Emergence of relativistic flatland fermions in systems without fermions

Lukas Janssen (TU Dresden)

Würzburg-Dresden Cluster of Excellence

ECT* Colloquium — Workshop Teaser Relativistic Fermions in Flatland: theory and application ECT*, Trento, IT, 5-9 July 2021

Complexity and Topology

Outline

(1) Motivation: Emergence versus constructionism

(2) Emergent symmetry: Relativistic fermions from nonrelativistic electrons

(3) Emergent topology: Relativistic fermions from winding numbers

(4) Emergent excitations: Relativistic fermions from fractionalization

(5) Conclusions

Fundamental Physics

Fundamental Physics

"'Fundamental" science = science of fundamental particles?

Complexity

An average car has around 30,000 parts!

Carries and

.....

Aristotle, 385-322 BC

The whole is greater than the sum of its parts!

Aristotle, 385-322 BC

The whole is greater than the sum of its parts!

More is different!

P. Anderson, 1923-2020 AD [Anderson, Science '72]

More is different: Big data

The combination of data is greater than the explicit information

More is different: Biology

Base pair

DNA

Life is greater than just a conglomerate of carbon compounds

Life

Fundamental vs applied sciences

Sociology not "just applied psychology"

Biology not "just applied chemistry"

Condensed matter not "just applied particle physics"

New laws, concepts, and generalizations necessary at each level!

Outline

Motivation: Emergence versus constructionism (1)

Emergent symmetry: Relativistic fermions from nonrelativistic electrons (2)

Emergent topology: Relativistic fermions from winding numbers (3)

Emergent excitations: Relativistic fermions from fractionalization (4)

(5) Conclusions

Graphene

Low energy: Emergent 2+1D Lorentz symmetry!

... dispersion of massless Dirac fermions

Dirac

0

U/t

Dirac

0

U/t

See also: [Hands, Kocic, Kogut, Ann. Phys. '93]

Outline

Motivation: Emergence versus constructionism (1)

Emergent symmetry: Relativistic fermions from nonrelativistic electrons (2)

Emergent topology: Relativistic fermions from winding numbers (3)

Emergent excitations: Relativistic fermions from fractionalization (4)

(5) Conclusions

Graphene: Quantum spin Hall insulator

Spin-orbit coupling:

 $\lambda_{\rm SO} \vec{L} \cdot \vec{S}$

with $\lambda_{
m SO} \sim 10\,
m K$

Winding number:

[Thouless, Kohmoto, Nightingale, den Nijs, PRL '82] [Berry, Proc. R. Soc. '84]

 $2\pi/a$

[Haldane, PRL '88] [Kane, Mele, PRL '05]

Graphene: Quantum spin Hall insulator

Spin-orbit coupling:

 $\lambda_{\rm SO} \vec{L} \cdot \vec{S}$

with $\lambda_{
m SO} \sim 10\,
m K$

 $2\pi/a$

[Haldane, PRL '88] [Kane, Mele, PRL '05] Winding number:

[Thouless, Kohmoto, Nightingale, den Nijs, PRL '82] [Berry, Proc. R. Soc. '84]

electrons can move along edge (conducting)

Quantum Hall effect

Quantum spin Hall insulator: Experimental verification

Quantum spin Hall insulator: Experimental verification

Flatland fermions from 3D tc marked 0.4

HgTe

HgTe

Outline

(1) Motivation: *Emergence versus constructionism*

(2) Emergent symmetry: Relativistic fermions from nonrelativistic electrons

(3) Emergent topology: Relativistic fermions from winding numbers

(4) Emergent excitations: Relativistic fermions from fractionalization

(5) Conclusions

Frustrated magnets

Frustration:

Not all local constraints can be simultaneously satisfied

Consequences:

Classical: Exponentially large ground-state manifold Quantum: New phases of matter?

Antiferromagnetic coupling of 3 Ising spins

Kitaev honeycomb model

Spin-1/2 on honeycomb lattice:

[Kitaev, Ann. Phys. '06]

Exact solution: Majorana representation

Majorana fermion:

$$c_1^{\dagger} = c_1, c_2^{\dagger} = c_2$$

 $c_1 c_2 = -c_2 c_1$
 $c_1^2 = c_2^2 = 1$

... Majorana: "half a fermion"

Exact solution: Majorana representation

Majorana fermion:

Majorana spin representation:

$$\dim \mathcal{H}=2$$

... Majorana: "half a fermion"

$$ightarrow \mathsf{dim}\, ilde{\mathcal{H}}=4$$

\mathbb{Z}_2 gauge transformation

Projection:

$$D|\xi
angle=|\xi
angle, \qquad D=b^{x}b^{y}b^{z}c \qquad ... \mathbb{Z}_{2}$$
 gauge transform

\mathbb{Z}_2 gauge transformation

Projection:

Spin algebra:

$$D|\xi
angle = |\xi
angle$$
, $D = b^{x}b^{y}b^{z}c$... \mathbb{Z}_{2} gauge transfer

4 Majoranas with gauge constraint

... "parton" construction

1 spin

Application to Kitaev model

Hamiltonian:

 \mathbb{Z}_2 gauge field:

$$[\hat{u}_{ij}, \tilde{H}] = 0 = [\hat{u}_{ij}, \hat{u}_{i',j'}]$$

 $\hat{u}_{ij} \mapsto u_{ij} = \pm 1$ Static!

Spins fractionalize into fermions and gauge fields

Review: [Trebst, arXiv:1701.07056]

Kitaev quantum spin liquid

Gauge field:

on all links $\langle ij \rangle$ $u_{ij} \equiv 1$

[Lieb, PRL '94]

Quantum spin liquid: Ground state with fractionalized excitations

[Kitaev, Ann. Phys. '06]

Kitaev quantum spin liquid

Gauge field:

on all links $\langle ij \rangle$ $u_{ij} \equiv 1$

[Lieb, PRL '94]

Quantum spin liquid: Ground state with fractionalized excitations

External magnetic field:

$$H_{\text{Zeeman}} = -\vec{h} \cdot \sum_{i} \vec{\sigma}_{i}$$

Experimental search: α-RuCl₃

Half-integer thermal Quantum Hall effect:

Smoking-gun signature of Majorana edge states?

Generalizations of Kitaev model: Spin-orbital liquids

Spin + orbital + ... degrees of freedom:

Γ^{μ} 8 × 8

. . .

... can realize all 16 \mathbb{Z}_2 topological superconductors [Chulliparambil, ..., LJ, Tu, arXiv:2005.13683]

Generalizations of Kitaev model: Spin-orbital liquids

Spin + orbital + ... degrees of freedom:

Example: j = 3/2

$$\gamma^i = i b^i c, \qquad i = 1, \dots, 5$$

2 itinerant fermions C = 2

[Nakai, Ryu, Furusaki, PRB '12]

... can realize all 16 \mathbb{Z}_2 topological superconductors [Chulliparambil, ..., LJ, Tu, arXiv:2005.13683]

6 Majoranas

25

Short-range Majorana interactions

Kitaev + perturbations:

$$\begin{split} H &= -K \sum_{\langle ij \rangle_{\alpha}} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j} \otimes \tau_{i}^{\alpha} \tau_{j}^{\alpha} & \text{```} \\ &+ J \sum_{\langle ij \rangle} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j} \otimes \mathbb{1}_{i} \mathbb{1}_{j} & \text{```} \end{split}$$

Kitaev''

Heisenberg"

Short-range Majorana interactions

Kitaev + perturbations:

$$\begin{split} H &= -K \sum_{\langle ij \rangle_{\alpha}} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j} \otimes \tau_{i}^{\alpha} \tau_{j}^{\alpha} & \text{``k'} \\ &+ J \sum_{\langle ij \rangle} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j} \otimes \mathbb{1}_{i} \mathbb{1}_{j} & \text{``k'} \end{split}$$

Phase diagram:

Kitaev"

Heisenberg''

[Seifert, Dong, Chulliparambil, Vojta, Tu, LJ, arXiv:2009.05051]

Short-range Majorana interactions

Kitaev + perturbations:

$$\begin{split} H &= -K \sum_{\langle ij \rangle_{\alpha}} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j} \otimes \tau_{i}^{\alpha} \tau_{j}^{\alpha} & \text{```k'} \\ &+ J \sum_{\langle ij \rangle} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j} \otimes \mathbb{1}_{i} \mathbb{1}_{j} & \text{```k'} \end{split}$$

Phase diagram:

Fractionalized version of 2+1D Gross-Neveu

Kitaev"

Heisenberg''

[Seifert, Dong, Chulliparambil, Vojta, Tu, LJ, arXiv:2009.05051]

Gross-Neveu-SO(3)* criticality

Gross-Neveu* versus Gross-Neveu:

- Adjacent phases topological:
- Quasiparticles fractionalized:

four topological sectors

"missing" states

... cf. lsing*: [Schuler *et al.*, PRL '16]

Universal fingerprints in finite-size spectra

Gross-Neveu-SO(3)* criticality

Gross-Neveu* versus Gross-Neveu:

- Adjacent phases topological:
- Quasiparticles fractionalized:

Universal fingerprints in finite-size spectra

Gross-Neveu-SO(3) vs Gross-Neveu-SU(2): $\mathcal{L}_{\mathsf{FB}} = gec{arphi} \cdot ar{\psi}(\mathbbm{1} \otimes ec{L}) \psi$ Spin-1 vs Spin-1/2

four topological sectors

"missing" states

... cf. lsing*: [Schuler *et al.*, PRL '16]

New member of Gross-Neveu family

... with $\eta \approx 0.32...0.33$, u pprox 1...2... from 1/N and $4 - \epsilon$ expansion

[Seifert, Dong, Chulliparambil, Vojta, Tu, LJ, arXiv:2009.05051]

Outline

(1) Motivation: *Emergence versus constructionism*

(2) Emergent symmetry: Relativistic fermions from nonrelativistic electrons

(3) Emergent topology: Relativistic fermions from winding numbers

(4) Emergent excitations: Relativistic fermions from fractionalization

(5) Conclusions

Conclusions

Emergent phenomena in condensed matter:

Emergent particles

Conclusions

Emergent phenomena in condensed matter:

Gross-Neveu-SU(2) universality class

 $\nu = 0.7112(5)$ $\eta = 0.0375(5)$ Classical Heisenberg universality:

0.40.60.81.01.2

 η_arphi

[LJ & Herbut, PRB '14]

[Knorr, PRB '18]

[Zerf et al., PRD '17]

[Gracey, PRD '18]

[Toldin *et al.*, PRB '15]

[Otsuka, Yunoki, Sorella, PRX '16]

[Buividovich *et al.*, PRB '18]

[Campostrini *et al.*, PRB '02]

lsing* vs lsing criticality

[Schuler, Whitsitt, Henry, Sachdev, Laeuchli, PRL '16]

