Quantentheorie für das Lehramt WS 19/20

DR. L. JANSSEN

10. Übung (Besprechung: 06./08.01.20)

1. Messung eines Qubits

Betrachten Sie ein Qubit, das sich zur Zeit $t_0 = 0$ im Zustand $|0\rangle$ befindet. Die Zeitentwicklung dieses Qubits wird durch den Hamilton-Operator

$$\hat{H} = \hbar\omega \left(|0\rangle\langle 1| + |1\rangle\langle 0| \right) \tag{1}$$

bestimmt.

- (a) Bestimmen Sie die zwei Eigenwerte ε_n und Eigenzustände $|\alpha_n\rangle$ mit n=1,2 des Hamilton-Operators.
 - Hinweis: Nutzen Sie, dass sich die Eigenwertsgleichung $\hat{H}|\alpha_n\rangle = \varepsilon_n|\alpha_n\rangle$ durch Multiplikation mit dem Bra $\langle i|$ von links und mit Hilfe der Vollständigkeitsrelation $|0\rangle\langle 0| + |1\rangle\langle 1| = 1$ auf die Matrixgleichung $\sum_{j=0,1}\langle i|\hat{H}|j\rangle\langle j|\alpha_n\rangle = \varepsilon_n\langle i|\alpha_n\rangle$ reduzieren lässt. Lösen Sie das gegebene Problem durch Bestimmung der Eigenwerte und Eigenvektoren der Matrix $(\langle i|\hat{H}|j\rangle)$.
- (b) Berechnen Sie die Zeitentwicklung $|\psi(t)\rangle$ des Qubits für t>0 mit der Anfangsbedingung $|\psi(0)\rangle=|0\rangle$.
 - Hinweis: Zerlegen Sie den Zustand des Qubits bei $t_0=0$ in Eigenzustände des Hamilton-Operators.
- (c) Es soll eine Messung der Observable $\hat{A}=|1\rangle\langle 1|$ durchgeführt werden. Was sind die beiden möglichen Messergebnisse? Wie groß sind jeweils die Wahrscheinlichkeiten zu einer gegebenen Zeit t>0 diese Messergebnisse zu messen? Zu welchen Zeiten sind diese Wahrscheinlichkeiten jeweils maximal?
- (d) Zur Zeit $t_1 > 0$ wird eine Messung des Operators \hat{A} durchgeführt. Danach wird die Zeitentwicklung des Qubits wieder durch \hat{H} bestimmt. Wie lauten die beiden möglichen Wellenfunktionen zur Zeit $t > t_1$? Mit welcher Wahrscheinlichkeit erhält man bei einer zweiten Messung von \hat{A} zur Zeit $t_2 > t_1$ dasselbe Ergebnis wie bei der ersten Messung zur Zeit t_1 ? Bei welchem zeitlichen Abstand $t_2 t_1 > 0$ sind diese Wahrscheinlichkeiten maximal?

2. Messung eines Teilchens

Der Zustand eines Teilchens in einer Raumdimension sei beschrieben durch die Wellenfunktion $\varphi(x) = \langle x | \varphi \rangle$ mit

$$\varphi(x) = \begin{cases} \sqrt{\frac{2}{L}} \cos \frac{\pi x}{L} & \text{für } |x| < L/2, \\ 0 & \text{für } |x| \ge L/2. \end{cases}$$
 (2)

(a) Es wird eine Messung durchgeführt, die überprüft, ob sich das Teilchen auf der Halbachse rechts vom Ursprung befindet. Das Ergebnis der Messung soll +1 für x > 0 (Messergebnis: "positiv") und -1 für $x \le 0$ (Messergebnis: "negativ") lauten. Wie lautet der entsprechende hermitesche Operator \hat{A} ?

Hinweis: Benutzen Sie die Spektraldarstellung von \hat{A} im Ortsraum, $\hat{A} = \int_{-\infty}^{\infty} dx \, a(x) |x\rangle \langle x|$ mit den Eigenwerten a(x).

- (b) Wie lautet die Wellenfunktion $\tilde{\varphi}(x) = \langle x | \tilde{\varphi} \rangle$ nach der Messung an, falls -1 gemessen wurde?
 - *Hinweis:* Der Projektionsoperator, der auf den Eigenraum mit Eigenwert -1 projiziert ist gegeben durch $\hat{P}_{-} = \int_{\infty}^{0} dx \, |x\rangle\langle x|$.
- (c) Wie lautet die Impulsraum-Wellenfunktion $\varphi(p)$ vor der Messung?
- (d) Anstelle von (a) wird eine Messung durchgeführt, die überprüft, ob der Impuls des Teilchens positiv ist. Wie lautet nun der entsprechende Operator \hat{B} , der den Messwert +1 liefert für p>0 und den Messwert -1 für $p\leq 0$? Geben Sie außerdem die durch die Messung mit Messwert -1 kollabierte Wellenfunktion $\tilde{\varphi}(p)$ an.

Frohe Weihnachten und ein erfolgreiches Jahr 2020!