Topological phases of matter in frustrated quantum magnets

> Lukas Janssen TU Dresden

Urban Seifert (Santa Barbara) Sreejith Chulliparambil (Dresden) Xiao-Yu Dong (Ghent) Matthias Vojta (Dresden) Hong-Hao Tu (Dresden)

Würzburg-Dresden Cluster of Excellence

From frustration

... to topology

Shouryya Ray (Dresden)

John Gracey (Liverpool)

Bernhard Ihrig (Cologne) Daniel Kruti (Cologne) Michael Scherer (Cologne)

ct.qmat

Complexity and Topology in Quantum Matter

Outline

Introduction: Topological phases of matter (1)

Spin-1/2: *Kitaev spin model* (2)

Spin-3/2: *Kitaev spin-orbital models* (3)

Conclusions (4)

Slides available on https://tu-dresden.de/physik/qcm/vortraege

Outline

Introduction: Topological phases of matter (1)

Spin-1/2: *Kitaev spin model* (2)

Spin-3/2: *Kitaev spin-orbital models* (3)

Conclusions

Slides available on https://tu-dresden.de/physik/qcm/vortraege

Topological phases of matter

"' 'Phases with exotic edges

"' "Phases with exotic excitations"

Exchange statistics with $\theta \notin \{0, \theta\}$

Chiral p + ip superconductor:

$$\mathcal{H}_{\mathsf{BdG}} = \frac{1}{2} \sum_{\mathbf{p}} \Psi_{\mathbf{p}}^{\dagger} [\vec{d}(\mathbf{p}, \mu) \cdot \vec{\sigma}] \Psi_{\mathbf{p}},$$

 $\vec{d}(\mathbf{p},\mu) = (-2|\Delta|p_y,-2|\Delta|p_x,\frac{p^2}{2m}-\mu)$

Chiral p + ip superconductor:

$$\mathcal{H}_{\mathsf{BdG}} = rac{1}{2} \sum_{\mathbf{p}} \Psi^{\dagger}_{\mathbf{p}} [\vec{d}(\mathbf{p},\mu) \cdot \vec{\sigma}] \Psi_{\mathbf{p}},$$

Chern number:

$$\mathcal{C} = \frac{1}{8\pi} \int d^2 \mathbf{p} \frac{\epsilon^{ij}}{|\vec{d}|^3} \vec{d} \cdot (\partial_{p_i} \vec{d} \times \partial_{p_j} \vec{d})$$

$$ec{d}(\mathbf{p},\mu)=(-2|\Delta|p_y$$
, $-2|\Delta|p_x$, $rac{p^2}{2m}-\mu)$

Phase diagram:

Chiral p + ip superconductor:

$$\mathcal{H}_{\mathsf{BdG}} = rac{1}{2} \sum_{\mathbf{p}} \Psi^{\dagger}_{\mathbf{p}} [\vec{d}(\mathbf{p},\mu) \cdot \vec{\sigma}] \Psi_{\mathbf{p}},$$

Chern number:

$$\mathcal{C} = \frac{1}{8\pi} \int d^2 \mathbf{p} \frac{\epsilon^{ij}}{|\vec{d}|^3} \vec{d} \cdot (\partial_{p_i} \vec{d} \times \partial_{p_j} \vec{d})$$

$$ec{d}(\mathbf{p},\mu)=(-2|\Delta|p_y,-2|\Delta|p_x,rac{p^2}{2m}-\mu)$$

Phase diagram:

Chiral p + ip superconductor:

$$\mathcal{H}_{\mathsf{BdG}} = rac{1}{2} \sum_{\mathbf{p}} \Psi^{\dagger}_{\mathbf{p}} [\vec{d}(\mathbf{p},\mu) \cdot \vec{\sigma}] \Psi_{\mathbf{p}},$$

Chern number:

$$\mathcal{C} = \frac{1}{8\pi} \int d^2 \mathbf{p} \frac{\epsilon^{ij}}{|\vec{d}|^3} \vec{d} \cdot (\partial_{p_i} \vec{d} \times \partial_{p_j} \vec{d})$$

$$ec{d}(\mathbf{p},\mu)=(-2|\Delta|p_y,-2|\Delta|p_x,rac{p^2}{2m}-\mu)$$

Phase diagram:

Exchange statistics:

Kitaev's 16-fold way

Topological spin:

16 classes of topological SCs!

Kitaev's 16-fold way

Topological spin:

Q1. How to realize them?

Q2. How to detect them?

16 classes of topological SCs!

Outline

Introduction: Topological phases of matter (1)

Spin-1/2: *Kitaev honeycomb model* (2)

Spin-3/2: Generalized Kitaev models (3)

Conclusions (4

Frustrated magnets

Frustration:

Not all local constraints can be simultaneously satisfied

Consequences:

Classical: Exponentially large ground-state manifold Quantum: New phases of matter?

Antiferromagnetic coupling of 3 Ising spins

Kitaev honeycomb model

Spin-1/2 on honeycomb lattice:

[Kitaev, Ann. Phys. '06]

Parton construction

Majorana representation:

 $\sigma^{x} \mapsto \tilde{\sigma}^{x} = ib^{x}c$ $\sigma^{y} \mapsto \tilde{\sigma}^{y} = ib^{y}c$ $\sigma^{z} \mapsto \tilde{\sigma}^{z} = ib^{z}c$

Fractionalization:

$$H \mapsto \tilde{H} = -i \sum_{\langle ij \rangle_{\gamma}} K_{\gamma} (i b_i^{\gamma} b_j^{\gamma}) c_i c_j$$

 $\equiv \hat{u}_{ij} = \hat{u}_{ij}^{\dagger} \quad \text{stat}$

Fermion spectrum:

4 Majoranas with gauge constraint

tic!

Ground-state flux pattern: u = 1[Lieb, PRL '94]

α-RuCl₃ in zero field: Zigzag antiferromagnet

Zigzag order:

Neutron diffraction:

[Johnson et al., PRB '15]

Experimental search: α -RuCl₃ in field

Half-integer thermal Quantum Hall effect:

Topical Review: [LJ & Vojta, JPCM '19]

Smoking-gun signature of Majorana edge states?

С

 $\mu_0 H_{\parallel}$ (T)

[Kasahara *et al.*, Nature '18]

Fractionalized transition?

ty (a) **H < H**_c 0.01 • 57 Rescaled specific heat 5.5T • • 6 T 10⁻³ $C_{\text{mag}}/T^{\text{d/z}}$ • 6.5 T • 6.8 T (b) **H > H**_c 0.01 10⁻³ • 7.5 T 8 T • 8.5 T Ο • 9 T

> $T/|H-H_c|^{vz}$ Rescaled temperature

... with $z \approx 1$ and $\nu \approx 0.7$

[Wolter, Corredor, LJ, et al., PRB '17]

10

Kitaev-Heisenberg models in field

[LJ, Andrade, Vojta, PRL '16]

... linear spin-wave theory & classical Monte Carlo

Kitaev-Heisenberg models in field

[LJ, Andrade, Vojta, PRL '16]

... linear spin-wave theory & classical Monte Carlo

... nonlinear spin-wave theory

Kitaev-Heisenberg models in field

[LJ, Andrade, Vojta, PRL '16]

... linear spin-wave theory & classical Monte Carlo

... no sign-problem-free QMC available: [Sato & Assaad, PRB '21]

Outline

Introduction: Topological phases of matter (1)

Spin-1/2: *Kitaev honeycomb model* (2)

Spin-3/2: Generalized Kitaev models (3)

Conclusions (4

Generalizations of Kitaev model: Spin-orbital liquids

Spin + orbital + ... degrees of freedom:

... can realize all 16 topological superconductors [Chulliparambil, ..., LJ, Tu, PRB '20]

Generalizations of Kitaev model: Spin-orbital liquids

 $\langle ij \rangle_{\gamma}$

Spin + orbital + ... degrees of freedom:

Example #1 (square lattice):

Majorana representation:

$$\sigma^{y}\otimes au^{x} = ib^{1}c^{x}$$

 $\sigma^{y}\otimes au^{y} = ib^{2}c^{x}$
 $\sigma^{y}\otimes au^{z} = ib^{3}c^{x}$
 $\sigma^{x}\otimes 1 = ib^{4}c^{x}$
 $\sigma^{z}\otimes 1 = ic^{y}c^{x}$

... can realize all 16 topological superconductors [Chulliparambil, ..., LJ, Tu, PRB '20]

Kitaev orbital XY spin $H_K = -K \sum (\sigma^x_i \sigma^x_j + \sigma^y_i \sigma^y_j) \otimes au^\gamma_i au^\gamma_i$

> ... recover known model for j = 3/2 spin liquid: [Yao, Zhang, Kivelson, PRL '09] [Nakai, Ryu, Furusaki, PRB '12]

Kitaev-Ising spin-orbital model

Ising perturbation:

$$H = H_{K} + J^{z} \sum_{\langle ij \rangle} \sigma_{i}^{z} \sigma_{j}^{z} \otimes \mathbb{1}_{i} \mathbb{1}_{j}$$

v" spin-orbital liquid

Ising spin order

Kitaev-Ising spin-orbital model

Ising perturbation:

$$H = H_{K} + J^{z} \sum_{\langle ij \rangle} \sigma_{i}^{z} \sigma_{j}^{z} \otimes \mathbb{1}_{i} \mathbb{1}_{j}$$
 "Kitae

Parton representation:

0

Spin-orbital model \mapsto interacting fermions on π -flux lattice

ev" spin-orbital liquid

Ising spin order

Ground-state flux pattern:

Spinless fermions on π -flux lattice: QMC

Gross-Neveu- \mathbb{Z}_2 universality:

 $1/
u = 1.12(1), \quad \eta_{m{\phi}} = 0.51(3)$

[Gracey, IJMP '94] [LJ & Herbut, PRB '14] [lliesiu et al., JHEP '18] [Ihrig, Mihaila, Scherer, PRB '18]

. . .

Gross-Neveu- \mathbb{Z}_2 universality:

Spin-orbital model:

[Wang, Corboz, Troyer, NJP '14] [Li, Jiang, Yao, NJP '15] [Huffman & Chandrasekharan, PRD '17; PRD '20]

[Gracey, IJMP '94] [LJ & Herbut, PRB '14] [lliesiu et al., JHEP '18] [Ihrig, Mihaila, Scherer, PRB '18]

[Seifert, Dong, Chulliparambil, Vojta, Tu, LJ, PRL '20]

Kitaev-Heisenberg spin-orbital model

Example #2 (honeycomb lattice):

$$\otimes au_{i}^{\gamma} au_{j}^{\gamma} + J\sum_{\langle ij
angle} ec{\sigma}_{i} \cdot ec{\sigma}_{j} \otimes \mathbb{1}_{i}\mathbb{1}_{j}$$

... for J = 0 equivalent to known models: [Yao & Lee, PRL '11] [Natori & Knolle, PRL '20]

Kitaev-Heisenberg spin-orbital model

Example #2 (honeycomb lattice):

 $H = -K \sum_{\langle ij \rangle_{\gamma}} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j} \otimes \tau_{i}^{\gamma} \tau_{j}^{\gamma} + J \sum_{\langle ij \rangle} \vec{\sigma}_{i} \cdot \vec{\sigma}_{j} \otimes \mathbb{1}_{i} \mathbb{1}_{j}$

... for J = 0 equivalent to known models: [Yao & Lee, PRL '11] [Natori & Knolle, PRL '20] C = 3

spin-1 matrices

Ordered state:

 $\langle c_{iA}^{\top} \vec{L} c_{iA} \rangle \neq \langle c_{iB}^{\top} \vec{L} c_{jB} \rangle$ spin density wave

Gross-Neveu-SO(3)* quantum criticality

Phase diagram:

[Seifert, Dong, Chulliparambil, Vojta, Tu, LJ, PRL '20]

Gross-Neveu-SO(3)* quantum criticality

Phase diagram:

Effective field theory:

$${\cal S}=\int d^2ec x d au \left[ar \psi\gamma^\mu\partial_\mu\psi+gec \psi\cdotar \psi(\mathbb{1}_2\otimesec L)\psi
ight]$$

Critical exponents:

... from:

- large-*N* expansion @ $O(1/N^2)$
- $4-\varepsilon$ expansion @ 3-loop
- functional RG @ LPA'

[Seifert, Dong, Chulliparambil, Vojta, Tu, LJ, PRL '20]

"Gross-Neveu-SO(3)"

= 1.03(15) $\eta_{\phi} = 0.42(7)$

[Ray, Ihrig, Gracey, Scherer, LJ, PRB '21] Sign-problem-free QMC: [Liu, Vojta, Assaad, LJ, arXiv:2108.06346]

Outline

Introduction: Topological phases of matter (1)

Spin-1/2: Kitaev honeycomb model (2)

Spin-3/2: Generalized Kitaev models (3)

Conclusions (4)

Conclusions

From frustration ... to topology

α -RuCl₃ in field

Kitaev-Ising spin-orbital model

Kitaev-Heisenberg spin-orbital model

Gross-Neveu-SO(3): Sign-problem-free QMC

Hamiltonian:

Phase diagram:

 $H = -t \sum_{\langle i,j \rangle} c^{\dagger}_{i\sigma\lambda} c_{j\sigma\lambda} - J \sum_{i\alpha} \left(c^{\dagger}_{i\sigma\lambda} K^{\alpha}_{\sigma\sigma'} \tau^{z}_{\lambda\lambda'} c_{i\sigma'\lambda'} \right)^{2}$

Finite-size scaling collapse:

24

Spin-orbital model in external magnetic field

Hamiltonian:

$$\mathcal{H} = - \mathcal{K} \sum_{\langle ij
angle_{\gamma}} (ec{\sigma}_i \cdot ec{\sigma}_j) \otimes au_i^{\gamma} au_j^{\gamma} + J \sum_{\langle ij
angle} (ec{\sigma}_i \cdot ec{\sigma}_j) \otimes \mathbb{1}_i \mathbb{1}_j - ec{h} \cdot \sum_i ec{\sigma}_i \otimes \mathbb{1}_i$$

Magnetization:

Finite-size spectroscopy: Ising vs Ising*

Transverse-field Ising:

$$H = -J\sum_{\langle ij\rangle}\sigma_i^z\sigma_j^z - h\sum_i\sigma_i^x$$

Transverse-field toric code:

$$H = -J\sum_{s}\prod_{i\in s}\sigma_i^x - J\sum_{p}\prod_{i\in p}\sigma_i^z - h\sum_i$$

Finite-size spectroscopy: Ising vs Ising*

Transverse-field Ising:

Transverse-field toric code:

Gross-Neveu vs Gross-Neveu*

... testable in future simulations

Fractionalized quantum criticality: XY*

Bose-Hubbard-like model (kagome lattice):

$$\mathcal{H} = -t \sum_{\langle ij \rangle} \left[b_i^{\dagger} b_j + b_i b_j^{\dagger} \right] + V \sum_{\bigcirc} (n_{\bigcirc})^2$$
Hopping bosons

Phase diagram:

