Exercises for	"Quantum	Phase	Transitions"	Summer 24
---------------	----------	-------	--------------	-----------

Dr. L. Janssen	Exercise 1 (19.04.24)
----------------	-----------------------

1. Landau functional for a first-order phase transition

Consider the free-energy density

$$f(\varphi) = \frac{a}{2}\varphi^2 + \frac{b}{4}\varphi^4 + \frac{c}{6}\varphi^6, \qquad (1)$$

which depends on the real order parameter φ . The parameter a = a(T) depends on the temperature T, the coefficients b and c are temperature-independent constants, and b < 0, c > 0.

- (a) Determine the extrema of the functional $f(\varphi)$ in Eq. (1). List all possibilities and sketch $f(\varphi)$ in each case.
- (b) Calculate the critical value a_c of the parameter a where the position $\varphi_{eq}(a)$ of the global minimum of $f(\varphi)$ changes discontinuously.
- (c) Sketch the free energy f(φ_{eq}) as a function of the parameter a in the vicinity of the phase transition. Why is it a first-order phase transition?
 Hint: Expand f(φ_{eq}) up to first order in δa = a a_c around δa = 0.

2. Phase diagram of a two-order-parameter system

Consider a system with two real order parameters
$$\varphi_1$$
 and φ_2 , whose free-energy density is given by

$$f(\varphi_1, \varphi_2) = \frac{r}{2} \left(\varphi_1^2 + \varphi_2^2\right) - \frac{g}{2} \left(\varphi_1^2 - \varphi_2^2\right) + \frac{u}{4} \left(\varphi_1^4 + \varphi_2^4\right) + \frac{v}{2} \varphi_1^2 \varphi_2^2, \tag{2}$$

where u, v > 0.

- (a) Determine all extrema of the functional $f(\varphi_1, \varphi_2)$ in Eq. (2). Which values are taken by φ_1^2 , φ_2^2 at these extrema?
- (b) Which conditions have to be posed on φ_1^2 and φ_2^2 ? Discuss which phases (i.e., configurations of φ_1 and φ_2) are physically reasonable in which areas of the (r, g) plane.
- (c) In each case, determine the state with the lowest free energy as function of r and g. Distinguish between $u^2 < v^2$ and $u^2 > v^2$.
- (d) Sketch the phase diagram in the (r, g) plane for $u^2 < v^2$ and $u^2 > v^2$, respectively. What are the orders of the different phase transitions?

(5 pts.)

(5 pts.)