

Triple-q order and spin vestigial states in Na₂Co₂TeO₆

Lukas Janssen

Niccolò Francini

Wilhelm Krüger

Experiments (Peking U): Wenjie Chen Xianghong Jin Yuan Li

Würzburg-Dresden Cluster of Excellence

Outline

Message #1: Na₂Co₂TeO₆ features triple-**q** AFM order at low temperatures

[Krüger, Chen, Jin, Li, LJ, PRL '23]

Message #2: Triple-q order can melt in two stages

[Francini, LJ, arXiv:2311.08475]

Magnetic Mott insulator Na₂Co₂TeO₆

Static spin structure factor:

... e.g., from neutron diffraction [Chen et al., PRB '21]

Static spin structure factor:

... e.g., from neutron diffraction [Chen et al., PRB '21]

Multi-q vs single-q order: Symmetries

Time reversal:

Spin-lattice rotation C_3^* :

Translation $T_{\mathbf{a}_1}$:

Translation $T_{\mathbf{a}_2}$:

Brillouin zone path:

Brillouin zone path:

Spectrum necessarily symmetric

... independent of modeling

Brillouin zone path:

Spectrum necessarily symmetric

... independent of modeling

6

Brillouin zone path:

Spectrum necessarily symmetric

... independent of modeling

Brillouin zone path:

Spectrum necessarily symmetric

... independent of modeling

Brillouin zone path:

Spectrum necessarily symmetric

... independent of modeling

Spectrum generically asymmetric

... unless fine-tuned

Spectrum necessarily symmetric

... independent of modeling

Spectrum generically asymmetric

... unless fine-tuned

Example: ΗΚΓΓ' model @ hidden SU(2) point

Hamiltonian:

$$\mathcal{H}_0 = \sum_{\langle ij
angle_{\gamma}} \Big[J_1 \mathbf{S}_i \cdot \mathbf{S}_j + \mathcal{K}_1 S_i^{\gamma} S_j^{\gamma} + \Gamma_1 (S_i^{lpha} S_j^{eta} + S_i^{eta} S_j^{lpha}) + \Gamma_1' (S_i^{\gamma} S_j^{lpha} + S_i^{lpha} S_j^{\gamma} + S_i^{\gamma} S_j^{eta} + S_i^{eta} S_j^{\gamma}) \Big]$$

... with $(J_1, K_1, \Gamma_1, \Gamma'_1) = (-1/9, -2/3, 8/9, -4/9) A$ [Chaloupka, Khaliullin, PRB '15]

Example: ΗΚΓΓ' model @ hidden SU(2) point

Hamiltonian:

$$\mathcal{H}_{0} = \sum_{\langle ij \rangle_{\gamma}} \left[J_{1} \mathbf{S}_{i} \cdot \mathbf{S}_{j} + \mathcal{K}_{1} S_{i}^{\gamma} S_{j}^{\gamma} + \Gamma_{1} (S_{i}^{\alpha} S_{j}^{\beta} + S_{i}^{\beta} S_{j}^{\alpha}) + \Gamma_{1}^{\prime} (S_{i}^{\gamma} S_{j}^{\alpha} + S_{i}^{\alpha} S_{j}^{\gamma} + S_{i}^{\gamma} S_{j}^{\beta} + S_{i}^{\beta} S_{j}^{\gamma}) \right]_{\dots \text{ with } (J_{1}, \mathcal{K}_{1}, \Gamma_{1}, \Gamma_{1}) = (-1/9, -2/3, 8/9, -4/9) \mathcal{A}}$$

[Chaloupka, Khaliullin, PRB '15]

Hidden SU(2) symmetry:

$$\mathbf{S}_{i} \mapsto \tilde{\mathbf{S}}_{i} = T_{14}\mathbf{S}_{i} : \qquad \mathcal{H}_{0} \mapsto \tilde{\mathcal{H}}_{0} = A \sum_{\langle ij \rangle} \tilde{\mathbf{S}}_{i} \cdot \tilde{\mathbf{S}}_{j}$$

Example: ΗΚΓΓ' model @ hidden SU(2) point

Hamiltonian:

$$\mathcal{H}_{0} = \sum_{\langle ij \rangle_{\gamma}} \left[J_{1} \mathbf{S}_{i} \cdot \mathbf{S}_{j} + \mathcal{K}_{1} S_{i}^{\gamma} S_{j}^{\gamma} + \Gamma_{1} (S_{i}^{\alpha} S_{j}^{\beta} + S_{i}^{\beta} S_{j}^{\alpha}) + \Gamma_{1}^{\prime} (S_{i}^{\gamma} S_{j}^{\alpha} + S_{i}^{\alpha} S_{j}^{\gamma} + S_{i}^{\gamma} S_{j}^{\beta} + S_{i}^{\beta} S_{j}^{\gamma}) \right]_{\dots \text{ with } (J_{i}, \mathcal{K}_{i}, \Gamma_{i}, \Gamma_{i}) = (-1/9, -2/3, 8/9, -4/9) \mathcal{A}}$$

[Chaloupka, Khaliullin, PRB '15]

Hidden SU(2) symmetry:

Ground state manifold:

S; :

 $\tilde{\mathbf{S}}_i$:

Magnon spectrum @ hidden SU(2) point

Magnon spectrum @ hidden SU(2) point

Na₂Co₂TeO₆: Inelastic neutron scattering

... perfectly symmetric magnon bands

[Krüger, Chen, Jin, Li, LJ, PRL '23] \rightarrow Poster by W. Krüger

Na₂Co₂TeO₆: Inelastic neutron scattering

[Krüger, Chen, Jin, Li, LJ, PRL '23]

 \rightarrow Poster by W. Krüger

Finite-temperature phase diagram: Simple system

... order parameter has only 1 component or breaks only 1 symmetry

Finite-temperature phase diagram: Multicomponent system

... order parameter has > 1 component and breaks > 1 symmetry

[Fernandes, Orth, Schmalian, ARCMP '19]

Finite-temperature phase diagram: Multicomponent system

... order parameter has > 1 component and breaks > 1 symmetry

Finite-temperature phase diagram: Multicomponent system

... order parameter has > 1 component and breaks > 1 symmetry

[Fernandes, Orth, Schmalian, ARCMP '19]

ΗΚΓΓ' model with ring perturbation

Hamiltonian:

$$\mathcal{H}=\mathcal{H}_0+\mathcal{H}_{\mathbb{C}}$$

Bilinear exchange:

$$\mathcal{H}_0 = \sum_{\langle ij
angle_\gamma} \Big[J_1 \mathbf{S}_i \cdot \mathbf{S}_j + \mathcal{K}_1 S_i^\gamma S_j^\gamma + \Gamma_1 (S_i^lpha S_j^eta + S_i^eta S_j^lpha) + \Gamma_1' (S_i^\gamma S_j^lpha + S_i^lpha S_j^\gamma + S_i^\gamma S_j^eta + S_i^eta S_j^\gamma) \Big]$$

... with $(J_1, K_1, \Gamma_1, \Gamma'_1) = (-1/9, -2/3, 8/9, -4/9) A$

ΗΚΓΓ' model with ring perturbation

Hamiltonian:

$$\mathcal{H}=\mathcal{H}_0+\mathcal{H}_{\bigcirc}$$

Bilinear exchange:

$$\mathcal{H}_{0} = \sum_{\langle ij \rangle_{\gamma}} \left[J_{1} \mathbf{S}_{i} \cdot \mathbf{S}_{j} + \mathcal{K}_{1} S_{i}^{\gamma} S_{j}^{\gamma} + \Gamma_{1} (S_{i}^{\alpha} S_{j}^{\beta} + S_{i}^{\beta} S_{j}^{\alpha}) + \Gamma_{1}^{\prime} (S_{i}^{\gamma} S_{j}^{\alpha} + S_{i}^{\mathsf{lop}} S_{j}^{\alpha} + S_{i}^{\mathsf{lop}} S_{j}^{\mathsf{lop}} + S_{i}^{\mathsf{lop}} S_{j}^{\mathsf{lop}} + S_{i}^{\mathsf{lop}} S_{j}^{\mathsf{lop}} \right]^{\mathsf{He} \operatorname{PHYS}}$$

... with $(J_1, K_1, \Gamma_1, \Gamma'_1) = (-1/9, -2/3, 8/9, -4/9) A$

Ring exchange:

(ijklmn)

g exchange:

$$L_1 \bigoplus_{L_2} \bigoplus_{L_2} \bigcup_{L_3} \bigcup_{L_4} \bigcup_{L_4} \bigcup_{L_5} \bigcup_{L_5} \bigcup_{L_5} \bigcup_{L_5} \bigcup_{L_6} \bigcup_{$$

... with $L_1 = 1/3$, $L_2 = -1$, $L_3 = 1/2$, $L_4 = 1/2$, $L_5 = -1/6$ from strong-coupling expansion of honeycomb-lattice Hubbard model [Yang, Albuquerque, Capponi, Läuchli, Schmidt, NJP '12]

Observables

Dual magnetization:

$$ilde{M} = \langle | ilde{\mathsf{M}} |
angle$$
 with $ilde{\mathsf{M}} \coloneqq \frac{1}{N} \sum_{i} (-1)^{i} \mathcal{T}_{14}^{\top} \mathsf{S}_{i} = \begin{cases} \frac{1}{\sqrt{3}} (1, 1, 1), & \text{for triple-} \mathsf{q} \text{ order} \\ (0, 0, 1), & \text{for } z\text{-zigzag order} \end{cases}$

Observables

Dual magnetization:

$$\tilde{M} = \langle |\tilde{\mathbf{M}}| \rangle$$
 with $\tilde{\mathbf{M}} \coloneqq \frac{1}{N} \sum_{i} (-1)^{i} T_{14}^{\top} \mathbf{S}_{i} = \begin{cases} \frac{1}{\sqrt{3}} (1, 1, 1), & \text{for triple-} \mathbf{q} \text{ order} \\ (0, 0, 1), & \text{for } z\text{-zigzag order} \end{cases}$

Composite order parameter:

$$(Q_{e_{\mathrm{g}}},Q_{t_{2\mathrm{g}}})=(\langle|\mathbf{Q}_{e_{\mathrm{g}}}|
angle,\langle|\mathbf{Q}_{t_{2\mathrm{g}}}|
angle)$$
 with

$$egin{aligned} \mathbf{Q}_{e_{\mathrm{g}}} &\coloneqq rac{1}{2}ig(2 ilde{M}_{z}^{2}- ilde{M}_{x}^{2}- ilde{M}_{y}^{2},\sqrt{3}[ilde{M}_{x}^{2}- ilde{M}_{y}^{2}]ig) \ \mathbf{Q}_{t_{2\mathrm{g}}} &\coloneqq \sqrt{3}ig(ilde{M}_{y} ilde{M}_{z}, ilde{M}_{z} ilde{M}_{y}, ilde{M}_{y}, ilde{M}_{x} ilde{M}_{y}ig) \end{aligned}$$

... 5 irreducible components of rank-2 tensor

Observables

Dual magnetization:

$$\tilde{M} = \langle |\tilde{\mathbf{M}}| \rangle$$
 with $\tilde{\mathbf{M}} \coloneqq \frac{1}{N} \sum_{i} (-1)^{i} \mathcal{T}_{14}^{\top} \mathbf{S}_{i} = \begin{cases} \frac{1}{\sqrt{3}} (1, 1, 1), & \text{for triple-} \mathbf{q} \text{ order} \\ (0, 0, 1), & \text{for } z\text{-zigzag order} \end{cases}$

Composite order parameter:

$$(Q_{e_{\mathrm{g}}},Q_{t_{2\mathrm{g}}})=(\langle|\mathbf{Q}_{e_{\mathrm{g}}}|
angle,\langle|\mathbf{Q}_{t_{2\mathrm{g}}}|
angle)$$
 with

$$\begin{split} \mathbf{Q}_{e_{\mathrm{g}}} &\coloneqq \frac{1}{2} \big(2\tilde{M}_z^2 - \tilde{M}_x^2 - \tilde{M}_y^2, \sqrt{3} [\tilde{M}_x^2 - \tilde{M}_y^2] \big) \\ \mathbf{Q}_{t_{2\mathrm{g}}} &\coloneqq \sqrt{3} \big(\tilde{M}_y \tilde{M}_z, \tilde{M}_z \tilde{M}_y, \tilde{M}_x \tilde{M}_y \big) \end{split}$$

... 5 irreducible components of rank-2 tensor

 $= \begin{cases} (0,1), & \text{for triple-} \mathbf{q} \text{ order} \\ (1,0), & \text{for } z\text{-zigzag order} \end{cases}$

... measurable in finite-size simulations

Classical Monte Carlo simulations (*L* = 32**)**

Critical temperatures

$$U_{ ilde{M}} = rac{\langle ilde{\mathsf{M}}^4
angle}{\langle ilde{\mathsf{M}}^2
angle^2} \qquad \qquad U_Q^{e_g}$$

$$\mathbf{g} = rac{\langle \mathbf{Q}_{e_{\mathrm{g}}}^4
angle}{\langle \mathbf{Q}_{e_{\mathrm{g}}}^2
angle^2}$$

Two-stage melting

Two-stage melting

Phase diagram: ΗΚΓΓ' model

Phase diagram: НКГГ' model

... same is true for zigzag order

[[]Francini, LJ, arXiv:2311.08475]

Phase diagram: Na₂Co₂TeO₆

Theory:

Na₂Co₂TeO₆: Magnon excitation spectrum

$$(J, K, \Gamma, \Gamma') = (1.2, -8.3, 1.9, -2.3, 0.5)$$
 me
 $(J_3, J_2^A, J_2^B) = (1.5, 0.32, -0.24)$ eV
 $+$ nonbilinear exchange

[Krüger, Chen, Jin, Li, LJ, PRL '23]

Critical scaling @ T_{c1} (primary-to-vestigial)

$$R_{\xi} = \xi/L$$

Critical scaling @ T_{c1} (primary-to-vestigial)

\rightarrow 2D Ising universality

 \ldots consistent with \mathbb{Z}_2 time reversal symmetry breaking

Critical scaling @ T_{c2} (vestigial-to-paramagnet)

with $1/\nu = 6/5$

\rightarrow 2D three-state Potts universality

... consistent with \mathbb{Z}_3 symmetry breaking

Phase coexistence @ primary-to-disorder transition

... spatial dimension

\rightarrow First-order transition from discontinuity fixed point

Schematic RG flow

Ring exchange perturbation

Schematic RG flow

[Francini, LJ, arXiv:2311.08475]

Digression: Discontinuity fixed point

Ising model in longitudinal field:

Flow linearization (relevant direction):

$$eta_{H}=- heta H+\mathcal{O}(H^2)$$
 with $heta=d=2$

Formal limit of continuous transition:

[Nienhuis, Nauenberg, PRL '75]

High-spin d⁷ Mott insulators

FIG. 1. Atomic *d* levels splitting into two groups under the octahedral CEF Δ : e_g levels at a higher energy and t_{2g} levels at a lower energy. The d^7 electron configuration can take either high-spin (middle) or low-spin state (right), depending on the strength of Coulomb interactions and Δ .