
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Table 1

The first column enumerates the instants sequence every 15 min; the second col-
umn is a five-digit random sequence for WEP; the third column corresponds to the
actual quiet WEP sequence around noon of Saturday, March 23, 2013; the fourth
column gives the actual agitated WEP sequence during the morning of Sunday,
January 27, 2013. The fifth column repeats the data of the fourth column in qua-
ternary basis. All WEP powers expressed in integer units of MW. The last row gives
the mutability value for each column.

Instant Random 2013.03.23 2013.01.27 2013.01.27
Quiet Agitated Agitated

Decimal Decimal Decimal Quaternary
1 35743 00685 06664 001220020
2 34993 00699 06703 001220233
3 34823 00742 06818 001222202
4 35143 00757 07099 001232323
5 35173 00734 07221 001320221
6 35123 00728 08632 002103120
7 34383 00703 09432 002121000
8 34463 00653 09792 002132213
9 34213 00643 10151 002132213
10 34803 00588 10557 002210331
11 33953 00561 10731 002213223
12 33603 00567 11289 002300121
13 33143 00563 11583 002310333
14 33153 00576 11808 002320200
15 33773 00616 12084 002330310
16 32703 00630 12411 003001323
17 31683 00635 12845 003020231
18 30223 00634 13523 003103103
19 29803 00594 13496 003102320
20 30663 00612 13657 003111121
21 31273 00594 14133 003130311
22 31003 00621 14426 003201122
23 31193 00650 14403 003201003
24 30953 00646 14872 003220120
25 35743 00656 14930 003221102
26 34993 00652 15045 003223011
27 34823 00674 15384 003300120
28 35143 00676 15637 003310111
29 35173 00646 15992 003321320
30 35123 00633 15980 003321230
31 34383 00653 16184 003330320
32 34463 00704 16611 010003203
U332 3.3 1.0 0.076 1.545 1.545

the recognition of repeated random information done by usual data
compressors like rar or bzip2 among others. In spite of been
registered as intellectual property it is offered free of charge upon
request by email (eugenio.vogel@ufrontera.cl) [23]. Actually wlzip
compacts less than other compressors. However, compressions
done by wlzip are based on exact matching of data structures
representing properties of the system. Thus, a high degree of
compression indicates repetitive information, namely a system that
does not change significantly its properties within the time win-
dow under consideration. On the other hand, a very low degree of
compression means lack of repetitive information, namely a system
that is constantly and abruptly changing its properties; in the
extreme situation it could be approaching chaos.

The dynamical application of wlzip requires the definition of a
time window which will be kept constant through the study. This is
one of the several calibration processes to be done below. To decide
upon the length of the time window we have to pay attention to the
properties of the system as well as to the urgency of obtaining a
useful answer. Of course the longer the time window 7 (measured
in number of instants, or number of quarters of an hour for the
present data) the better the precision achieved in the compression.

However, shorter 7 values will make the method more effective in
terms of anticipation to use the information soon to make de-
cisions. In next Section we will present evidence showing that 7 =
32 (8h) is an appropriate time window; this will be the first fixed
calibrated index. At this point we anticipate this result to continue
with the presentation of the methodology.

We are now in position of defining the relative mutability of a
time series at any given time t. The instantaneous sequence consists
of 32 values: the WEP at the present instant and the 31 precedent
ones in the original file. Let us compress this partial vector
obtaining its "weight” in bytes w*(t,7). This value has not absolute
meaning and it can vary depending on 7. To define a parameter
which oscillates around 1.0 we define the relative mutability by
dividing previous value by W(7) which is the weight of a fixed file,
with 32 random registers with 5 digits similar to those of the series
P(t). Then the relative mutability u(t, ) is simply given by the ratio

ute.r) =" (1)

To put previous equation in operational terms let us turn now to
Table 1, whose first column is just the ordinal number of the 32
instants considered for the specific time window identified at the
heading of each column. The second column gives a possible
random sequence of weight W(7) = W(32) to be used here as a
reference. Since mutability is a relative indicator any random
sequence will cope with this purpose. The first digit (3) is constant
and irrelevant; the second digit presents some variations while
third, fourth and fifth digits show high dispersion behaving
randomly. Actually registers in this column are arbitrary and they
have no real significance since all mutability values will be referred
to this same sequence all the time. It has been chosen so a relative
mutability value less than one tells of a monotonous time series,
while a p, value larger than one identifies a more agitated
sequence; the subindex r identifies the calibration adjustment
which will be discussed below.

The third column of Table 1 copies the 32 values of a calmed 8 h
period of the day 2013.03.23 (using the notation year.month.day:
YYYY.MM.DD). This vector of 32 values is analyzed by yielding a
weight w*(t,32); the mutability is then obtained by taking the ratio
over W(32) just defined in previous paragraph. This is the value for
U3y 3_3 reported in the bottom line of Table 1 (0.076 in this case).
The fourth column lists the 32 values of an agitated 8 h period of the
day 2013.01.27. The corresponding u, value is given in the last line.
The fifth column expresses in quaternary basis the same decimal
information given in the fourth column for reasons to be discussed
below. All power data are given in MW, with 5 integer digits. It can
be noticed that zeroes to the left are explicitly included here to
emphasize that the digits in these positions could also to be
recognized by wizip.

2.3. Use of the information recognizer

As any instrument wlzip needs calibration and tuning. One of
these features was already mentioned: the time window needed
for dynamic measurements. Other important adjustable knob is the
numerical basis used to express the information to be recognized.
We are accustomed to the decimal basis that is used worldwide
nowadays. However, this is not necessarily the most appropriate
basis for any numeric information recognition.

It is possible to gain precision if we translate the data into a
lower numerical basis thus increasing the number of digits used to
express the same information. An example of this is presented in
the fifth column of Table 1, where we give the same information of
the fourth column except that now this is expressed in quaternary
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basis, namely, a basis of four digits only: 0, 1, 2 and 3. In this way a
certain power production is expressed now with more digits than
in the decimal basis; the recognition of repetitions can be done now
at intermediate precisions which were not available with decimal
basis. We will define b as the number of digits present in the basis
used for the compression. The corresponding mutability is denoted
by ub. Since we will use quaternary basis in the rest of this work we
could omit the suffix 4, namely, u = u4.

One interesting feature of wlzip is that the information recog-
nition can be focused on the digits bearing the significant changes.
For instance it is clear from columns 3 and 4 of Table 1 that the first
of the five digits varies very little. The variations of the last two
digits have relatively low significance. The significant variations are
in digits second and third for these results in decimal basis. But we
will use quaternary basis in the applications so let us turn our
attention to the fifth column of Table 1, where we realize that the
significant changes in the data begin at the third digit. This initial
position (3) for the meaningful information is the second calibra-
tion which will be 3 from now on. In the next Section we will justify
that it is enough to look for only the three digits to the right of the
initial position (third, fourth and fifth digits). The number of
recognizable digits is the next calibration parameter; 3 in the pre-
sent case. This establishes the notation for the mutability in the last
row of Table 1: us3; 3 3.

To better illustrate the way wlzip works we have prepared a
detailed treatment for two different sequences as an example in the
Appendix at the end. More interested readers are referred to a
broader presentation of the method [23].

Other important calibration feature has to do with the interval
in which the time variation ¢(P(t))/dt is calculated. We will settle
for a four-fold variation with a separation of 8 instants each as it
will be shown in Section 3.

All previous calibration procedures will be presented and dis-
cussed at the beginning of next Section. In any case, there is not a
unique calibration; in what it will be presented below we show
plausible ways to tune wlzip for the present application. The final
selection of parameters may look a bit arbitrary, but this can be
justified by the little variation there is in the results when param-
eters are varied. A discussion on alternative ways of dealing with
some of the features involved in wind power ramp forecasting can
be found in a recent review by Gallego-Castillo et al. [4].

3. Results
3.1. Calibration of wlzip

3.1.1. Tuning the sign

Large values of u can mean variations to both increasing and
decreasing periods of WEP (positive and negative ramps). To
discriminate between these two regimes we combine y with the
time variation of the WEP function: when the time variation is
positive and u is high enough this is an anticipated signal for a
positive period of electricity generation based on wind energy
plants.

Let us consider the time variation D = ¢P(t)/ot, where P(t) is a
function of a discrete variable t. The range 6t is measured by the
number of q intervals of quarters of an hour. To look for more stable
results we consider more than one ¢P(t) difference in the definition
above which now can be labeled as D44, where d is the number of
differences considered for the variation. Thus for d = 4, we can

define a four-fold time variation D*4 in the following way

D*4(t) = P(t) -~ P(t — q) + P(t — 1) = P(t — 1 — q) 2)
+P(t—2)—P(t—2—q)+P(t—3) - P(t—3 —q),

where we could eventually divide this result by the number of
intervals (4) but it is not necessary, since we will use its sign only.

With previous expression we define a multiplier M in such a way
that M44(t) = +1 when D*9>0 and M*9(t) =0 otherwise. In
simple words, M44 is the sign of the variation defined in previous
equation. Let us define a "treated” power sequence Q(t) upon
defining

Q4 (t) = M*9(6)P(t). 3)

As it can be seen Q(t) is exactly the same as P(t) in the periods
with positive variation while it is 0.0 otherwise. In a sense we will
ignore the periods with negative tendency for the purposes of
detecting the onset of a favorable period of WEP.

We are now certain that the maxima in the mutability function
u(t), for the sequence Q(t), correspond to the moments when po-
wer generation is increasing at a large rate. This can be calibrated to
recognize precursors of good periods for WEP. This is achieved by
defining a function called alert A(t) that for a time window of i
instants and numerical basis b can be expressed in the following
way:

AN = w[Q ). “4)

where we have dropped the suffix 4 in the mutability.

We need to decide about the time variation interval g. Upon
looking at the data it is possible to realize that WEP can take a few
hours to develop over 5 MW with strong positive slope. The time
variation of WEP must consider this fact and it must reflect a stable
tendency for a meaningful recent period of time. If this interval is
too short (1 h say) quick variations can give erroneous behavior. If
this interval is too large (a few hours say) the expected anticipation
for a positive period could be lost. We have to settle for a value and
we pick a 2 h variation (q = 8); some justification for this choice
will be given below.

3.1.2. Tuning the field

As it can be seen from the data in column 5, the first digit O never
changes in this sequence, while the second position changes very
little (see the last entry of this column). This is the idea of the tuning
mechanisms in information recognition: we can set wlzip to
recognize s digits beginning at position r, which is also included in
the count of s. Such mutability will be denoted as p; , ((t). The

corresponding alert function will be labeled as Aﬁfis

fold time variation. Which is the optimum s value?
Let us begin the data recognition from the third position (r = 3)

including the 5 digits to its right (s =5). We consideri =32andq =

8. In this way we calculated dynamic alert indicators like:
A35 3 56, A3y 5 4(0) Ay 5 5(0), AP 5 5 (1), and A3 5 (1), thus
progressively lowering the recognition field.

We now apply these variations to the calculation of alert to a
period of 100 h around February 10 to February 13, 2010. This
period is appropriate because the increase of P(t) is rather smooth
as compared to other increases to be considered below and it has a
very small precursor just under 57500 min; then it shows a more
pronounced increase with a set back just over 58500 min followed
by a vigorous increase over 59000 min. We want an indicator able
of discriminating these behaviors. Results are shown in Fig. 1 fors =
2, 3,4, and 5. (The case for s = 1 is quite similar to s = 2 so it has
been omitted from the figure but it is included in the discussion

(t), for a four-
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Fig. 1. Evolution of electricity generation by WEP during 100 h around February 10 to February 13, 2010 (open circles). Alert function with 4, 3, 2 and 1 digit recognition are

presented in Figs. a), b), ¢) and d), respectively (triangles).

below).
Fig. 1a) shows that Ag*zsji 4(t) gives a too large response for the

small precursor at 57500 min. On the other hand, the other two
maxima are almost of the same height. Actually both features are

even more so in the case of Ag’zsj_s(t), which is not shown in the

figure. This is an indication to move to lower s values. When we
consider Fig. 1b) we appreciate a better established role of the

maximum over 59000 min for Ag'zsjj(t). However, as we go to

Fig. 1c) we realize that A§’287372(t) evidences the onset of saturation
for the alert function and the maximum begins to shift to the right,
thus losing anticipation. These comments can only be reinforced

upon looking at function Ag"zsjj (t) in Fig. 1d). This analysis shows

that an optimization is possible and that A;"287373(t) combines the
right contrast of the maxima, the sensitivity to the changes in wind
power generation and a reasonable anticipation to an incoming
positive period of WEP.

At this point we want to emphasize that previous choice (and
others coming below) are not unique but represent plausible values
for the first time this method is used in this field. A true optimi-
zation using actual wind farm data is far beyond the present scope
of this paper.

From previous analysis we settle from now on to the precision
r=3 and s =3 for information recognition on the WEP data
expressed in quaternary basis.

3.1.3. Tuning the time window
Let us now vary the time window i. Results for A?‘gjj(t),

48 48 48
Ady 3 5(0), Ayy 5 5(t), and Aygs 4

respectively. As it can be seen A?§_3_3(t) tends to give a discrete
response indicating low accuracy; in addition the discrimination
between the weak increase at time 57500 min with respect to the
second one near 58500 is very poor. On the other extreme,
A3S 5 5(t) presents a clear delay with respect to A3S , ,(t) given
already in Fig. 1b). We have settled for a time window of i = 32
instants (8 h).

(t) are shown in Fig. 2a—d,

3.1.4. Tuning the anticipation

We analyze now the value of the interval q in the time variation.
In Fig. 3a) we present the results for g =4 where we see an
acceptable behavior. However, the case g = 8 already presented in
Fig. 1 has a more continuous variation and the periods with nega-
tive tendency are better recognized (flat minima on the right-hand
side). In the case of q = 12 presented in Fig. 3b) we appreciate a
lower contrast among the maxima of alert on the left-hand side,
while the anticipation is slightly lost. Then, g =8 looks like a
reasonable value which we use from now on.

3.1.5. Summary on tuning
Previous interval of 4 days during February 2010 was chosen
because it shows an almost continuous increase of WEP along one
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Fig. 3. Evolution of electricity generation by WEP during 100 h around February 10 to February 13, 2010 (open circles). Alert function with time variations obtained with delays of 4,

and 12 instants at intervals of 15 min each are presented in Figs. a), and b), respectively (triangles).
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and a half day, which is somewhat extended as compared to most
increases in WEP. One can think that what it works for this
extended period with several variations should work even better
for more sudden continuous increases of WEP. So, for the rest of the

paper we consider exclusively values for A3S ; ;(t) which we will
simply denote as A(t) from now on.

3.2. Operation

3.2.1. Protocol

The function alert A(t) defined above will be now the main
indication for the operation of a fictitious plant that will combine
WEP with conventional sources.

We propose here a very simple initial operational protocol
which can be defined in terms of the following cyclic three steps: 1)
When alert A(t) overcomes a critical value Ac, namely when
A(t)>Ac, WEP supplies energy and conventional sources lower
their production accordingly. 2) WEP is used through the network
while power produced in this way overcomes a preestablished
minimal power P;,. 3) When WEP goes under P;, the plant
working on conventional sources is back in full operation. 4) The
process continues indefinitely in this way alternating steps 1
through 3.

This protocol is a simplification of a gradual shut out of con-
ventional sources in balance with WEP production. The main pur-
pose here is to illustrate the detection of the onset of a favorable
ramp. Step 3 is the simplest possible way to return to conventional
sources and can be readily replaced by any other established
method for the same purpose. What is new in our proposal is the
way to achieve step 1 by means of information theory.

The value of P,;, can be defined in terms of practical terms.
Upon looking at the actual data for the entire WEP in all over
Germany a sensitive P,;;, can be 5 GW, value which we will use for
illustrative reasons only. However, this value can be adjusted ac-
cording to seasons, local conditions and evolution of the
productivity.

3.2.2. Example of administration

Let us do an exercise to appreciate the way previously proposed
mechanism can help to save energy. We use the data for entire
Germany and we choose to illustrate the protocol during a rather
poor week for WEP, namely the 13th week of year 2013 going from
Monday March 25 to Sunday March 31. The generated electric
power is given by the function P(t) in Fig. 4 by means of open cir-
cles. The solid downward triangles give the values of A(t) calculated
as described above; this function is to be read on the scale to the
right of Fig. 4. What should be the value of A- to make appropriate
use of the scarce WEP during this week? We pick the value Ac = 0.8
for the purposes of the present exercise only.

So now we invoke the protocol for Ac = 0.8 and Pp,;; = 5 GW.
The result is shown by the bar just over the abscissa axis: gray
means conventional sources period, white means partial replace-
ment of energy generation by means of wind power plants. For this
example we find about 32 h during this week where electricity
generated by wind had a real significance. This can change a bit
according to the parameters defining the protocol but the point
here is that a protocol is feasible to make use of the electricity
generated in this way even during unfavorable periods.

3.2.3. Anticipation

The next point is to establish the degree of anticipation of a
protocol like the one just presented above. To do this job we
combine previous data with the actual production of electricity
both by wind and by conventional sources [31].

12000 - - - - - - 1.4
-1.2
10000 —o- WEP All Germany
—-v— Alert L 1.0
8000
0.8
% 6000 - o6 =
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4000 | 04
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129600 131040 132480 133920 135360 136800 138240 139680
Time along 13th Week of 2013 (minutes)

Fig. 4. Several short moderate/negative periods for WEP during the last week of March
2013. Not all of them can be conveniently used to feed the electricity network
replacing conventional sources. If the protocol proposed in the text is used only the
two white periods shown on the gray band just over the abscissa axis would have been
used for a total of about 32 useful hours.

When the energy data is examined it is found that overshoots
between 5 and 15% occur during days with high WEP. So energy is
lost during periods with the most favorable condition for wind
energy. This happens for about 15—25 days during a year which
means that energy from conventional sources could have been
saved. This is a clear indication that protocols still have not been
optimized to handle favorable periods of WEP. In the next example
we show a way the previously defined protocol could have helped
to avoid using conventional sources thus saving energy.

Let us pick the overshoot that occurred on Friday, October 17,
during the 42 nd week of 2013. In Fig. 5 we present the total energy
produced by conventional sources (filled triangles) and WEP (open
circles) from noon October 16 to noon October 18 [31]. Could the
incoming favorable period for WEP have been anticipated in a
better way? The answer is yes and it is contained in Fig. 6 where
open squares give the function Q(t) defined in Eq (3) and solid stars
give the corresponding alert A(t) function defined by Eq. (4). This
last indicator goes over Ac = 0.8 when conventional sources
continue to be used at normal pace as seen from Fig. 5. It is clear
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Fig. 5. Generation of electricity by conventional sources (filled triangles) and WEP
(open circles) from noon of October 16, 2013 to noon of October 18, 2013.
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Fig. 6. Treated WEP in the way described by Eq (3) and related discussions (filled stars)
and the corresponding Alert A(t) function (open squares) from noon of October 16,
2013 to noon of October 18, 2013.

that a protocol similar to the one described above would have had
the anticipation to save at least part of the energy generated
excessively.

3.3. Yearly outcomes

The method based on information theory proposed above can
also help to analyze the production of wind energy on seasonal
bases. Eventually different strategies can be defined for the
different months or even weeks along the year if the tendencies are
known.

Let us consider the electricity generated by means of WEP
during the first five years of the present decade: 2010, 2011, 2012,
2013 and 2014. For each year we have the power generation P(t). To
this series we can instantly calculate A§=28_3_3(t) = A(t) in the way
described in previous subsection.

From all the WEP we can filter the electricity generated ac-
cording to the previously defined protocol, with P,;;, =5 GW and
with values of A¢ in the range [0.0, 1.5] with increments of 0.1. The
value Ac = 0.0 means no filtering so every Wh produced by any of
the interconnected wind turbines is accounted for.

As Ac increases some small contributions are left out of
consideration. For large values of A only favorable periods of WEP
contribute to the filtered power. Electricity generated in this way is
added up during each month as a way to appreciate the variations
within a calendar year.

Results for years 2010 through 2014 are presented in Figs. 7—11,
respectively. Several comments can follow from these results. WEP
presents clear fluctuations along the year. Winter months tend to
be the most productive ones while the opposite is the tendency for
the Summer months. However, huge variations are possible as it
can be appreciated from the error bars in Fig. 12, where we present
the average filtered WEP for Ac = 1.0 over the five years under
consideration for this calibration approach.

Moreover, filtered WEP changes from one year to next as it can
be appreciated in Fig. 13 for the selected values of the critical
parameter Ac given in the inset. The dominant fact is the gradual
growth due to the installation of more turbines. In any case, some
WEP energy is left out of consideration as A¢ increases. However
this is compensated by the lower operational costs as it can be seen

8000

6000

4000

2000

Filtered monthly WEP GWh

1 2 3 4 65 6 7 8 9
Months of the year 2010

Fig. 7. Electricity generated by wind turbines in all over Germany during 2010 filtered
according to the Ac values given in the inset.
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Fig. 8. Electricity generated by wind generators in all over Germany during 2011
filtered according to the Ac values given in the inset.
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Fig. 9. Electricity generated by wind power plants in all over Germany during 2012
filtered according to the Ac values given in the inset.

from Fig. 14 where we present the number of connections ac-
cording to the protocol for the same Ac values of Fig. 13. As is can be
seen the number of connections for Ac = 0.8 is more than twice the
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number of connections for Ac = 1.2 to gain about 25 % of energy
only.

3.4. Direct application to recent years

In previous sections we have used the five-year period
2010—2014 to tune wlzip to make the best use of the available wind
energy in the long run. In the present section we just use the best
set of tuning parameters to apply them to the most recent years not
covered in previous period. The purpose of this exercise is to see if
the main results obtained by this method are robust enough as time
evolves.

The already optimized tuning parameters for wizip are listed
next. Time window for the dynamical recognition: last 32 instants
(8 h). Numerical basis: quaternary. Sign of the time derivative: 2 h
delay (q = 8 in Eq. (2)). Digits recognition: third, fourth and fifth
digits ("_3_3" notation). Then we have the options in the protocol
(Subsection 3.2) where we set for the intermediate one, namely
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Ac = 1.0 and Pp;;; = 5 GW. We now just apply these options to the
data of the years 2015, 2016 and 2017.

Fig. 15 shows the active time of connection of the system ac-
cording to the protocol by means of dark rectangles. The duration of
the connection can be read as the interval on the abscissa axis,
while the ordinate gives the average power generated in that in-
terval (the area of the rectangle is the total power generated in this
way). Years 2015, 2016 and 2017 are piled up on the same plot to
appreciate general seasonal trends. Months are only approximate
upon dividing each year in 12 equal periods.

November, December and January are the most reliable months
for good wind energy generation, which confirms the tendency
already established during the previous five years. Along the same
way, May, June, July and August present short and weak intervals of
usable wind energy. The other months are erratic and it is precisely
here where algorithms as the one presented here can help to
anticipate good periods.

Fig. 16 shows the yearly trend for the functioning of the protocol.
The bars on the left show the total wind energy generated during
each year, namely, they represent the addition of all the corre-
sponding dark areas for each year in Fig. 15. The increasing ten-
dency already observed in Fig. 13 for previous years still holds. This
reflects the investment of resources in the form of more wind
turbines connected to the system; weather variations only slightly
modulate this nearly steady increase in used wind power.

The bars on the right reflect the number of connections needed
according to the protocol. Values are close to the year 2012 of
previous period. This indicator is rather constant and around 100
connections per year for the parameters defined above.

Except for small variations or fluctuations the general trend
observed in previous five years prevails which is a good indication
for the robustness of the method. Improvements and optimizations
are still possible. However, this should be done in situ, with local
data for the particular wind farms under consideration.

4. Conclusions

The variability present in the wind power can be recognized by
information theory in a dynamical way. The mutability u(t) of the
recent WEP productivity is a valid indicator for the changes in the
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productivity pattern. When this is combined with the time varia-
tion of WEP we can define function alert A(t) which focuses on the
increases of WEP only.

A calibration procedure can allow to determine the threshold
value for A(t), namely A¢, which announces a period of high wind
energy generation. We have presented a way to do this using the
data for all Germany. Similar procedures could be established for
local plants. Moreover, seasonal corrections can also be
contemplated.

In this way the information content of the time series giving the
actual electricity generated by wind turbines can be used to predict
its favorable periods. This is similar to what has been done in the
case of economical variables [25,26] and biomedical data [27,28]. In
a way, this instrument can be thought of like a "thermometer”
measuring the positive agitation prior to a potent period of WEP.

It is possible to calibrate a protocol according to different local
conditions and productivity levels. As explained above wlzip allows
tuning of several knobs to optimize its performance. The numerical
basis can be chosen in accordance with the range of oscillations of
the data: for relatively small oscillations a low numerical basis

7

Fig. 15. Dark areas show the usable wind energy according to the parameters given in Subsection 3.4. The connected time is read directly for each interval on the abscissas. The
average power for the connected time is given as ordinate. Years 2015, 2016 and 2017 are shown on a common axis showing approximate months to appreciate seasonal variations.
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should be used (In the case of blood pressure data a binary basis
was used [27,28]); we settled for a quaternary basis for the data
adding all WEP sources in Germany. The field can be tuned so as to
begin the data recognition over the most sensitive digit subtle to
change within the time window of operation; the third digit in
quaternary basis turned out to be appropriate for the present study.
The number of significant digits over which the data recognition is
to be performed can also be adjusted to each problem; three digits
in quaternary basis are enough in the present case. In the case of
dynamical analysis like this one the time window over which the
data recognition is to be performed is the most delicate choice to
balance both precision (long time windows) and anticipation (short
time windows).

The examples analyzed in this paper show that adjustment is
possible to get an alert indication to partially shut down conven-
tional sources and make use of electrical energy generated by wind.

This method can also be used retrospectively to analyze the
performance of the turbine network over weeks, months or years.
Some conclusions can be drawn from the monthly variation
through the five-year period based on Fig. 7 through 14 above.

During Winter time the choice of Ac is only slightly critical as
even high values for A¢ lead to high WEP production. The danger
here is that energy can be lost by overshoots which could be
anticipated by an appropriate protocol.

During Summertime the choice of Ac is not critical as any value
leads to low WEP production for most of the years. Actually these
months (particularly July and August) can be better invested in
maintenance and installation rather than operation.

In Spring and Autumn seasons the choice of A¢ is critical to make
better use of the scarce and at times short periods of WEP. Values of
Ac less or equal to 0.9 should be used to obtain better results for the
filtered energy although costs will increase as lower values of Ac are
used (see Fig. 14).

The direct application of the parameters which optimize the
WEP in one period to next period shows the same general trend.
This fact indicates the robustness of the method put forward in this
paper. Further optimizations and updates are always possible,
however this has to be done in situ for the local data of the
particular wind farms of interest. We have used here a general data
bank just to present the method and its possibilities.

It is very likely that previous conclusions should be revised if the
turbines are split according to location: offshore or onshore; valley
or hill; etc. However it is clear that once the local data sequence is
provided it is possible to determine a protocol that can optimize
that particular performance.
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Appendix

The purpose of this appendix is to show the way wlzip actually
works in the present case. First column in Table 2 enumerates the
32 instants of the interval used in the compression. The second
(fourth) column lists the power generated during a quiet (agitated)
period labeled Q (A); quaternary basis is used here. The third (fifth)
column is the map created by wlzip with the information in the
vector of 32 entries immediately to its left.

The map is created by very simple rules which we illustrate here

Table 2

The way wlzip works is illustrated here for two very different periods of time: a quiet
period (Q) and an agitated period (A). Columns 1 gives the sequence of consecutive
instants; Column 2 gives the produced power for Q in quaternary basis; Column 3
gives the recognized information for Q starting at position 3 and for a total of three
digits to the right (boldface characters); Column 4 gives the produced power for A in
quaternary basis; Column 5 gives the recognized information for A starting at digit #
3 and for a total of three digits to the right (boldface characters). The corresponding
mutability values for each case according to Eq. (1) are given in the last row.

Instant Qb4 Q3233 A b4 A32.33

1 000022231 00002 0,32 001220020 00122 0,3
2 000022323 001220233 00123 3

3 000023212 001222202 00132 4

4 000023311 001232323 00210 5

5 000023132 001320221 00212 6

6 000023120 002103120 00213 7,2
7 000022333 002121000 00221 9,2
8 000022031 002132213 00230 11

9 000022003 002132213 00231 12
10 000021030 002210331 00232 13
11 000020301 002213223 00233 14
12 000020313 002300121 00300 15
13 000020303 002310333 00302 16
14 000021000 002320200 00310 17,2
15 000021220 002330310 00311 19
16 000021312 003001323 00313 20
17 000021323 003020231 00320 21,2
18 000021322 003103103 00322 23,3
19 000021102 003102320 00330 26 5
20 000021210 003111121 00331 27
21 000021102 003130311 00332 28,2
22 000021231 003201122 00333 30
23 000022022 003201003

24 000022012 003220120

25 000022100 003221102

26 000022030 003223011

27 000022202 003300120

28 000022210 003310111

29 000022012 003321320

30 000021321 003321230

31 000022031 003330320

32 000023000 003301003

k32 3.3 =0.048 M32.3.3 =0.955

for the case u3; 3 3: 1) Consider the first register: detect the digit
position # 3 from left to right and detect the 3 digits from here to
the right (third, fourth and fifth digits). 2) Write the truncated
register on the map file (column to the right) and indicate its po-
sition relative to the beginning of the interval (zero in the initial
case, to indicate this is the beginning of this series). 3) Go to next
register and consider the digits at the preselected positions: a) If
the digits coincide with those of immediately previous register, add
a comma to this register in the map file and then write the number
of times this register has repeated so far. If this register repeats
immediately again, keep on increasing the counter after the
comma. In the example Q of Table 1, all 32 registers are the same
under the truncation us3, 3 3 so at the end the map file exhibits the
value of the truncated register followed by ”,32” to indicate it
repeated 32 consecutive times. (This period was chosen precisely to
illustrate this extreme situation). In the A file the digits of the first
register repeat themselves 3 times at the preselected positions then
to the right of the truncated register ”,3” is written in the first entry
of the fifth column. Several other repetitions are also shown along
the fifth column. b) If the digits do not coincide with any previously
stored register at their corresponding positions write a new line in
the map file writing the truncated register followed by its position
in the original file. This is the case of registers 00123 (position 3),
00132 (position 4) etc. for the A column. c) If the digits coincide
with those of one previously stored register p positions before, we
just go back to the position such register was stored and add p to
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the right. This happens with the value 00330 towards the end of the

file.

This procedure is done at any time a non consecutive coinci-

dence is found.

The weight w* of the map files lead to the mutability values
according to Eq. (1). The corresponding values for the present ex-
amples are given in the bottom row. Further details and examples
can be found in the already quoted literature in the Methodology
section.
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