Exercises for "Quantum Phase Transitions" Summer 24

DR. L. JANSSEN

Exercise 7 (22.07.24)

1. Shift exponent in the quantum ϕ^4 theory

The ϕ^4 field theory with the action

$$S = \int d^d x \, d\tau \left\{ \frac{1}{2} \left[c^2 (\nabla \phi_\alpha)^2 + (\partial_\tau \phi_\alpha)^2 + r_0 \phi_\alpha^2 \right] + \frac{u_0}{4!} (\phi_\alpha^2)^2 \right\},\tag{1}$$

 $(\alpha = 1, 2, ..., N)$, has a quantum phase transition at $T = 0, r_0 = r_c$. The shift exponent ψ is defined via the temperature-dependent phase boundary

$$T_{\rm c} \sim (r_{\rm c} - r_0)^{\psi},\tag{2}$$

where $T_{\rm c}$ is the critical temperature. To calculate $T_{\rm c}$, note that the phase transition occurs when the renormalized temperature-dependent mass r(T) of the order parameter vanishes. The upper critical dimension for the quantum phase transition is $d_c^+ = 4 - z =$ 3.

- (a) Below the upper critical dimension $d_{\rm c}^+$, use a simple scaling argument to relate ψ to other critical exponents.
- (b) For $d > d_c^+$, the naive scaling analysis above becomes invalid. However, a perturbative calculation of r(T) becomes feasible. To this end, calculate the self-energy of the ϕ propagator in bare perturbation theory to first order in u_0 . The temperature dependence of r(T) at $r_0 = r_c$ allows to obtain ψ in this case.
- (c) Apply the procedure of (b) to a situation with z = 2 where the bare propagator is $G_{\phi}^{-1} = i\omega_n - c^2 \vec{k}^2 - r_0$ (instead of $G_{\phi}^{-1} = -\omega_n^2 - c^2 \vec{k}^2 - r_0$).

2. Quantum critical point in the dilute Bose gas (5 points)

Consider the quantum critical point in the dilute Bose gas with the action

$$S = \int d^d x d\tau \left(\Phi^* \partial_\tau \Phi + v |\partial_\tau \Phi|^2 + |\nabla \Phi|^2 - \mu |\Phi|^2 + \lambda |\Phi|^4 \right), \tag{3}$$

in $d = 2 - \epsilon$ dimensions.

- (a) What is the scaling dimension of v?
- (b) Show that RG flow of the quartic selfinteraction λ is given by

$$\frac{d\lambda}{d\ln b} = \epsilon\lambda - \lambda^2 \tag{4}$$

with suitably rescaled dimensionless λ .

(c) Determine the critical exponents ν , η , and z to the leading order in ϵ for d < 2.

(5 points)