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Abstract

We investigate topological quantum phase transitions with concomitant symmetry breaking
in Kugel-Khomskii type models with bond-dependent interactions in the orbital degrees of
freedom. These models support Kitaev spin-orbital liquid ground states, featuring gapless
Majorana fermions in the presence of a static Z2 gauge field. We present a class of spin-only
interactions that do not perturb the gauge field, such that the low-energy physics are described
by a theory of interacting Majorana fermions, which supports various symmetry-breaking
channels, depending on the nature of the perturbation. An approximate phase diagram for two
of those models is derived from Majorana mean-field theory. The resulting quantum critical
points describe new fractionalized fermionic universality classes, whose critical behavior we
estimate using the 𝜀-expansion to leading order.
First, we consider the Kitaev-XY spin orbital model, featuring U(1) spin-rotational symme-
try. The model is shown to undergo a phase transition into a partially ordered phase with a
spontaneously broken U(1) symmetry. The quantum critical point is governed by the Gross-
Neveu-SO(2)* universality class. Furthermore, we consider the anisotropic Kitaev spin-orbital,
which features two independent parameters, describing spin-only Ising and XY interactions.
The model exhibits U(1)×Z2 symmetry, featuring multiple symmetry-breaking channels. In
the easy-plane regime, the system supports a line of U(1) symmetry-breaking transition, whose
critical behavior is shown to be governed by the GN-SO(2)* universality class. In the easy-axis
regime, we uncover a Z2 symmetry-breaking transition governed by the GN-Ising* universality
universality class. We show that the endpoint connecting the two transitions, where both or-
ders compete, describes a bicritical point governed by the bicritical fractionalized universality
class GN-SO(3)*, which is characterized by two relevant eigenvalues and features an emer-
gent SO(3) symmetry. Additionally, we present evidence for the appearance of a symmetry-
enhanced first-order transition between the partially symmetry-broken phases.
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Kurzzusammenfassung

Wir untersuchen topologische Quantenphasenübergänge mit simultaner Symmetriebrechung
in Kugel-Khomskii-Modellen mit richtungsabhängigen Austauschwechselwirkungen in den or-
bitalen Freiheitsgraden. Diese Modelle beschreiben Kitaev-Spin-Orbital-Flüssigkeiten mit
masselosen Majorana-Fermionen in Gegenwart eines statischen Z2-Eichfeldes. Wir stellen
eine Klasse von Spin-Wechselwirkungen vor, die das Eichfeld unberührt lassen, so dass die
Niederenergiephysik durch eine Theorie wechselwirkender Majorana-Fermionen beschrieben
wird, die je nach Art der Wechselwirkung verschiedene symmetriebrechende Kanäle unter-
stützt. Ein genähertes Phasendiagramm für zwei dieser Modelle wird aus der Majorana-Mean-
Field-Theorie abgeleitet. Die sich daraus ergebenden quantenkritischen Punkte beschreiben
neue fraktionialisierte fermionische Universalitätsklassen, deren kritisches Verhalten wir mit
Hilfe der 𝜀-Entwicklung in führender Ordnung abschätzen.
Zunächst betrachten wir das Kitaev-XY-Spin-Orbital-Modell mit U(1)-Symmetrie under Spin-
Rotationen. Es wird gezeigt, dass das Modell einen Phasenübergang in eine teilweise geord-
nete Phase mit einer spontan gebrochenen U(1)-Symmetrie aufweist. Der quantenkritische
Punkt wird von der Gross-Neveu-SO(2)*-Universalitätsklasse beschrieben. Darüber hinaus
betrachten wir das anisotrope Kitaev-Spin-Orbital, das zwei unabhängige Parameter aufweist,
die jeweils Ising- und XY-Wechselwirkungen beschreiben. Das Modell weist eine U(1)×Z2-
Symmetrie auf und besitzt mehrere symmetriebrechende Kanäle. Im easy-plane Regime weist
das System eine Linie von Übergängen mit U(1)-Symmetriebrechung auf, deren kritisches Ver-
halten durch die GN-SO(2)* Universalitätsklasse bestimmt wird. Analog entdecken wir im
easy-axis Regime Übergänge mit spontan gebrochener Z2-Symmetrie, die von der GN-Ising*-
Universalitätsklasse bestimmt werden. Wir zeigen, dass der Endpunkt beider Übergänge, wo
beide Ordnungen miteinander konkurrieren, einen bikritischen Punkt beschreibt, der von der
bikritischen fraktionalisierten Universalitätsklasse GN-SO(3)* bestimmt wird, die durch zwei
relevante Eigenwerte charakterisiert ist und eine emergente SO(3)-Symmetrie aufweist. Zusät-
zlich präsentieren wir Hinweise für das Auftreten eines symmetrieverstärkten Übergangs erster
Ordnung zwischen den teilweise symmetriebrechenden Phasen.
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1 Introduction

Quantum spin liquids (QSLs) present one of the most active and exciting fields of research in
contemporary condensed matter physics. The defining feature of a QSL is that, even though it
appears to be a featureless paramagnet, strong quantum fluctuations inhibit the formation of a
magnetically ordered state down to vanishing temperature [1]. A key observation that distin-
guishes QSLs from classical paramagnets is their appearance as an inherent quantum phase. In
contrast to conventional magnetic phases, QSL states cannot be derived from a semiclassical
expansion about a classical reference state due to the extensive ground-state degeneracy of the
underlying classical spin models [2]. Consequently, quantum tunneling leads to hybridization
of the classical ground-state manifold, resulting in a macroscopically entangled ground-state,
describing a unique superposition of all classical ground-state configurations featuring topo-
logical degeneracy [3]. Thus, center stage for the emergence of QSL ground states is given to
the field of frustrated magnets, where competing interactions naturally lead to the required
ground-state degeneracy in the classical limit. Although no material has been unequivocally
confirmed to exhibit a spin-liquid ground state, a few promising candidate materials have been
proposed, the most prominent being Herbertsmithie [4, 5], which realizes a spin 𝑆 = 1

2
Heisen-

berg model on the Kagome lattice and has been confirmed to stay paramagnetic to very low
temperatures by NMR measurements. Another historically important example is Anderson’s
resonating valence-bond (RVB) state for the Heisenberg model on the triangular lattice [6],
which is generally seen as the first theoretical example of a QSL state, featuring a highly
entangled ground state and a gapped excitation spectrum.

From a modern perspective, quantum spin liquids are characterized by the appearance of
fractionalized low-energy excitations, so-called spinons, which are coupled by an emergent
gauge field [1]. The nature of these excitations is non-local and can realize anyonic statistics,
emphasizing the topological character of QSL phases [7]. Most importantly, the spinons are
deconfined in the QSL phase, thus allowing them to propagate independently, which can in
principle be measured in appropriate transport experiments [1]. Within this paradigm, a large
variety of qualitatively different QSL phases can arise, which are usually categorized by their
gauge symmetry as well as the nature of their low-energy excitations. In particular, it allows
for gapless QSL phases because the spinons usually do not carry charge. The paradigmatic
example of a gapless QSL is given by the celebrated Kitaev honeycomb model, first introduced
by Kitaev in his seminal work in 2006 [8]. Even though the model is highly frustrated, im-
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plementing Ising interactions with bond-dependent quantization axes between spins 𝑆 = 1
2
, it

can be exactly solved, featuring gapless itinerant Majorana fermion excitations coupled to a
static Z2 gauge field with localized, gapped flux excitations. Additionally, the model features
various gapped QSL phases if we also allow for bond-dependend exchange couplings. It was
initially introduced as toy model to demonstrate the feasibility of topological quantum com-
puting due to its ability to support non-abelian anyons [8]. However, the model quickly caught
interest in the condensed matter community after Jackeli and Khaliullin [9] discovered that
the highly anisotropic Kitaev interaction, which seems quite artificial at the first glance, could
be engineered in certain Mott insulators with strong spin-orbit coupling. The most prominent
example of such materials is 𝛼-RuCl3, which has been argued to be in the proximity of a QSL
phase based on measurements of a half-quantized thermal Hall conductivity [10, 11], which can
be explained by the appearance of deconfined fractionalized quasiparticles [12, 13]. However,
the debate on the interpretation of these results is still ongoing.

From a theoretical point of view, the Kitaev honeycomb model is particularly interesting due
to its exact solution, which can be used as a starting point for a more general class of model,
featuring a rich phase diagram with various magnetic phases [14]. However, the introduction of
arbitrary interactions does not only spoil the exact solvability of the model, but also generically
introduces gauge dynamics, which makes a detailed analysis of the quantum phase transitions
in such a model difficult. Fortunately, the strategy of Kitaev’s exact solution is not restricted
to spin 𝑆 = 1

2
and has been extended to several models with more internal degrees of freedom.

Previously studied models include spin 𝑆 = 3
2

Hamiltonians [15] as well as spin 𝑆 = 1
2

models
with two spins per site of a honeycomb lattice [16] or, similarly, on a decorated honeycomb
lattice [17], the latter two producing effective spin-orbital descriptions of the Kugel-Khomskii
type [18]. A more detailed exposure on the physical relevance of such models is given in Ref.
[19]. All of these models arise from a more general family of exactly solvable models [20] and
can be exactly solved by a Majorana representation, displaying so-called Kitaev spin-orbital
liquid (Kitaev SOL) ground states with static Z2 gauge fields and gapless itinerant Majorana
fermions, fully analogous to the Kitaev honeycomb model. In contrast to the 𝑆 = 1

2
model,

starting from exactly solvable models in the spin-orbital formulation allows for numerous
interactions that will leave the Z2 gauge field static, such that the corresponding low-energy
description can be purely formulated in terms of interacting Majorana fermions. Interestingly,
this also includes the 𝑆 = 3

2
Kitaev honeycomb model, which can be rewritten in a pseudo spin-

orbital formulation [21, 22]. Another example has been presented in Ref. [23], which studies
the critical behavior of a spin-orbital model with full SU(2) symmetry in the spin sector [24]
in the presence of a spin-only Heisenberg interaction. While the ground state of the exactly
solvable model, characterized by three flavors of gapless Majorana fermions, is stable against
small perturbations, it transitions into a topologically different SOL phase at strong couplings,
gapping out two of the three itinerant Majorana fermions. At the transition, the SU(2) spin
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symmetry of the model is spontaneously broken, thus describing a continuous phase transition,
giving rise to a quantum critical point whose behavior is governed by the coupling of the order
parameter to gapless fractionalized fermionic degrees of freedom. This gives rise to a previously
unknown universality class Gross-Neveu-SO(3)*, the up to now first and only known example
of a fractionalized fermionic quantum critical point. In contrast to their bosonic counterparts,
which are known to describe transitions between trivial and topologically ordered phases [25] or
deconfined quantum critical points [26], these critical points have well-defined order parameters
and can thus be studied within the framework of continuous phase transitions.
Motivated by these developments, the aim of this thesis is to study similar Kitaev spin-orbital
models and uncover related universality classes and their associated critical behavior for differ-
ent symmetry-breaking patterns by means of Majorana mean-field theory and the momentum-
shell Renormalization Group in the 𝜀-expansion. It turns out that spin-only interactions gener-
ically decouple from the Z2 gauge field, such that the model in Ref. [23] is straightforwardly
generalized to models of lower symmetry, which will be the starting point of the analysis
carried out in this thesis.
This work is outlined as follows: Following a brief review of the basic concepts of continuous
phase transitions and the Renormalization Group in Ch. 2, we start the main part of this thesis
by investigating the properties of various types of exactly solvable Kitaev spin-orbital models
and suitable perturbations in Ch. 3. In Ch. 4 we discuss the phase diagram and the critical
behavior of a spin-orbital model with U(1) spin-rotation symmetry, which is spontaneously
broken at strong couplings, giving rise to a new fractionalized universality class. In Ch. 5,
we then expand on the previous findings by introducing anisotropy, giving a model with two
inequivalent symmetry-breaking channels and thus two order parameters, featuring a bicritcal
point with two relevant parameters. We summarize our results and give an outlook on possible
future directions of research in Ch. 6.





2 Phase transitions and the
Renormalization Group

One of the key insights of statistical mechanics is that the equilibrium properties of a sys-
tem can be described by a few macroscopic quantities. When external parameters such as
temperature, pressure or an external magnetic field are varied, it may happen that the quali-
tative behavior of these quantities changes abruptly, marking the onset of a phase transition
[27]. Formally, all macroscopic properties of the system are encoded in in its free energy, or
appropriate thermodynamic potential. Thus, phase transitions may be defined as points in
the space of possible control parameters where the free energy exhibits non-analytic behavior.
A small but remarkable subset of phase transitions are continuous phase transitions, where
the first derivatives of the free energy behave continuously between the two adjacent phases.
They are usually described by an order parameter, which acquires a finite expectation value in
the ordered phase and thus spontaneously breaks a symmetry of the underlying Hamiltonian.
In the symmetric phase, the order parameter vanishes. Continuous phase transitions have a
remarkable property known as critical phenomena. In the vicinity of the critical point, many
of the equilibrium properties of the system obey power laws as they approach the transition.
Remarkably, the corresponding exponents are insensitive to the microscopic details of the sys-
tem at hand and depend only on global properties of the system, such as dimensionality or
symmetry. Most importantly, the critical exponents agree for many systems with seemingly no
physical connection, a phenomenon known as universality. Continuous phase transitions can
thus be organized into universality classes, which are characterized by the same set of critical
exponents.

This chapter introduces the basic concepts necessary to understand and characterize critical
phenomena. In Sec. 2.1 we introduce the most common critical exponents and the relations
between them. Sec. 2.2 briefly introduces the concept of a quantum phase transition. In Sec.
2.3 we introduce the concept of the Renormalization Group, providing both an explanation
for critical phenomena and a calculational tool to characterize various universality classes.
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2.1 Critical exponents and scaling laws

For magnetic transitions, which we consider in this work, the magnetization takes the role of
the order parameter and the most common power laws are [28]

Specific heat: 𝐶(𝑡) ∝ |𝑡|−𝛼, (2.1)

Magnetization: 𝑚(𝑡) ∝ (−𝑡)𝛽, 𝑡 ≤ 0, (2.2)

Susceptibility: 𝜒(𝑡) ∝ |𝑡|−𝛾 (2.3)

Critical isotherm: 𝑚(ℎ) ∝ |ℎ|−𝛿 sgn(ℎ), 𝑡 = 0, , (2.4)

where ℎ denotes a magnetic field variable and 𝑡 is some measure for the distance of the system
from the critical point. Commonly, and for the following discussion, 𝑡 denotes the reduced
temperature

𝑡 =
𝑇 − 𝑇𝐶
𝑇𝐶

, (2.5)

where 𝑇𝐶 denotes the critical temperature of the phase transition, but it is straightforward to
generalize Eqs. (2.1)–(2.4) to any non-thermal control parameter and other order parameters.
The powers 𝛼, 𝛽, 𝛾 and 𝛿 are called critical exponents. Two more exponents, which are not
connected to thermodynamic quantities but to local fluctuations of the magnetization can
be defined via the correlation function of the local magnetization density, whose asymptotic
behavior away from the critical point

𝐺(𝑟) ∝ e−
𝑟
𝜉 (𝑟 ≫ 𝜉), (2.6)

defines the correlation length 𝜉. Loosely speaking, the correlation length describes the typical
linear size of magnetic fluctuations, or, more formally, a typical length scale. Approaching the
transition the correlation length obeys a power law

𝜉 ∝ |𝑡|−𝜈 , (2.7)

where we have introduced the correlation length exponent 𝜈. Close to the critical point,
the correlation length is large and presents the only relevant length scale in the system. At
the critical point, the correlation length diverges. The system becomes scale invariant and
fluctuations at all length scales become important. The scale dependence of the correlation
function (2.6) disappears and the correlation function becomes

𝐺(𝑟) ∝ 1

𝑟𝐷−2+𝜂
, (2.8)

where D denotes the dimensionality of space. The critical exponent 𝜂 is usually called anoma-
lous dimension, since it provides an apparent correction to the space dimension D if we compare
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Eq. (2.8) to the form of the correlation function obtained from naive scaling [27]. The impor-
tance of scaling to the understanding of critical phenomena was first realized by Widom [29].
If we assume the singular part of the free energy density to satisfy a generalized homogeneity
relation

𝑓(𝑡, ℎ) = 𝑏−𝐷𝑓(𝑡𝑏𝑦𝑡 , ℎ𝑏𝑦ℎ), (2.9)

where 𝑦𝑡 and 𝑦ℎ are two critical exponents and 𝑏 > 1 refers to an arbitrary scaling parameter,
the power laws (2.1)–(2.4) can be derived from Eq. (2.9) for a suitable choice of scaling
parameter [28]. Additionally, the scaling form reveals that only two of the four macroscopic
exponents are independent, giving rise to two scaling relations

2− 𝛼 = 2𝛽 + 𝛾, (2.10)

2− 𝛼 = 𝛽(𝛿 + 1). (2.11)

A similar scaling assumption for the correlation function derives the power laws (2.7) and (2.8)
and introduces hyperscaling relations

2− 𝛼 = 𝐷𝜈, (2.12)

𝛾 = (2− 𝜂)𝜈, (2.13)

as well as the relation
𝜈 =

1

𝑦𝑡
. (2.14)

This allows us to express all thermodynamic critical exponents in terms of the correlation
length exponents, which will turn out to be accessible for practical calculations. A microscopic
derivation of the scaling assumptions as well as a framework for the calculation of the critical
exponents in Eq. (2.9) is given by the Renormalization Group, which will be introduced
with more detail in Sec. 2.3. Note that the hyperscaling relations fail above the upper critical
dimension, describing the dimension below which fluctuations become important to the critical
behavior. This is due to the appearance of a dangerously irrelevant scaling variable in the RG
sense, see e. g. Ref. [30].

2.2 Quantum phase transitions

This section briefly reviews the basic aspects of quantum phase transitions and how their
critical behavior differs from the thermal transitions discussed in the previous section. A
thorough introduction to the field can be found in Refs. [31, 32]. A quantum phase transition
is a phase transition that takes place at 𝑇 = 0 and is thus facilitated by a non-analyticity of
the ground-state energy at some critical value for a non-thermal control parameter 𝑟, denoting
the distance from the quantum critical point in analogy to Eq. (2.5). This can be external
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parameters, such as a magnetic field or pressure, but also parameters intrinsic to the system,
such as coupling constants. In the absence of thermal fluctuations, the transition is solely
driven by quantum effects.

It is convenient to describe the properties of systems near the quantum critical point in the
imaginary time functional integral formulation [33], providing a unified description of finite
and zero temperature phenomena. Near the transition, the important degrees of freedom are
long-wavelength order-parameter fluctuations 𝜑. Thus, they can be appropriately described
by an effective field theory

𝑍 =

∫︁
𝒟𝜑 e−𝑆[𝜑], (2.15)

𝑆 =

∫︁ 𝛽

0

d𝜏

∫︁
d𝐷𝑟ℒ[𝜑], (2.16)

where 𝑑 is the space dimension, 𝛽 = 1
𝑇

is the inverse temperature and the functional integral
assumes periodic boundary conditions 𝜑(𝜏 = 0) = 𝜑(𝜏 = 𝛽) since 𝜑 is bosonic. The order
parameter fluctuations are slowly varying functions of space and imaginary time [3]. 𝑆[𝜑] is
the Euclidean effective action, such that ℒ[𝜑] denotes the effective Lagrangian. Formally, the
Lagrangian is given by including fluctuations in imaginary time

ℒ[𝜑] = 𝜑𝜕𝜏𝜑+ℋ[𝜑], (2.17)

where ℋ[𝜑] is the low-energy effective Hamiltonian of the microscopic theory. Calculating
Eq. (2.17) from first principles can be challenging because the the order parameter typically
describes coarse-grained collective behavior of the microscopic degrees of freedom. In Sec. 4.2
we show how to obtain the effective action for the order parameter using a suitable Hubbard-
Stratonovich transformation, which often requires an educated guess or pre-existing knowledge
about the phase transition. Close to a continuous phase transition, a phenomenological ap-
proach in the spirit of Landau is also viable. Since the order parameter is small close to the
transition, the action (2.16) can be expanded in powers of 𝜑, generating only symmetry-allowed
terms. This approach is used in Sec. 5.2.

For finite temperatures, all but the 𝜑(𝜔𝑛 = 0) Matsubara mode are gapped and do not con-
tribute to the singular part of the free energy [30], which consequently is independent of
imaginary time, resulting in the homogeneity relation (2.9). Thus, finite temperature transi-
tions are dominated by classical thermal fluctuations. At 𝑇 = 0, the integral over imaginary
time acts as an extra space dimension and the Matsubara frequencies become gapless. Both
fluctuations in space and imaginary time contribute to the singular part of the ground-state
energy, such that the transition is described by an Euclidean quantum field theory, with a
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suitable microscopic cutoff. This introduces a new characteristic scale, the correlation time

𝜏𝑐 ∝ 𝜉𝑧, (2.18)

with the dynamical critical exponent 𝑧, which is finite at 𝑇 = 0 and diverges at the quantum
critical point. Consequently, the homogeneity relation for the singular part of the free energy
density is modified, giving

𝑓(𝑟, ℎ) = 𝑏−(𝐷+𝑧)𝑓(𝑟𝑏𝑦𝑡 , ℎ𝑏𝑦ℎ), (2.19)

such that the quantum system in 𝐷 space dimensions behaves like a a classical system in
𝐷 + 𝑧 dimensions. This is the celebrated quantum-classical correspondence [32]. However,
the situation changes in the presence of fermions that couple to the order parameter, which
are naturally present in many electronic systems. If the fermions are gapped, they can be
integrated out in the functional integral, only contributing to the regular part of the free
energy. Integration over gapless fermions leads to divergencies which fundamentally change the
critical behavior, giving rise to fermionic universality classes with different critical exponents.
Of particular interest are systems featuring fermions with a linear-low energy spectrum. Since
such systems have 𝑧 = 1, they show an emergent Lorentz symmetry near criticality and are
described by relativistic quantum field theories. Examples include graphene, producing a
zoo of universality classes in the presence of interactions between the fermions [34], but also
the Kitaev spin-orbital models considered in this work, whose gapless Majorana excitations
facilitate the appearance of fractionalized fermionic universality classes.

2.3 Renormalization Group

2.3.1 Wilsonian Renormalization Group

Due to the importance of order parameter fluctuations at all scales at the phase transition,
any approximation scheme that does not systematically include these fluctuations will ulti-
mately fail in the proximity of the critical point. The appropriate tool to study the effects
of fluctuations on all scales is the Renormalization Group (RG), which provides a radically
different approach to the systematic study of critical behavior. The idea goes back to the work
of Kadanoff [35], who proposed that the scaling form of the parameters in the scaling hypoth-
esis (2.9) could in principle be derived by successively averaging over small-distance degrees
of freedom and appropriate rescaling. This idea was then formalized by Wilson in form of
the momentum-shell RG. Wilson’s key insight was that Kadanoff’s iterative coarse-graining
can be effectively carried out in momentum space [36, 37], allowing us to calculate the critical
exponents explicitly, to a certain degree of approximation. This is particularly attractive in the
context of the field theories discussed in the previous section, where the coarse-graining step
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is naturally implemented by integrating over modes with large momenta, called fast modes, in
the functional integral. Starting from the the initial effective action (2.16) with the microscopic
cutoff Λ, the RG procedure is based on the assumption that the coarse-grained action for the
remaining low-momentum modes, called slow modes, can be transformed into its initial form,
but with couplings that have been renormalized by interactions between fast and slow modes.
This can be achieved by appropriate rescaling of momenta and fields, which only enter the the
partition function (2.15) as integration variables. The resulting renormalized action describes
the same physics as the initial action. Following Ref. [38], the detailed implementation of the
RG step is described as follows:

1. Integration over fast modes. This is also known as momentum-shell integration. The first
step is to explicitly integrate over fast modes in the partition function. This amounts to
integrating over fields within the spherical momentum shell

Λ/𝑏 < 𝑝 < Λ, (2.20)

where 𝑝 denotes the absolute value of the momenta and 𝑏 > 1 is an arbitrary scale param-
eter that can be identified with the scale parameter in the homogeneity relations (2.9)
and (2.19), as we will demonstrate shortly. The coarse-grained action has momentum
cutoff Λ.

2. Rescale momenta 𝑏𝑝 → 𝑝. In the second step, we rescale all momenta in the coarse-
grained action from step 1 to bring back the cutoff to its initial value Λ. This step is
necessary to make the RG procedure independent of scale.

3. Renormalize fields. This step is usually chosen to make the momentum-dependent contri-
butions in the effective action contributions invariant under RG transformations, which
is necessary to compare correlation functions at different scales.

Following this procedure, we obtain the renormalized effective action 𝑆 ′, which takes the same
form as the initial action with renormalized coupling constants. Denoting the set of coupling
constants describing the action (2.16) with [𝐾], the RG procedure thus produces a map in the
space of coupling constants

[𝐾 ′] = 𝑅𝑏[𝐾], (2.21)

which expresses how the couplings of the theory change defining the RG recursion relation.
Since the recursion relation does not explicitly depend on the inital scale, fluctuations can now
be integrated out systematically by successive application of the RG transformation to obtain
an effective theory which includes fluctuation effects up to the correlation length [39].
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2.3.2 Fixed points and critical behavior

Since the partition function remains invariant under the RG transformation by construction,
the recursion relation (2.21) enables us to connect physical quantities of the theory at different
scales [40]. This also explains the significance of fixed points of the RG transformation, which
satisfy

[𝐾*] = 𝑅𝑏[𝐾*]. (2.22)

Fixed points define scale-invariant theories in the space of coupling constants. Since a fixed
point maps onto itself under RG transformations, all dimensionful observables either diverge or
vanish, in particular the correlation length. Fixed points with diverging correlation length are
associated with critical points of continuous phase transitions. All theories that flow into the
critical fixed point, the so-called basin of attraction, also have infinite correlation length and
thus describe critical points. This feature is responsible for the phenomenon of universality.
At infinite correlation length, all fluctuations have to be taken into account, corresponding
to infinite iterations of the RG recursion relations, after which all theories in the basin of
attraction flow into the fixed point, which it therefore also called IR.

Since the scale parameter 𝑏 in the momentum-shell RG is continuous, the recursion relations
(2.21) are conveniently studied in differential form [41]

d

d ln 𝑏
𝐾𝑖 = 𝛽𝑖([𝐾]), (2.23)

where 𝐾𝑖 denotes a single coupling from the set [𝐾], defining a set of differential equations
governing the Renormalization Group flow. Fixed points of the RG flow are then given by the
zeros of the functions 𝛽𝑖, which can be obtained by performing the integral over fast modes.
The scaling behavior in the vicinity of the continuous phase transition is connected to the RG
flow close to the associated fixed point. For small deviations from the fixed point, the RG flow
equations (2.23) can be linearized, giving

d

d ln 𝑏
𝛿𝐾𝑖 =

∑︁
𝑗

𝜕𝛽𝑖
𝜕𝐾𝑗

⃒⃒⃒⃒
*
𝛿𝐾𝑗, (2.24)

where 𝛿𝐾𝑖 denotes the deviation from the fixed point value 𝐾𝑖*. The RG flow in the vicinity
of the fixed point is characterized by the eigenvectors �̃�𝑖 of the stability matrix

𝑀𝑖𝑗 =
𝜕𝛽𝑖
𝜕𝐾𝑗

⃒⃒⃒⃒
*
, (2.25)

given by the Jacobian of the flow equations (2.23), evaluated at the fixed point. In the
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eigenbasis, the linearized flow reads

d

d ln 𝑏
�̃�𝑖 = 𝑦𝑖�̃�𝑖. (2.26)

Consequently, the stability of the fixed point depends on the sign of the eigenvalues 𝑦𝑖. For
positive 𝑦𝑖, deviations in the direction of the corresponding eigenvector �̃�𝑖 grow under RG
transformations, rendering the fixed point unstable in this direction. This is called a relevant
direction in RG terminology. For negative 𝑦𝑖, deviations flow into the fixed point, marking
stable directions, which are called irrelevant. Directions with 𝑦𝑖 = 0 do not change under RG
transformations and are called marginal. The identification of a fixed point with a continuous
phase transition is straightforward. Fully stable fixed points usually represent stable thermo-
dynamic phases. In the usual setup, with a single control parameter 𝑡, tuning to criticality
corresponds to fixing a single relevant direction, such that the critical fixed point has one
positive eigenvalue. The RG scaling of the control parameter is then governed by the RG
flow of the single relevant direction of the critical fixed point. Upon solving the corresponding
differential equation in Eq. (2.26) and identifying the control parameter with the relevant
direction at the fixed point, we get

𝑡′ = 𝑡𝑏𝑦𝑡 , (2.27)

where 𝑦𝑡 denotes the relevant eigenvalue of the critical fixed point, which precisely takes the
form required in the homogeneity relation (2.9). Consequently, we can identify the relevant
eigenvalue of the critical fixed point with 𝑦𝑡 in Eq. (2.14), providing a microscopic explanation
for the appearance of scaling laws and universal critical exponents close to continuous phase
transitions. Irrelevant eigenvalue turn out to produce leading corrections to the scaling. How-
ever, this will not be discussed in this work and we refer to the references in this section for
a detailed exposure. A specific implementation of the Renormalization Group well suited for
the application to quantum field theories will be introduced in detail in Ch. 4. For systems
with more than one control parameter, interesting phenomena like multicriticality arise [41].
An example of a multicritical point will be studied in Ch. 5.



3 Kitaev spin-orbital models

This chapter aims to introduce a variety of exactly solvable spin-orbital models, which support
gapless itinerant Majorana excitations and static Z2 gauge fields. In Sec. 3.1 we introduce
the celebrated Kitaev honeycomb model and its exact solution [8] to some detail, obtaining
the low-energy spectrum and the phase diagram. In Sec. 3.2 we generalize the exact solution
to various spin-orbital models via Ref. [20] and present a class of perturbations that leave
the gauge field static, such that the low-energy description only involves the fermionic degrees
of freedom. The resulting models will prove to be candidates for the appearance of new
fractionalized fermionic quantum critical points.

3.1 Kitaev honeycomb model

3.1.1 Hamiltonian

The Kitaev honeycomb model describes a system of quantum spin 𝑆 = 1
2

degrees of free-
dom on the two-dimensional honeycomb lattice, with spins interacting via nearest-neighbor
interactions, featuring Ising type interactions with bond-dependent quantization axis [8]. The
Hamiltonian reads

ℋ = −
∑︁
⟨𝑖𝑗⟩𝛾

𝐾𝛾𝜎
𝛾
𝑖 𝜎

𝛾
𝑗 , (3.1)

where the sum is over all nearest-neighbor bonds ⟨𝑖𝑗⟩ and 𝛾 refers to the bond type on the
honeycomb lattice, as shown in Fig. 3.1a. The exchange couplings 𝐾𝛾 ≥ 0 are in general con-
sidered bond-dependent and ferromagnetic, but can also take antiferromagnetic values without
changing the physics, as discussed shortly. While the lattice itself exhibits no geometrical frus-
tration, the nature of the interaction does not allow a single spin to minimize the energy along
all neighboring bonds, giving rise to so-called exchange frustration [42]. This leads to sup-
pression of long-range magnetic order and a residual ground-state entropy (i. e. an extensive
ground-state degeneracy) [13], making the problem generically difficult to solve. Surprisingly,
the Hamiltonian (3.1) features an extensive amount of conserved quantities. In fact, a pla-
quette operator associated with closed loops on the underlying lattice can be constructed as
follows [8]

𝑊𝑝 =
∏︁
𝑗∈𝑝

𝜎𝛾𝑗 𝜎
𝛾
𝑗+1. (3.2)
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It is easy to show that the plaquette operators defined in Eq. (3.2) are Hermitian and unitary
and have eigenvalues ±1, corresponding to a Z2 flux through the plaquettes. Additionally,
they commute with the Hamiltonian and with each other, describing intergrals of motion of
the system. This allows partitioning the Hilbert space into orthogonal sectors of conserved
flux. The local flux conservation already predicts several of the defining properties of QSLs.
As local spin flips create flux excitations on neighboring plaquettes, they project any state onto
an orthogonal flux sector. Consequently, spin expectation values vanish on all lattice sites.
Additionally, these fluxes have no dynamics and hence cannot propagate through the lattice,
leading to extremely short-ranged spatial spin-spin correlations [43, 44]. The ground state may
be identified following a theorem by Lieb which states that the energy of the Hamiltonian (3.1)
is minimized by the flux-free field configuration [45]. This corresponds to choosing 𝑊𝑝 = 1 for
every plaquette.

3.1.2 Majorana representation

Following the remarks of the previous section, the ground state can be found by diagonalizing
the remaining degrees of freedom in the flux-free Hilbert space sector. By expressing the spin
operators in terms of 4 flavors of Majorana fermions, the Hamiltonian (3.1) can be exactly
solved [8]. Physically, Majorana fermions are neutral fermions that simultaneously describe
particle and anti-particle. Following Ref. [8], they are formally described by so-called Majorana
operators, which are Hermitian, square to unity and are mutually anti-commuting

{𝑐𝛼, 𝑐𝛽} = 2𝛿𝛼𝛽, (3.3)

where 𝑐𝛼 and 𝑐𝛽 denote distinct Majorana operators if 𝛼 ̸= 𝛽. They can be constructed from
linear combinations of fermionic creation and annihilation operators, mimicking imaginary
and real part of the corresponding bosonic operators. Accordingly, a single complex fermion
mode gives rise to two Majorana modes [46]. For the model at hand, 4 Majorana operators
𝑏𝑥𝑗 , 𝑏

𝑦
𝑗 , 𝑏

𝑧
𝑗 , 𝑐𝑗 can now be defined on each lattice site 𝑗 to represent the local spins as

𝜎𝛼𝑗 ↦−→ 𝑖𝑏𝛼𝑗 𝑐𝑗. (3.4)

Inspection of the dimensionality of the internal Hilbert space on each site reveals that the
4 Majorana operators act on a 4-dimensional fermionic Fock space, while the local Hilbert
space of the spin carries dimension 2 [8]. This means that the Hilbert space of the Majorana
representation is enlarged in comparison to the physical Hilbert space and generic states in
the Majorana representation contain unphysical components. A local constraint that restricts
extended states to the physical subspace can be formulated in terms of the operator

𝐷𝑗 = 𝜎𝑥𝑗 𝜎
𝑦
𝑗𝜎

𝑧
𝑗 ↦−→ 𝑏𝑥𝑗 𝑏

𝑦
𝑗 𝑏
𝑧
𝑗𝑐𝑗, (3.5)
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Figure 3.1: (a) Schematic picture of the honeycomb lattice. The bond type is given by the
letters 𝑥, 𝑦 and 𝑧 and denotes the quantization axis for the bond-dependent Ising interactions.
The red arrows denote the unit vectors, which in our convention are defined to be of unit
length, giving a1 =

1
2(1,

√
3) and a2 =

1
2(−1,

√
3). (b) Brillouin zone (BZ) of the honeycomb

lattice. The red arrows denote the reciprocal vectors b1 = 2𝜋
3 (3,

√
3) and b2 = 2𝜋

3 (−3,
√
3)

and the special points K = −K′ are given by K = 2𝜋
3 (−1,

√
3). In the Kitaev honeycomb

model, we consider only half of the first BZ, given by the grey shaded area, only containing
one of the two special points.

where the second expression follows trivially from insertion of the representation given in Eq.
(3.4). The operator 𝐷𝑗 is Hermitian and unitary and thus has eigenvalues ±1. It turns out that
the SU(2) spin algebra is faithfully repoduced only for the subspace with eigenvalue 𝐷𝑗 = +1,
which corresponds to the identity 𝜎𝑥𝑗 𝜎

𝑦
𝑗𝜎

𝑧
𝑗 = 𝑖. The physical states of the system may then be

recovered by a Gutzwiller projection

𝑃𝐺 =
∏︁
𝑗

(︂
1 +𝐷𝑗

2

)︂
, (3.6)

which projects states in the extended space onto the local physical Hilbert space given by the
subspace with 𝐷𝑗 = +1 on each lattice site [42]. Formally, the operator 𝐷𝑗 acts as a local
Z2 gauge transformation. In this language, the Gutzwiller projection 𝑃𝐺 corresponds to a
symmetrization over all gauge configurations [8].

Application of the spin representation in Eq. (3.4) to the Hamiltonian (3.1) maps it onto a
Hamiltonian of interacting Majorana fermions

ℋ =
∑︁
⟨𝑖𝑗⟩𝛾

𝐾𝛾

(︀
𝑖𝑏𝛾𝑖 𝑏

𝛾
𝑗

)︀
𝑖𝑐𝑖𝑐𝑗, (3.7)
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consisting of quartic terms in the Majorana operators. Defining bond operators 𝑢𝑖𝑗 = 𝑖𝑏𝛾𝑖 𝑏
𝛾
𝑗 on

each bond, where 𝛾 corresponds to the bond type, the Hamiltonian (3.7) takes the form

ℋ =
∑︁
⟨𝑖𝑗⟩𝛾

𝐾𝛾𝑢𝑖𝑗𝑖𝑐𝑖𝑐𝑗. (3.8)

Similar to the plaquette operators defined in Eq. (3.2), the 𝑢𝑖𝑗 are Hermitian and unitary and
commute with themselves and the Hamiltonian. Thus, they can equally be replaced by their
eigenvalues ±1. This reduces the Hamiltonian (3.8) to a quadratic form of a single flavor of non-
interacting Majorana fermions, rendering it exactly solvable. Note that the bond operators are
not gauge invariant and hence do not represent physical quantities. More precisely, applying
a local gauge transformation on site 𝑗 flips the sign of all adjacent bond operators. On the
other hand, a gauge-invariant loop operator may be constructed from the bond operators

𝑤𝑝 =
∏︁
𝑗∈𝑝

𝑢𝑗,𝑗+1. (3.9)

Note that 𝑢𝑖𝑗 = −𝑢𝑗𝑖 due to the anti-commutativity of the Majorana operators. To avoid
confusion, we will use a notation where site 𝑖 (𝑗) belongs to sublattice A (B) on the honeycomb
lattice. Application of the gauge transformation on a single site flips the sign of two bond
operators on each adjacent loop and hence leaves their total sign unchanged [42]. Projection
onto the physical subspace then recovers the definition of the plaquette operators formulated
in Eq. (3.2).

One may think of the 𝑢𝑖𝑗 as an emergent Z2 gauge field that determines the hopping amplitude
of the remaining Majorana flavor and the plaquette operators as the corresponding gauge-
invariant Z2 flux [43, 46]. Importantly, the Hamiltonian (3.8) does not contain hopping terms
for the bond operators, which describe gauge field dynamics. As such, the problem may
be viewed as hopping of a single Majorana fermion flavor in the background of a static Z2

gauge field. Following these considerations, the model supports two kinds of fractionalized
excitations: localized Z2 flux excitations, also called visons, and itinerant Majorana fermions,
the spinons [43]. While the localized flux excitations are gapped for any finite exchange
coupling, the nature of the fermionic spectrum depends on these couplings and may either be
gapped or gapless.

3.1.3 Spectrum and phase diagram

The low-energy spectrum of the Hamiltonian (3.1) is now obtained from diagonalizing the Ma-
jorana hopping problem in the ground-state flux sector, corresponding to a particular choice
of the Z2 gauge variables. Due to the gauge redundancy, a given flux configuration may be
realized by multiple configurations of the underlying gauge field and the choice of a suitable
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Figure 3.2: Cutout of the phase diagram of the Kitaev honeycomb model. The triangle
represents the plane 𝐾𝑥+𝐾𝑦 +𝐾𝑧 = 1 in the positive octant of parameter space. The light
blue shaded areas with 𝐴𝑥, 𝐴𝑦 and 𝐴𝑧 denoted gapped spin-liquid phases, whereas the 𝐵
phase near the isotropic point is gapless.

configuration should therefore be considered as fixing a particular gauge [42]. This redun-
dancy has important consequences. Firstly, while we assumed the exchange couplings to be
ferromagnetic, exchanging their signs may be compensated by a sign change of the associated
bond variables. For instance, replacing 𝐾𝑥 with −𝐾𝑥 is equivalent to a sign change of the 𝑢𝑖𝑗
on all 𝑥-bonds. This corresponds to a local gauge transformation , so that the ground-state
energy and the spectrum of the Kitaev honeycomb model do not depend on the sign of the ex-
change couplings [8]. Secondly, although the ground-state sector in the physical Hilbert space
is uniquely defined by the zero-flux configuration due to Lieb’s theorem, the gauge redundancy
of the Majorana description introduces additional gauge copies to any eigenstate spanning the
extended space. These states have the same energy eigenvalues and may be obtained by a
suitable local gauge transformation [44].

Now, there is a multitude of gauge configurations that recover the zero-flux sector. The most
convenient choice for further calculations would be setting the bond variables to be equal
on all bonds, e. g. 𝑢𝑖𝑗 = +1. The inverse convention may be recovered by a global gauge
transformation on all lattice sites and is thus physically equivalent. The Hamiltonian in the
ground-state flux sector then reads

ℋ =
∑︁
⟨𝑖𝑗⟩𝛾

𝐾𝛾𝑖𝑐𝑖𝑐𝑗. (3.10)

This gauge choice preserves the translational symmetry of the underlying honeycomb lattice
and allows us to employ periodic boundary conditions to diagonalize the Hamiltonian (3.10)
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by means of a Fourier transform of the Majorana operators on site 𝑗 [8]

𝑐𝑗,𝑠 =

√︂
2

𝑁

∑︁
k∈𝐵𝑍

𝑐k,𝑠𝑒
𝑖k·r𝑗 , (3.11)

where 𝑠 and 𝑁 refer to the sublattice index and the number of sites, respectively, r𝑗 denotes the
unit cell vector and k denotes a momentum vector in the first Brillouin zone, which is depicted
in Fig. 3.1b. Note that the operators 𝑐k,𝑠 defined in Eq. (3.11) are not Hermitian and thus do
not describe Majorana operators. They satisfy anti-commutation relations {𝑐k,𝑠, 𝑐−k,𝑙} = 𝛿𝑠𝑙

and the conjugate operator reads 𝑐†k,𝑠 = 𝑐−k,𝑠. Thus, Fourier-transformed Majorana operators
at opposite momenta form a single complex fermion. Summation over the Brillouin zone then
counts every mode twice and introduces a two-fold redundancy in the spectrum. Since the
eigenvalues of quadratic forms of Majorana operators always appear in pairs ±𝜀 [8], there are
two ways to deal with this redundancy. In Ref. [8], it is taken into account by only considering
positive eigenvalues of the energy spectrum. For vanishing eigenvalues, two Majorana zero
modes at opposite momenta are obtained. In this work, we will deal with the redundancy by
considering only half of the Brillouin zone instead [17]. Here, the modes with finite energy
are described by a single symmetric particle-hole spectrum and the Majorana zero modes
are combined into a single fermionic mode with vanishing energy. Using this convention, the
Fourier-transformed Hamiltonian reads

ℋ =
∑︁

k∈𝐵𝑍/2

(︁
𝑐†k,𝐴, 𝑐†k,𝐵

)︁(︃ 0 𝑖𝑓(k)

−𝑖𝑓 *(k) 0

)︃(︃
𝑐k,𝐴

𝑐k,𝐵

)︃
, (3.12)

with
𝑓(k) = 2

[︀
𝐾𝑥𝑒

−𝑖k·a1 +𝐾𝑦𝑒
−𝑖k·a2 +𝐾𝑧

]︀
, (3.13)

where A and B again refer to sublattice indices and a1 and a2 are the unit vectors of the
honeycomb lattice as defined in Fig. 3.1a. The single-particle energy levels are then given by
the eigenvalues of the Bloch matrix in Eq. (3.12) and read

𝜀(k) = ±|𝑓(k)|. (3.14)

A cutout of the phase diagram is shown in Fig. 3.2. At the isotropic point, the spectrum
resembles the graphene dispersion with two Dirac cones centered at the highly symmetric
points K and K′ (see Fig. 3.1b). As only half the Brillouin zone is considered here, these
points coincide, leaving a low-energy description of just a single Dirac cone. The absence of an
energy gap for the fermionic excitations stabilizes a gapless spin liquid phase, which is stable
for small perturbations away from the isotropic point if the exchange couplings satisfy triangle
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inequalities [8]

|𝐾𝑥| ≤ |𝐾𝑦|+ |𝐾𝑧|, |𝐾𝑦| ≤ |𝐾𝑧|+ |𝐾𝑥|, |𝐾𝑧| ≤ |𝐾𝑥|+ |𝐾𝑦|. (3.15)

For stronger anisotropies, the dispersion acquires a gap, signaling a topological phase transition
to a gapped spin liquid phase.
Note that similar to the gauge field the fermionic operators are not gauge-invariant, such that
single fermions cannot form physical excitations. In fact, arbitrarily representing the four
Majorana operators at each site by two fermions, one can show that the gauge transformation
(3.5) measures the fermion parity on each site [20]. Thus, only states with even amount of
fermions survive the Gutzwiller projection (3.6). Since two of the Majorana operators on each
lattice site represent gauge excitations, itinerant Majorana fermions can thus only appear
by exciting two gauge fluxes simultaneously, as we have already discussed earlier. This is a
hallmark feature of fractionalization in condensed matter systems. Even though the elementary
excitations feature fractional quantum numbers, physical states still have to obey the initial
quantum numbers of the constituents, thus only allowing suitable composite states. For the
specific case of the Kitaev honeycomb model, this is for instance expressed in the fact that the
spin response features a flux-induced gap, even in the gapless phase [24, 46].

3.2 Kitaev spin-orbital models

3.2.1 Exactly solvable models

As we have already pointed out in the introduction, the exact solution in terms of Majorana
operators may be generalized to higher-dimensional local Hilbert spaces in various ways. A
direct generalization to the Kitaev honeycomb model is given by the SU(2)-symmetric Kitaev
spin-orbital model [17, 24]. It is defined on the honeycomb lattice by the Hamiltonian

ℋ = −𝐾
∑︁
⟨𝑖𝑗⟩𝛾

∑︁
𝛼

𝜎𝛼𝑖 𝜎
𝛼
𝑗 ⊗ 𝜏 𝛾𝑖 𝜏

𝛾
𝑗 (𝛼 = 𝑥, 𝑦, 𝑧). (3.16)

The notation carries over from Eq. (3.1), so that ⟨𝑖𝑗⟩ refers to nearest-neighbor bonds and 𝛾

denotes the bond type. The local Hilbert space of the model results from a tensor product of
a spin 𝑆 = 1

2
and a two-fold degenerate orbital degree of freedom. The Pauli matrices 𝜎𝛼𝑖 and

𝜏𝛼𝑖 act on spin and orbital degrees of freedom, respectively. While the coupling is of Kitaev
type in the orbital sector, the operator acting on the spin sector corresponds to a Heisenberg
term, so that the model possesses full SU(2) spin-rotation symmetry. The model corresponds
to the 𝜈𝑀 = 3 case of a more general class of exactly solvable models that can be constructed
from the generators Γ of higher-dimensional representations of the Clifford algebra [20], which
reduces to the Hamiltonian (3.16) for a suitable choice of the Γ matrices in terms of Pauli
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matrices [23]
Γ𝛼 = −𝜎𝑦 ⊗ 𝜏𝛼, Γ4 = 𝜎𝑥 ⊗ 1, Γ5 = −𝜎𝑧 ⊗ 1. (3.17)

The model shares many of the same features as the Kitaev honeycomb model and the exact
solution can be derived in similar fashion. Accordingly, the model possesses an extensive
amount of mutually commuting plaquette operators

𝑊𝑝 = 1⊗ 𝜏𝑥𝑖 𝜏
𝑦
𝑗 𝜏

𝑧
𝑘 𝜏

𝑥
𝑙 𝜏

𝑦
𝑚𝜏

𝑧
𝑛, (3.18)

which only affect the orbital degrees of freedom and act trivially in the spin sector. As before,
they commute with the Hamiltonian and partition the Hilbert space into subspaces of conserved
flux [23, 24]. Following Refs. [20] and [23], the Hamiltonian (3.16) may be diagonalized by
a Majorana representation of the spin-orbital operators. In the 4-dimensional representation,
the five Γ matrices are mapped onto 6 Majorana operators

𝜎𝑦 ⊗ 𝜏𝛼 = −𝑖𝑏𝛼𝑐𝑦, 𝜎𝑥 ⊗ 1 = 𝑖𝑐𝑧𝑐𝑦, 𝜎𝑧 ⊗ 1 = −𝑖𝑐𝑥𝑐𝑦, (3.19)

satisfying canonical anti-commutation relations given in Eq. (3.3). In analogy to the Kitaev
honeycomb model, the Majorana operators can be combined into 3 complex fermions spanning
an 8-dimensional Fock space, which is twice as large as the spin-orbital Hilbert space. The
physical subspace may again be recovered by fixing the on-site fermion parity. This may be
achieved by imposing a local constraint

𝐷𝑗 = 𝜎𝑥𝑗 𝜎
𝑦
𝑗𝜎

𝑧
𝑗 ⊗ 𝜏𝑥𝑗 𝜏

𝑦
𝑗 𝜏

𝑧
𝑗

!
= −1, (3.20)

which reproduces the SU(2) algebra faithfully in spin and orbital sectors. In the Majorana
description, the Hamiltonian (3.16) reduces to

ℋ = 𝐾
∑︁
⟨𝑖𝑗⟩

𝑢𝑖𝑗
∑︁
𝛼

𝑖𝑐𝛼𝑖 𝑐
𝛼
𝑗 (𝛼 = 𝑥, 𝑦, 𝑧), (3.21)

where the bond variables 𝑢𝑖𝑗 = 𝑖𝑏𝛾𝑖 𝑏
𝛾
𝑗 again define a static Z2 gauge field connected to the

conserved flux given by the plaquette operators (3.18). Lieb’s theorem is applicable here as
well, so that the ground state may be found in the flux-free sector, with the eigenvalues of the
plaquette operators being equal to +1. By the same arguments as in Sec. 3.1.3, a zero-flux
configuration may be achieved by choosing 𝑢𝑖𝑗 = +1 on all bonds. In the background of this
gauge configuration, the Hamiltonian (3.21) reduces to

ℋ = 𝐾
∑︁
⟨𝑖𝑗⟩

∑︁
𝛼

𝑖𝑐𝛼𝑖 𝑐
𝛼
𝑗 (𝛼 = 𝑥, 𝑦, 𝑧), (3.22)

describing 3 decoupled flavors of non-interacting itinerant Majorana fermions. Interestingly,
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the vison gap, which energetically separates the zero-flux sector from subspaces with non-zero
flux, is thrice as large as in the spin 𝑆 = 1

2
model due to the additional Majorana degrees

of freedom [24]. To obtain the energy spectrum of the Hamiltonian, we extend the Fourier
transform defined in Eq. (3.10) to all 3 flavors of Majorana operators

𝑐𝛼𝑗,𝑠 =

√︂
2

𝑁

∑︁
k∈𝐵𝑍

𝑐𝛼k,𝑠𝑒
𝑖k·r𝑗 =

√︂
2

𝑁

∑︁
k∈𝐵𝑍/2

[︀
𝑐𝛼k,𝑠𝑒

𝑖k·r𝑗 + (𝑐𝛼k,𝑠)
†𝑒−𝑖k·r𝑗

]︀
, (3.23)

where 𝛼 = 𝑥, 𝑦, 𝑧 denotes the additional flavor degree of freedom and the second equality is
due to the 𝑐𝛼𝑗,𝑠 being Hermitian as before. Insertion into the Hamiltonian (3.22) gives

ℋ =
∑︁

k∈𝐵𝑍/2

(︁
𝑐†k,𝐴, 𝑐†k,𝐵

)︁[︃(︃ 0 𝑖𝐾𝑓(k)

−𝑖𝐾𝑓 *(k) 0

)︃
⊗ 13

]︃(︃
𝑐k,𝐴

𝑐k,𝐵

)︃
, (3.24)

where the 𝑐k,𝑠 =
(︀
𝑐𝑥k,𝑠, 𝑐

𝑦
k,𝑠, 𝑐

𝑧
k,𝑠

)︀⊺ denote 3-component spinors on sublattice 𝑠 = 𝐴,𝐵, describing
the 3 flavors of Majorana fermions and the summation is over half of the Brillouin zone, again.
With the function 𝑓(k) = 1 + 𝑒−𝑖k·a1 + 𝑒−𝑖k·a2 , where, just as in Eq. (3.12), a1 and a2 refer
to the primitive vectors of the honeycomb lattice, the spectrum of the Hamiltonian (3.24) is
given by

𝜀(k) = ±𝐾|𝑓(k)|. (3.25)

Thus, the Hamiltonian (3.24) describes 3 decoupled copies of the isotropic spin 𝑆 = 1
2

Kitaev
honeycomb model, featuring 3 degenerate complex Dirac cones located at the symmetric K

point, one for each flavor of Majorana fermions, realizing a so-called spin-orbital liquid (SOL).
The corresponding normalized spectrum is shown in Fig. 3.3a.
The model construction described above is not restricted to Heisenberg interactions in the
spin sector. More precisely, as long as the interaction in the orbital sector is of Kitaev type,
an exact solution may be derived in the same spirit as the above discussion. This conclu-
sion becomes clear when revisiting the specific form of the plaquette operator given in Eq.
(3.18). The plaquette operators constitute conserved quantities due to their commutativity
with the Hamiltonian. As the plaquette operator acts as unity in the spin sector and thus
trivially commutes with arbitrary spin interaction terms, flux conservation is guaranteed in
models featuring these interactions. The exact solvability then follows from the fact that in-
teractions containing Kitaev exchange in the orbital sector will always allow for separation of
the Majorana operators into bond variables 𝑢𝑖𝑗 and quadratic forms of the remaining 𝑐-flavor
Majoranas. Although this insight in principle allows the construction of more exotic spin
interactions, we will focus on more straightforward adaptions of the Hamiltonian (3.16) for
now, namely by introducing anisotropies in the Heisenberg spin interaction. This will leave
the Majorana fermions decoupled, whereas off-diagonal spin interaction of the type 𝜎𝛼𝑖 𝜎

𝛽
𝑗 with

𝛼 ̸= 𝛽 would introduce hybridization between the flavors. The corresponding spin-orbital
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Figure 3.3: (a) Normalized spectrum of the SU(2)-symmetric spin-orbital model, featuring
three fully degenerate bands. (b) The introduction of spin-space anisotropies in Eq. () lifts
the degeneracy of the three bands, while retaining their gapless nature. Here, we have used
anisotropy factors Δ𝑥 = 1

3 and Δ𝑦 =
2
3 . Both spectra have particle-hole symmetry, which is

typical for quadratic Majorana Hamiltonians [8].

Hamiltonian reads

ℋ = −𝐾
∑︁
⟨𝑖𝑗⟩𝛾

(︀
∆𝑥𝜎

𝑥
𝑖 𝜎

𝑥
𝑗 +∆𝑦𝜎

𝑦
𝑖 𝜎

𝑦
𝑗 + 𝜎𝑧𝑖 𝜎

𝑧
𝑗

)︀
⊗ 𝜏 𝛾𝑖 𝜏

𝛾
𝑗 , (3.26)

where ∆𝑥 and ∆𝑦 denote the degree of anisotropy in the respective spin direction. The in-
troduction of coordinate-dependent anisotropies explicitly breaks the SU(2) symmetry of the
isotropic Hamiltonian (3.16), corresponding to ∆𝑥 = ∆𝑦 = 1, to a global Z2 × Z2 × Z2 sym-
metry. Diagonalization of the momentum space Hamiltonian reveals that the introduction of
anisotropies generically lifts the degeneracy of the Dirac cones associated with the 3 Majorana
flavors. The dispersion relations for the three bands read

𝜀𝑥(k) = ±∆𝑥𝐾|𝑓(k)|, 𝜀𝑦(k) = ±∆𝑦𝐾|𝑓(k)|, 𝜀𝑧(k) = ±𝐾|𝑓(k)|, (3.27)

resulting in flavor-dependent Fermi velocities that scale with the respective degree of anisotropy.
We have shown the lift of degeneracy for an exemplary configuration in Fig. 3.3b.

Two limits shall be discussed here in more detail. First, the limit ∆𝑥 = 0,∆𝑦 = 1 (or vice
versa, corresponding to a rotation by 𝜋

2
in the x-y plane followed by a Z2 transformation in

the y-coordinate) describes a spin-orbital model with XY-type interaction in the spin sector,
given by

ℋ = −𝐾
∑︁
⟨𝑖𝑗⟩𝛾

(︀
𝜎𝑦𝑖 𝜎

𝑦
𝑗 + 𝜎𝑧𝑖 𝜎

𝑧
𝑗

)︀
⊗ 𝜏 𝛾𝑖 𝜏

𝛾
𝑗 , (3.28)
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which displays a global U(1) symmetry under rotations in the y-z plane. The vanishing Fermi
velocity of the 𝑐𝑥 band describes localized Majorana zero modes on every lattice site. Similarly,
in the limit ∆𝑥 = ∆𝑦 = 0, two of the 3 Fermi velocities vanish, describing two flat bands and
a single remaining Dirac cone. This is realized by an Ising-type interaction in the spin-orbital
language. The corresponding model reads

ℋ = −𝐾
∑︁
⟨𝑖𝑗⟩𝛾

𝜎𝑧𝑖 𝜎
𝑧
𝑗 ⊗ 𝜏 𝛾𝑖 𝜏

𝛾
𝑗 , (3.29)

and possesses a global Z2 spin-flip symmetry. An overview of the exactly solvable spin-orbital
models presented in this section and their corresponding zero-flux Majorana Hamiltonians may
be found in Table (3.1).

3.2.2 Perturbations

A key difference of spin-orbital realizations of the model in Ref. [20] compared to the spin
𝑆 = 1

2
Kitaev honeycomb model is that it allows for perturbations which, although spoiling

the exact solvability of the model, do not introduce any gauge field dynamics into the system.
In fact, any perturbation that commutes with the plaquette operators in Eq. (3.18) will keep
the gauge field static and the local flux conserved. This is generically true for interactions
that act trivially in the orbital degrees of freedom, i. e. pure spin interactions. To express
interactions of this type in the Majorana representation, it is necessary to reformulate the spin
operators, given by the SU(2) generators in spin space, in terms of Majorana operators. From
Eq. (3.19) and the SU(2) algebra, we obtain

𝜎𝛼 ⊗ 12 ↦−→
1

2
𝑐⊺𝐿𝛼𝑐, (3.30)

where (𝐿𝛼)𝛽𝛾 = −𝑖𝜖𝛼𝛽𝛾 are SO(3) generators acting on the three-dimensional Majorana flavor
space represented by 𝑐 = (𝑐𝑥, 𝑐𝑦, 𝑐𝑧)⊺. Thus, spin rotations in the spin-orbital formulation map
to SO(3) flavor rotations in the Majorana language and an SU(2) spin rotation symmetry
induces a symmetry under global SO(3) flavor rotations [23].

Here, we will focus on perturbations corresponding to spin-only antiferromagnetic nearest-
neighbor interactions. Due to the bipartite nature of the honeycomb lattice, such interactions
will naturally manifest antiferromagnetic long-range order in the strong-coupling limit, mak-
ing them prime candidates to facilitate symmetry-breaking phase transitions in the models
presented in the previous chapter. For this purpose, we consider the Hamiltonian (3.16) aug-
mented by the aforementioned interactions. One example of such a perturbation is given by a
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Kitaev spin-orbital Hamiltonian Majorana Hamiltonian (flux-free) spin symmetry

(a) −∑︀⟨𝑖𝑗⟩𝛾

∑︀
𝛼 𝜎

𝛼
𝑖 𝜎

𝛼
𝑗 ⊗ 𝜏 𝛾𝑖 𝜏

𝛾
𝑗

∑︀
⟨𝑖𝑗⟩
∑︀

𝛼 𝑖𝑐
𝛼
𝑖 𝑐
𝛼
𝑗 SU(2)

(b)
−∑︀⟨𝑖𝑗⟩𝛾

(︁
∆𝑥𝜎

𝑥
𝑖 𝜎

𝑥
𝑗 +∆𝑦𝜎

𝑦
𝑖 𝜎

𝑦
𝑗

+𝜎𝑧𝑖 𝜎
𝑧
𝑗

)︁
⊗ 𝜏 𝛾𝑖 𝜏

𝛾
𝑗

∑︀
⟨𝑖𝑗⟩

(︁
𝑖∆𝑥𝑐

𝑥
𝑖 𝑐
𝑥
𝑗 + 𝑖∆𝑦𝑐

𝑦
𝑖 𝑐
𝑦
𝑗

+𝑖𝑐𝑧𝑖 𝑐
𝑧
𝑗

)︁ Z2 × Z2 × Z2

(c) −∑︀⟨𝑖𝑗⟩𝛾

(︀
𝜎𝑥𝑖 𝜎

𝑥
𝑗 + 𝜎𝑦𝑖 𝜎

𝑦
𝑗

)︀
⊗ 𝜏 𝛾𝑖 𝜏

𝛾
𝑗

∑︀
⟨𝑖𝑗⟩
(︀
𝑖𝑐𝑥𝑖 𝑐

𝑥
𝑗 + 𝑖𝑐𝑦𝑖 𝑐

𝑦
𝑗

)︀
U(1)

(d) −∑︀⟨𝑖𝑗⟩𝛾
𝜎𝑧𝑖 𝜎

𝑧
𝑗 ⊗ 𝜏 𝛾𝑖 𝜏

𝛾
𝑗

∑︀
⟨𝑖𝑗⟩ 𝑖𝑐

𝑧
𝑖 𝑐
𝑧
𝑗 Z2

Table 3.1: Exactly solvable Kitaev spin-orbital Hamiltonians and their Majorana counter-
parts in the flux-free regime, as well as their respective spin and flavor symmetries. The
spin exchange coupling has been normalized (𝐾 = 1).

spin-only SU(2)-symmetric Heisenberg interaction

ℋSU(2)
𝐽 = 𝐽

∑︁
⟨𝑖𝑗⟩

∑︁
𝛼

𝜎𝛼𝑖 𝜎
𝛼
𝑗 ⊗ 1𝑖1𝑗 (𝛼 = 𝑥, 𝑦, 𝑧), (3.31)

corresponding to (a) in Table 3.2, where 𝐽 > 0 is the antiferromagnetic exchange coupling.
With Eq. (3.16), the full Hamiltonian ℋSU(2)

𝐾 = ℋ𝐾 +ℋSU(2)
𝐽 reads

ℋSU(2)
𝐾 = −𝐾

∑︁
⟨𝑖𝑗⟩𝛾

∑︁
𝛼

𝜎𝛼𝑖 𝜎
𝛼
𝑗 ⊗ 𝜏 𝛾𝑖 𝜏

𝛾
𝑗 + 𝐽

∑︁
⟨𝑖𝑗⟩

∑︁
𝛼

𝜎𝛼𝑖 𝜎
𝛼
𝑗 ⊗ 1𝑖1𝑗 (𝛼 = 𝑥, 𝑦, 𝑧). (3.32)

This model has been studied extensively in Refs. [23] and [47]. Both the exactly solvable model
ℋ𝐾 and the perturbation ℋSU(2)

𝐽 exhibit SU(2) spin rotation symmetry, which is inherited by
the full Hamiltonian (3.32). The model is shown to support a continuous phase transition
to an antiferromagnetic phase with spontaneously broken SU(2) symmetry. Although Lieb’s
theorem does not explicitly hold when such interactions are switched on, numerical results
in Ref. [23] suggest that the vison gap remains finite for any value of the antiferromagnetic
coupling 𝐽 . Thus, the ground state may still be found in the zero-flux sector. Insertion of
Eq. (3.30) into the interaction (3.31) then gives the corresponding SO(3)-invariant Majorana
Hamiltonian

ℋSU(2)
𝐾 ↦→ 𝐾

∑︁
⟨𝑖𝑗⟩

𝑖𝑐⊺𝑖 𝑐𝑗 + 𝐽
∑︁
⟨𝑖𝑗⟩

∑︁
𝛼

(︂
1

2
𝑐⊺𝑖𝐿

𝛼𝑐𝑖

)︂(︂
1

2
𝑐⊺𝑗𝐿

𝛼𝑐𝑗

)︂
(𝛼 = 𝑥, 𝑦, 𝑧). (3.33)

Unlike the Kitaev term, the antiferromagnetic interaction is quartic in the Majorana operators,
describing a system of interacting fermionic degrees of freedom. Due to the absence of gauge
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Spin-orbital perturbation Majorana expression spin symmetry

(a) 𝐽
∑︀

⟨𝑖𝑗⟩
∑︀

𝛼 𝜎
𝛼
𝑖 𝜎

𝛼
𝑗 ⊗ 1𝑖1𝑗 𝐽

∑︀
⟨𝑖𝑗⟩
∑︀

𝛼=𝑥,𝑦,𝑧

(︀
1
2
𝑐⊺𝑖𝐿

𝛼𝑐𝑖
)︀ (︀

1
2
𝑐⊺𝑗𝐿

𝛼𝑐𝑗
)︀

SU(2)

(b) 𝐽
∑︀

⟨𝑖𝑗⟩
(︀
𝜎𝑥𝑖 𝜎

𝑥
𝑗 + 𝜎𝑦𝑖 𝜎

𝑦
𝑗

)︀
⊗ 1𝑖1𝑗 𝐽

∑︀
⟨𝑖𝑗⟩
∑︀

𝛼=𝑥,𝑦

(︀
1
2
𝑐⊺𝑖𝐿

𝛼𝑐𝑖
)︀ (︀

1
2
𝑐⊺𝑗𝐿

𝛼𝑐𝑗
)︀

U(1)

(c) 𝐽
∑︀

⟨𝑖𝑗⟩ 𝜎
𝑧
𝑖 𝜎

𝑧
𝑗 ⊗ 1𝑖1𝑗 𝐽

∑︀
⟨𝑖𝑗⟩
(︀
1
2
𝑐⊺𝑖𝐿

𝑧𝑐𝑖
)︀ (︀

1
2
𝑐⊺𝑗𝐿

𝑧𝑐𝑗
)︀

Z2

(d)
𝐽𝑥𝑦
∑︀

⟨𝑖𝑗⟩
(︀
𝜎𝑥𝑖 𝜎

𝑥
𝑗 + 𝜎𝑦𝑖 𝜎

𝑦
𝑗

)︀
⊗ 1𝑖1𝑗

+𝐽𝑧
∑︀

⟨𝑖𝑗⟩ 𝜎
𝑧
𝑖 𝜎

𝑧
𝑗 ⊗ 1𝑖1𝑗

𝐽𝑥𝑦
∑︀

⟨𝑖𝑗⟩
∑︀

𝛼=𝑥,𝑦

(︀
1
2
𝑐⊺𝑖𝐿

𝛼𝑐𝑖
)︀ (︀

1
2
𝑐⊺𝑗𝐿

𝛼𝑐𝑗
)︀

+𝐽𝑧
∑︀

⟨𝑖𝑗⟩
(︀
1
2
𝑐⊺𝑖𝐿

𝑧𝑐𝑖
)︀ (︀

1
2
𝑐⊺𝑗𝐿

𝑧𝑐𝑗
)︀ U(1)×Z2

Table 3.2: Overview of the spin-orbital perturbations presented in this section, their corre-
sponding Majorana representations and their symmetry in spin-orbital and Majorana flavor
space. All perturbations leave the gauge field static and thus present candidate perturba-
tions for inducing continuous phase transitions in the exactly solvable models from Table
3.1.

dynamics, the universality class of the discovered transition is fully governed by the quartic
interaction of the Majorana fermions. In our pursuit for related universality classes, it seems
reasonable to consider the effect of similar perturbations on the ground state of the Hamiltonian
(3.16). Under the assumption that the ground state remains flux-free when these interactions
are turned on, two models will be the subject of further investigation. First, ℋ𝐾 may also be
perturbed by an XY interaction in the spin sector, see (b) in Table 3.2, which gives the full
Hamiltonian of the Kitaev-XY spin-orbital model

ℋU(1)
𝐾 = −𝐾

∑︁
⟨𝑖𝑗⟩𝛾

∑︁
𝛼

𝜎𝛼𝑖 𝜎
𝛼
𝑗 ⊗ 𝜏 𝛾𝑖 𝜏

𝛾
𝑗 + 𝐽

∑︁
⟨𝑖𝑗⟩

(︀
𝜎𝑥𝑖 𝜎

𝑥
𝑗 + 𝜎𝑦𝑖 𝜎

𝑦
𝑗

)︀
⊗ 1𝑖1𝑗 (𝛼 = 𝑥, 𝑦, 𝑧), (3.34)

whose critical behavior we investigate in Ch. 4. In contrast to Eq. (3.31), the XY perturbation
does not exhibit full SU(2) symmetry in the spin degrees of freedom, instead displaying a U(1)
symmetry under rotations around the 𝑧-axis. Thus, the SU(2) symmetry of the unperturbed
Hamiltonian is explicitly broken down to U(1). The corresponding Majorana Hamiltonian
may be read off from Table 3.2.

It may be reasoned that real materials will never exactly realize the interactions covered in
the above discussion, e. g. due to the introduction of anisotropies by crystal field effects
or spin-orbit coupling [9, 14]. Thus, it is instructive to consider a model wich allows for
said anisotropies, away from the highly symmetrical limits given by the Heisenberg and XY
interactions. A suitable interaction reads

ℋ𝐽𝑥𝑦 ,𝐽𝑧 = 𝐽𝑥𝑦
∑︁
⟨𝑖𝑗⟩

(︀
𝜎𝑥𝑖 𝜎

𝑥
𝑗 + 𝜎𝑦𝑖 𝜎

𝑦
𝑗

)︀
⊗ 1𝑖1𝑗 + 𝐽𝑧

∑︁
⟨𝑖𝑗⟩

𝜎𝑧𝑖 𝜎
𝑧
𝑗 ⊗ 1𝑖1𝑗. (3.35)
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This interaction contains two antiferromagnetic exchange couplings, 𝐽𝑥𝑦 and 𝐽𝑧, which can in
principle be tuned independently, describing easy-axis anisotropy for 𝐽𝑧 > 𝐽𝑥𝑦 and easy-plane
anisotropy for 𝐽𝑥𝑦 > 𝐽𝑧. It is symmetric under U(1) spin rotations in the 𝑥− 𝑦 plane and Z2

transformations in the 𝑧-direction, adding up to a U(1)×Z2 spin symmetry. The special cases
𝐽𝑥𝑦 = 𝐽𝑧 and 𝐽𝑧 = 0 recover the Heisenberg and XY interactions, respectively. Additionally,
𝐽𝑥𝑦 = 0 reduces to a Z2-symmetric Ising interaction, see (c) in Table 3.2. Adding Eq. (3.35)
to the unperturbed Hamiltonian (3.16) gives the anisotropic Kitaev spin-orbital model

ℋani
𝐾 = −𝐾

∑︁
⟨𝑖𝑗⟩𝛾

∑︁
𝛼=𝑥,𝑦,𝑧

𝜎𝛼𝑖 𝜎
𝛼
𝑗 ⊗ 𝜏 𝛾𝑖 𝜏

𝛾
𝑗 + 𝐽𝑥𝑦

∑︁
⟨𝑖𝑗⟩

∑︁
𝛼=𝑥,𝑦

𝜎𝛼𝑖 𝜎
𝛼
𝑗 ⊗ 1𝑖1𝑗 + 𝐽𝑧

∑︁
⟨𝑖𝑗⟩

𝜎𝑧𝑖 𝜎
𝑧
𝑗 ⊗ 1𝑖1𝑗, (3.36)

which will be studied in more detail in Ch. 5. As before, the SU(2) symmetry of the un-
perturbed Hamiltonian is explicitly broken by the lower-symmetric perturbation, so that the
full Hamiltonian retains the symmetry of the perturbation, namely U(1)×Z2. The Majorana
representation of the Hamiltonian (3.36) can again be read off from Table 3.2.



4 Kitaev-XY spin-orbital model

The first model we are going to discuss in more detail is the Kitaev-XY spin-orbital model
introduced in Sec. 3.2.2. The model features a U(1) spin-rotation symmetry in the 𝑥−𝑦 plane
and will be shown to support a symmetry-breaking phase transition governed by the gapless
fermion excitations. Under the assumption that the ground-state is in the flux-free sector, the
remaining low-energy degrees of freedom describe fractionalized Majorana fermions with an
interaction featuring an SO(2) symmetry in flavor space.
This chapter introduces the tools necessary to study quantum phase transitions of strongly
correlated systems step-by-step. In Sec. 4.1, we employ a mean-field expansion of the Majorana
Hamiltonian to obtain an approximate phase diagram of the Kitaev spin-orbital model. In
Sec. 4.2, we derive an effective field theory for the order parameter and repeat the mean-field
analysis in the functional integral formulation. In Sec. 4.3 the 𝜀-expansion and Feynman
diagrams are introduced as a tool to calculate leading corrections to the renormalized coupling
constants introduced in Eq. (2.21) and the corresponding fixed points of the RG flow are
analyzed.

4.1 Majorana mean-field theory

4.1.1 Mean-field Hamiltonian

In the Majorana representation, the Hamiltonian of the Kitaev-XY spin-orbital model in the
flux-free sector 𝑢𝑖𝑗 = +1 reads

ℋU(1)
𝐾 = 𝐾

∑︁
⟨𝑖𝑗⟩

𝑖𝑐⊺𝑖 𝑐𝑗 + 𝐽
∑︁
⟨𝑖𝑗⟩

∑︁
𝛼=𝑥,𝑦

(︂
1

2
𝑐⊺𝑖𝐿

𝛼𝑐𝑖

)︂(︂
1

2
𝑐⊺𝑗𝐿

𝛼𝑐𝑗

)︂
. (4.1)

By Eq. (3.30), the U(1) symmetry of the spin-orbital model maps onto an SO(2) symmetry
in Majorana flavor space. To see this, consider the explicit form of the SO(2) transformation.
It is generated by 𝐿𝑧, acting on flavor space, and reads

𝑐𝑖 → exp(−𝑖𝛽𝐿𝑧)𝑐𝑖, (4.2)

where 𝛽 ∈ [0, 2𝜋] denotes the angular parameter of the transformation. Whereas the invariance
of the Kitaev term in Eq. (4.1) under the transformation (4.2) is trivial, it is not immediately
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clear for the interaction term. To this end, we consider the vector

𝜑𝑖 =
1

2

(︃
𝑐⊺𝑖𝐿

𝑥𝑐𝑖

𝑐⊺𝑖𝐿
𝑦𝑐𝑖

)︃
, (4.3)

corresponding to the spin vector operator in the spin-orbital formulation, thus giving an ex-
pression for the microscopic magnetization. An infinitesimal transformation of the vector
components

1

2
𝑐⊺𝑖𝐿

𝛼𝑐𝑖 → 𝑐⊺𝑖𝑂
⊺𝐿𝛼𝑂𝑐𝑖, 𝑂 = 1− 𝑖𝛽𝐿𝑧 +𝒪(𝛽2), (4.4)

reveals that 𝜑𝑖 as defined in Eq. (4.3) transforms as a vector under SO(2), and the interaction
is written in a manifestly SO(2)-invariant form.. Thus, the Hamiltonian (4.1) is invariant
under SO(2) and the vector 𝜑𝑖 may act as an order parameter for the transition we are looking
for, since it breaks the SO(2) symmetry when acquiring an expectation value.

At weak antiferromagnetic couplings 𝐽 , we expect a perturbative analysis to provide an ad-
equate picture. However, to probe the physics of the Hamiltonian (4.1) beyond the region
of applicability of perturbation theory, other methods are necessary. A simple but powerful
tool to study interacting theories is the mean-field expansion. The aim is to replace the mi-
croscopic interactions by a static mean field, whose ground-state value may then be obtained
by variational means. The structure of the mean-field Hamiltonian can be deduced from the
expectation value of the Hamiltonian (4.1), which can be resolved by Wick’s theorem [48],
giving

⟨ℋU(1)
𝐾 ⟩ = 𝐾

∑︁
⟨𝑖𝑗⟩

⟨𝑖𝑐⊺𝑖 𝑐𝑗⟩+ 𝐽
∑︁
⟨𝑖𝑗⟩

∑︁
𝛼=𝑥,𝑦

[︂⟨︀1
2
𝑐⊺𝑖𝐿

𝛼𝑐𝑖
⟩︀⟨︀1

2
𝑐⊺𝑗𝐿

𝛼𝑐𝑗
⟩︀
− ⟨𝑐𝛼𝑖 𝑐𝛼𝑗 ⟩⟨𝑐𝑧𝑖 𝑐𝑧𝑗⟩+ ⟨𝑐𝑧𝑖 𝑐𝛼𝑗 ⟩⟨𝑐𝛼𝑖 𝑐𝑧𝑗⟩

]︂
,

(4.5)

where the negative sign in the second line is due to the anti-commutativity of the Majorana
operators. Thus, we have to perform the mean-field decoupling in three channels. Accordingly,
our mean-field ansatz reads

ℋmf = 𝐾
∑︁
⟨𝑖𝑗⟩

𝑖𝑐⊺𝑖 𝑐𝑗 + 𝐽
∑︁
⟨𝑖𝑗⟩

[︂ ∑︁
𝛼=𝑥,𝑦

(︂
1

2
𝑐⊺𝑖𝜑

𝛼
𝑗 𝐿

𝛼𝑐𝑖 +
1

2
𝑐⊺𝑗𝜑

𝛼
𝑖 𝐿

𝛼𝑐𝑗

)︂
− 𝑖𝑐⊺𝑖 (𝜒𝑖𝑗 − 𝜅𝑖𝑗)𝑐𝑗

−
∑︁
𝛼=𝑥,𝑦

(︀
𝜑𝛼𝑖 𝜑

𝛼
𝑗 − 𝜒𝑧𝑖𝑗𝜒

𝛼
𝑖𝑗 + 𝜅𝑧𝛼𝑖𝑗 𝜅

𝛼𝑧
𝑖𝑗

)︀
⏟  ⏞  

𝐶(𝜑,𝜒,𝜅

)

]︂
, (4.6)

where we have introduced mean-field parameters

𝜑𝛼𝑖 =
⟨︀1
2
𝑐⊺𝑖𝐿

𝛼𝑐𝑖
⟩︀
, 𝜒𝛼𝑖𝑗 = ⟨𝑖𝑐𝛼𝑖 𝑐𝛼𝑗 ⟩, 𝜅𝛼𝛽𝑖𝑗 = ⟨𝑖𝑐𝛼𝑖 𝑐𝛽𝑗 ⟩, (4.7)
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as well as matrices

𝜒𝑖𝑗 =

⎛⎜⎝𝜒
𝑧
𝑖𝑗 0 0

0 𝜒𝑧𝑖𝑗 0

0 0 𝜒𝑥𝑖𝑗 + 𝜒𝑦𝑖𝑗

⎞⎟⎠ , 𝜅𝑖𝑗 =

⎛⎜⎝ 0 0 𝜅𝑧𝑥𝑖𝑗

0 0 𝜅𝑧𝑦𝑖𝑗
𝜅𝑥𝑧𝑖𝑗 𝜅𝑦𝑧𝑖𝑗 0

⎞⎟⎠ , (4.8)

where 𝑖(𝑗) denotes lattice sites on sublattice 𝐴(𝐵). In the mean-field approximation, fluc-
tuations of the mean-field parameters are assumed to vanish. In accordance with the earlier
discussion, the on-site parameters 𝜑𝛼 denote the magnetization and will act as an order pa-
rameter for the transition. The parameters 𝜒𝑖𝑗 and 𝜅𝑖𝑗 refer to the diagonal and off-diagonal
components of the tensor-valued bond variable 𝑐𝛼𝑖 𝑐

𝛽
𝑗 , describing hopping of Majorana fermions

between lattice sites. The last term only depends on the mean-field parameters and thus takes
a constant value. The symmetries of the spin-orbital system should also hold for ℋmf, greatly
reducing the amount of allowed mean-field parameters. First, we expect the mean-field solu-
tion to exhibit the same translational invariance as the honeycomb lattice, such that 𝜒𝑖𝑗 = 𝜒,
𝜅𝑖𝑗 = 𝜅 and 𝜑𝛼𝑖,𝑗 = 𝜑𝛼𝐴,𝐵. Under this assumption, we can Fourier transform the mean-field
Hamiltonian using Eq. (3.23), giving

ℋmf =
∑︁

k∈𝐵𝑍/2

(︁
𝑐†k,𝐴, 𝑐†k,𝐵

)︁[︃(︃ 0 𝑖[𝐾 − 𝐽(𝜒− 𝜅)]𝑓(k)

−𝑖[𝐾 − 𝐽(𝜒− 𝜅)]𝑓 *(k) 0

)︃
⊗ 13

+
∑︁
𝛼=𝑥,𝑦

(︃
6𝐽𝜑𝛼𝐵 0

0 6𝐽𝜑𝛼𝐴

)︃
⊗ 𝐿𝛼

]︃(︃
𝑐k,𝐴

𝑐k,𝐵

)︃
+ 𝐶(𝜑, 𝜒, 𝜅), (4.9)

where 𝑓(k) is defined as usual and 𝐶(𝜑, 𝜒, 𝜅) denotes the constant contribution to the mean-
field Hamiltonian. Now, we enforce the SO(2) symmetry in flavor space. With Eq. (4.4), the
second term takes the form of a scalar product of two SO(2) vectors and is naturally SO(2)
invariant. The first term takes the form of a scalar, such that SO(2) invariance follows if it
commutes with the generator 𝐿𝑧, thus requiring

[𝐿𝑧, 𝜒]
!
= 0, [𝐿𝑧, 𝜅]

!
= 0. (4.10)

As a consequence, the diagonal bond variables 𝜒 remain unconstrained due to [𝐿𝑧, 𝜒] = 0,
whereas the off-diagonal parameters have to vanish, 𝜅 = 0, fto preserve SO(2) invariance.
Thus, the mean-field Hamiltonian reads

ℋmf =
∑︁

k∈𝐵𝑍/2

(︁
𝑐†k,𝐴, 𝑐†k,𝐵

)︁[︃(︃ 0 𝑖(𝐾 − 𝐽𝜒)𝑓(k)

−𝑖(𝐾 − 𝐽𝜒)𝑓 *(k) 0

)︃
⊗ 13

+
∑︁
𝛼=𝑥,𝑦

(︃
6𝐽𝜑𝛼𝐵 0

0 6𝐽𝜑𝛼𝐴

)︃
⊗ 𝐿𝛼

]︃(︃
𝑐k,𝐴

𝑐k,𝐵

)︃
+ 𝐶(𝜑, 𝜒), (4.11)
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with the constant part evaluating to

𝐶(𝜑, 𝜒) = −3𝑁𝐽
∑︁
𝛼=𝑥,𝑦

(𝜑𝛼𝐴𝜑
𝛼
𝐵 − 𝜒𝑧𝜒𝛼), (4.12)

where 𝑁 denotes the number of unit cells on the underlying lattice.

Self-consistency equations and ground-state energy

The approximate ground-state values of the mean-field parameters can now be obtained from a
variational principle. Formally, this amounts to minimizing the expectation value of Eq. (4.11)
with respect to the mean-field parameters, which then gives the self-consistency equations,
defining the variational ground state for the respective set of internal parameters. However,
from a practical point of view it is usually more efficient to construct the self-consistency equa-
tions by calculating the mean-field parameters explicitly, which can be shown to be equivalent
[41]. For example, the magnetization on sublattice 𝐴 is given by

𝜑𝛼𝐴 =
1

𝑁

∑︁
𝑖∈𝐴

⟨︀1
2
𝑐⊺𝑖𝐿

𝛼𝑐𝑖
⟩︀
=

2

𝑁

∑︁
k∈𝐵𝑍/2

⟨︀1
2
𝑐⊺k,𝐴𝐿

𝛼𝑐k,𝐴
⟩︀

= −2𝑖

𝑁
𝜀𝛼𝛽𝛾

∑︁
k∈𝐵𝑍/2

⟨(𝑐𝛽𝑘,𝐴)†𝑐𝛾𝑘,𝐴⟩, (4.13)

and similarly,

𝜑𝛼𝐵 = −2𝑖

𝑁
𝜀𝛼𝛽𝛾

∑︁
k∈𝐵𝑍/2

⟨(𝑐𝛽𝑘,𝐵)†𝑐𝛾𝑘,𝐵⟩, (4.14)

where we average over the number of unit cells 𝑁 . Eq. (4.13) can be expressed in terms of
single-particle eigenstates 𝛾k = (𝛾1,k, . . . , 𝛾6,k)

⊺ of the Hamiltonian (4.11), which are defined
via

(𝑐k,𝐴, 𝑐k,𝐵)
⊺ = 𝑈k𝛾k, (4.15)

where 𝑈k denotes the eigenvector matrix of the Hamiltonian at wavevector k. To illustrate,
for the 𝑥-component of the staggered magnetization 𝜑𝛼 this amounts to

𝜑𝑥 =
2𝑖

𝑁

∑︁
k∈𝐵𝑍/2

∑︁
𝑛

[(𝑈k)
*
2𝑛(𝑈k)1𝑛 − (𝑈k)

*
1𝑛(𝑈k)2𝑛] ⟨𝛾†𝑛,k𝛾𝑛,k⟩

=
4

𝑁

∑︁
k∈𝐵𝑍/2

∑︁
𝑛

Im[(𝑈k)
*
1𝑛(𝑈k)2𝑛]⟨𝛾†𝑛,k𝛾𝑛,k⟩, (4.16)

a similar expression can be derived for 𝜑𝑦. The self-consistency equations for the bond variables
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are obtained analogously, giving

𝜒𝛼 =
𝑖

3𝑁

∑︁
k∈𝐵𝑍/2

[︀
𝑓(k)⟨(𝑐𝛼𝑘,𝐴)†𝑐𝛼𝑘,𝐴⟩ − 𝑓 *(k)⟨(𝑐𝛼𝑘,𝐵)†𝑐𝛼𝑘,𝐵⟩

]︀
, (4.17)

where we have averaged over three bonds per unit cell. Deriving the corresponding expressions
in terms of the 𝛾k fermions is straightforward. At vanishing chemical potential 𝜇 = 0, the
resulting eigenstate averages are given by the Fermi-Dirac distribution

⟨𝛾†𝑛,k𝛾𝑚,k⟩ =
1

𝑒𝛽𝜀𝑛(k) + 1
𝛿𝑚𝑛, (4.18)

where 𝜀𝑛(k) denotes the 𝑛-th energy eigenvalue at wavevector k and 𝛽 = 1
𝑇

is the inverse
temperature. At zero temperature 𝛽 → ∞, this gives the step function, only averaging over
modes with negative energy. With that, the ground-state energy of a particular mean-field
configuration can be obtained from summation over all occupied fermionic states and the
constant contribution, giving

𝐸0 =
∑︁

k∈𝐵𝑍/2

∑︁
𝑛

𝜀𝑛(k)⟨𝛾†𝑛,k𝛾𝑛,k⟩ − 3𝑁𝐽
∑︁
𝛼=𝑥,𝑦

(𝜑𝛼𝐴𝜑
𝛼
𝐵 − 𝜒𝑧𝜒𝛼), (4.19)

which functions as a cross-check for numerical solutions of the self-consistency equations.

4.1.2 Numerical results and phase diagram

The solution to the self-consistency equations (4.13), (4.14 and (4.17) can be obtained it-
eratively. The iterative scheme is implemented as follows. Choosing suitable initial values,
calculation of the mean-field parameter gives a new value, which is then taken as the new
initial value. This procedure is repeated until the solution converges. To obtain unbiased
results [21], different initial values are sampled randomly from a uniform distribution [0, 1)

using the Python function numpy.random.rand. Table 4.1 shows the solutions to some rep-
resentative values of the antiferromagnetic coupling 𝐽 . For simplicity, we assume 𝐾 = 1 from
now on, such that all obtained values are normalized with the Kitaev exchange 𝐾. Note that
the number of iterations needed for convergence is not fixed, as is shown in Fig. 4.1. Away
from the critical point, a few iterations are usually enough to reach convergence, whereas the
iteration converges slower the closer we get to the critical point. This has to be taken into
consideration when interpreting results, since the iterative approach only produces reliable
results if convergence is assured.
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Figure 4.1: Evolution of the mean-field parameters for the magnetization for two values
in the ordered phase, (a) two random initial values at 𝐽 = 0.8 and (b) one random initial
value at 𝐽 = 0.533 (𝐾 = 1 assumed). In (a), which is far away from the critical point,
the solutions converge quickly, whereas solutions close to the critical point converge much
slower.

Paramagnetic phase

At 𝐽 = 0, the model restores the exactly solvable limit of the Hamiltonian (4.11), with van-
ishing magnetization 𝜑 on both sublattices, describing a paramagnetic Kitaev SOL with three
degenerate Dirac cones. The bond parameter acquires a characteristic value 𝜒𝛼 = −0.5248,
which is exactly one third of the ground-state energy per unit cell 𝐸0

𝑁
= −1.5746 of the Ki-

taev honeycomb model [8]. This is easy to understand. Since no interactions are present, the
ground-state energy is solely determined by hopping of the Majorana fermions on the lattice,
which is represented by 𝜒𝛼. Since the Kitaev honeycomb model is represented by a single
flavor of Majorana fermions and a unit cell contains three bonds, this amounts to 𝐸0

𝑁
= 3𝜒𝛼.

At small finite exchange coupling 𝐽 , the ground state remains in the paramagnetic phase, also
called the symmetric phase, since the ground state is invariant under U(1) spin rotations. In-
terestingly, bond parameters retain the same values as in the non-interacting case everywhere
in the paramagnetic phase, a feature that was already described in Ref. [21], where the oppo-
site sign stems from the antiferromagnetic Kitaev interaction assumed, and Ref. [49], where
an additional factor 1

2
appears due to a different normalization of the Majorana operators.

Importantly, the self-consistent solutions to all parameters turn out to be independent of the
initial conditions. Contrary to the SO(3)-invariant model studied in Ref. [23], the XY inter-
action already induces some changes in the low-energy physics in the weak coupling regime,
without coupling to a finite order parameter. Due to the asymmetry in the matrix 𝜒 in Eq.
(4.8), the bond parameters couple differently to one of the three Majorana flavors, even in
the symmetric phase. This is best seen in the spectrum of the fermions, which is shown for
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𝐽 𝜑𝑥𝐴 𝜑𝑦𝐴 𝜑𝑥𝐵 𝜑𝑦𝐵
|𝜑𝑎−𝜑𝐵 |

2
𝜒𝑥 𝜒𝑦 𝜒𝑧 𝜒𝑥 + 𝜒𝑦

0 0 0 0 0 0 -0.5248 -0.5248 -0.5248 -1.0496

0.5 0 0 0 0 0 -0.5248 -0.5248 -0.5248 -1.0496

0.55 0.0410 0.0519 -0.0410 -0.0519 0.0661 -0.5244 -0.5245 -0.5240 -1.0489
0.0562 0.0348 -0.0562 -0.0348 0.0661 -0.5246 -0.5243 -0.5240 -1.0489

0.8 0.3511 0.2783 -0.3511 -0.2783 0.4480 -0.5075 -0.4973 -0.4800 -1.0048
0.2557 0.3678 -0.2557 -0.3678 0.4480 -0.4946 -0.5102 -0.4800 -1.0048

Table 4.1: Self-consistent solutions for the mean-field parameters for typical values of the
spin exchange coupling 𝐽 after 1000 iterations for an 𝑁 = 48 × 48 unit cell lattice. 𝐽 = 0
corresponds to the exactly solvable case, reducing to three copies of the 𝑆 = 1

2 Kitaev
honeycomb model. At strong couplings, the sublattice magnetizations acquire an expecta-
tion value and only SO(2) invariant quantities remain independent of the initial conditions.
𝐾 = 1 is assumed.

𝐽 = 0.5 in Fig. 4.2a, where, even though all bands stay gapless, the degeneracy is partially
lifted and one of the bands acquires a different Fermi velocity to the others.

Antiferromagnetic phase

For larger exchange couplings the sublattice magnetizations 𝜑𝛼𝐴,𝐵 acquire a finite value, sig-
naling the transition into a magnetically ordered phase. The phase is characterized by the
antiferromagnetic Néel order parameter

𝑛𝛼 =
𝜑𝛼𝐴 − 𝜑𝛼𝐵

2
, (4.20)

which spontaneously breaks the SO(2) flavor symmetry, corresponding to U(1) symmetry
breaking in the spin-orbital model. Many of the mean-field parameters shown in Table 4.1
become dependent of the initial conditions of the iteration, which can be attributed to sym-
metry breaking. The random initial conditions break the symmetry along different axes in the
ground-state manifold, such that different solutions are related by an SO(2) transformation
and the single components of the mean-field parameters are not comparable. This can be
verified by calculating the ground-state energy (4.19) for each solution, which takes the same
value for all solutions at a certain coupling 𝐽 . Only quantities invariant under SO(2) transfor-
mations generated by 𝐿𝑧 are independent of the initial conditions. These quantities are given
by the absolute value of the Néel order parameter, the sum 𝜒𝑥 + 𝜒𝑦, which can be written as
the trace of an SO(2) tensor, as well as 𝜒𝑧, which is not affected by the SO(2) transformation.
The appearance of a Néel order parameter could have already been anticipatied from the sub-
lattice symmetry of the model (3.36) and the antiferromagnetic nature of the interaction 𝐽 .
This can also be observed from Table 4.1, which shows that, although their explicit numerical
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Figure 4.2: Representative spectra for the (a) symmetric phase at 𝐽 = 0.5 and (b) the
ordered phase at 𝐽 = 0.55, obtained from the mean-field values in Table 4.1. Due to the
inherent particle-hole symmetry of the Majorana spectrum [8], only states with positive
energy are depicted. In the symmetric phase, all Majorana flavors remain gapless, but the
interaction lifts the degeneracy for one of the three bands. In the ordered phase, two of
the three Majorana flavors acquire a gap and only a single Dirac cone remains, describing a
𝜈 = 1 Kitaev SOL with an antiferromagnetically ordered spin sector.

values depend strongly on the initial conditions of the iteration, the magnetization components
always appear in pairs 𝜑𝛼𝐴 = −𝜑𝛼𝐵 with opposite signs on the respective sublattices, displaying
perfect Néel order. Besides the magnetization, the ordered phase is characterized by a grad-
ual deviation of the bond parameters 𝜒𝛼 from the fixed value in the symmetric phase, thus
reducing the amplitude for Majorana hopping. Microscopically, this is due to the coupling of
the order parameter to the fermion flavors in the mean-field Hamiltonian (4.11), which opens
up a band gap for two of the three Majorana flavors, as shown in Fig. 4.2b. As a result,
the bands acquire an effective mass, thereby damping the hopping amplitude. This behavior,
which leaves only one of the Majorana flavors gapless, also appears in the SO(3)-invariant
model [23] and characterizes a phase that is antiferromagnetically ordered in the spin-sector,
but still retains gapless fractionalized degrees of freedom, describing a 𝜈 = 1 Kitaev SOL by
the classification in Ref. [20]. However, in the low-energy limit of the present model, the two
gapped bands are non-degenerate apart from the K point, where the degeneracy is protected
by the algebraic structure of the SO(3) generators.

U(1) symmetry-breaking transition

An overview of our findings up to now is summarized in Fig. 4.3a, which shows the ground-
state values of all relevant mean-field parameters over a wider range of couplings 𝐽 ∈ [0, 2].
Close to the critical point, we observe the Néel order parameter to scale linearly, giving the
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Figure 4.3: (a) Ground-state values of all relevant mean-field parameters for 𝐽 ∈ [0, 2] for
a lattice with 𝑁 = 24 × 24 unit cells at 200 iterations. The dashed line marks the critical
point at critical coupling 𝐽𝑐. At weak couplings, the the ground-state is symmetric under
U(1) spin rotations, with fixed mean-field parameters. At strong couplings, the sublattice
magnetizations acquire values with opposite signs, marking the transition into a Néel-ordered
state. (b) Linear fit of the Néel order parameter close to the critical point at 1000 iterations
for a lattice with 𝑁 = 48 × 48 unit cells, giving the mean-field exponent for the order
parameter 𝛽 = 1 and the critical coupling 𝐽𝑐 = 0.5320. 𝐾 = 1 is assumed. The data point
at 𝐽 = 0.5320 has been excluded from extrapolation due to its ground-state energy.

Figure 4.4: Mean-field phase diagram of the Kitaev-XY spin-orbital model.

mean-field critical exponent for the order parameter 𝛽 = 1. We can extrapolate the critical
value 𝐽𝑐 from the linear scaling of the Néel order parameter close to the transition. Here, it is
important to note that the numerically obtained values for the mean-field parameters have to
be treated with care, since the convergence of the iterative approach takes too long to manifest
right at the critical point. Only points that actually reside in the ordered phase should be
included in the extrapolation. To illustrate, we consider the data point at 𝐽 = 0.5320. By the
numerical results, the point acquires a finite magnetization, which suggests for it to reside in
the ordered phase. However, comparison of the ground-state energy of this configuration with
its value in the symmetric phase gives 𝐸symmetric

0 < 𝐸ordered
0 , such that the numerically obtained

parameters do not represent the true mean-field ground state and should be omitted from the
extrapolation. With that, we obtain the critical value for the antiferromagnetic XY exchange
coupling 𝐽𝑐 = 0.5320, as shown in Fig. 4.3b. The resulting mean-field phase diagram is given
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in Fig. 4.4.

In summary, our observations provide convincing evidence for the emergence of a quantum
critical point describing a topological phase transition with concomitant symmetry breaking
between two distinct gapless Kitaev SOL phases in the Kitaev-XY spin-orbital model, featuring
a similar phenomenology to the transition uncovered in Ref. [23]. However, due to a different
broken symmetry, U(1) instead of SU(2), the transition is expected to belong to a different
universality class, which we will continue to unravel in the following sections.

4.2 Effective field theory

4.2.1 Effective action from the microscopic description

While the mean-field expansion in the previous section reliably describes the stable phases
that occur in the phase diagram, it only captures the right critical behavior for systems at
or above the upper critical dimension. As we have already discussed shortly in Sec. 2.3,
this is because collective long-wavelength fluctuations become increasingly important near
the critical point for low-dimensional systems, which have been fully neglected in the mean-
field approach. The first step towards a more sophisticated understanding of the critical
behavior is the construction of an effective field theory, describing the low-energy limit of
the Kitaev-XY spin-orbital model. We have seen in Ch. 3 that the energy dispersion of
the non-interacting model given by Hamiltonian (3.22) is characterized by the appearance of
three Dirac cones with the band-touching point located at the Dirac point K. At half filling,
the Fermi energy lies exactly at the energy of the touching point, such that the low-energy
excitations above the ground state are accurately described by spinless fermions and holes with
linear energy dispersion, i. e. momentum-independent Fermi velocitiy. An effective theory
can then be constructed by only considering the Fourier modes close to the Dirac point in
the momentum-space Hamiltonian (3.24). Due to the formal similarities with the low-energy
physics of graphene, the required gradient expansion can be carried out in analogy to the
procedure laid out in Ref. [50]. For a single non-interacting Majorana flavor 𝛼, this amounts
to

ℋ𝛼
0 = 𝐾

∑︁
|q|≤Λ

(︁
(𝑐𝛼K+q,𝐴)

†, (𝑐𝛼K+q,𝐵)
†
)︁(︃ 0 𝑖𝑓(K+ q)

−𝑖𝑓 *(K+ q) 0

)︃(︃
𝑐𝛼K+q,𝐴

𝑐𝛼K+q,𝐵

)︃
, (4.21)

where Λ refers to a momentum cutoff similar to the Debye frequency, in that it describes
the region over which the energy dispersion may be approximated linearly. The effective
Hamiltonian can be obtained from an expansion of 𝑓(K+ q) about the Dirac point, which to
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leading order in q gives

ℋ𝛼
0 = 𝑣𝐹

∑︁
|q|≤Λ

𝜓†
𝛼,q

(︃
0 𝑞𝑥 + 𝑖𝑞𝑦

𝑞𝑥 − 𝑖𝑞𝑦 0

)︃
𝜓𝛼,q, (4.22)

where 𝜓𝛼,q = (𝑐𝛼K+q,𝐴, 𝑐
𝛼
K+q,𝐵)

⊺ denotes the two-component spinor associated with the Majo-
rana flavor 𝛼 and we have introduced the Fermi velocity 𝑣𝐹 = 𝐾

√
3/2, describing the slope

of the energy dispersion in the vicinity of the Dirac point. In the thermodynamic limit, the
momentum summation becomes a two-dimensional integral and Eq. (4.22) can be written in
terms of Pauli matrices.

ℋ𝛼
0 =

∫︁
|q|≤Λ

d2𝑞

(2𝜋)2
𝜓†
𝛼(q) (𝑞𝑥𝜎

𝑥 − 𝑞𝑦𝜎
𝑦)𝜓†

𝛼(q), (4.23)

where the spinors have been promoted to fields in momentum space and the Fermi velocity 𝑣𝐹
has been set to unity for simplicity. After a Fourier transformation to real space and taking
into account all three Majorana flavors, the momenta in Eq. (4.23) become spatial derivatives
and the full effective Hamiltonian reads

ℋ0 =

∫︁
d2𝑟

3∑︁
𝑖=1

𝜓†
𝑖 (r) (−𝑖𝜎𝑥𝜕𝑥 + 𝑖𝜎𝑦𝜕𝑦)𝜓𝑖(r), (4.24)

where the sum is over all 3 Majorana flavors and 𝜓𝑖 = (𝜓𝑖,𝐴, 𝜓𝑖,𝐵)
⊺ defines a two-component

Dirac fermion for each flavor. Formally, Fourier transformation over a finite interval of mo-
menta will produce a representation that is discrete in space, in accordance with the lattice on
which the microscopic theory is defined. However, if we understand effective field theories to be
implicitly accompanied by an intrinsic momentum cutoff Λ, we can understand the low-energy
behavior of the theory in momentum space as arising from a continuum theory in real space.
Loosely speaking, the appearance of the momentum cutoff "reminds" us of the fact that the
microscopic degrees of freedom were integrated out and replaced by collective coarse-grained
fields that vary continuously over length and time scales of the order of the inverse momentum
cutoff 1/Λ. Introducing a two-dimensional representation of the Clifford algebra in terms of
Pauli matrices 𝛾𝜇 = (𝜎𝑧, 𝜎𝑦, 𝜎𝑥) and defining the Dirac conjugate by 𝜓𝑖 = 𝜓†

𝑖𝛾
0 as usual, by

use of Eq. (2.17) the non-interacting Euclidean effective action describing the Dirac cones
reads

𝑆0 =

∫︁
d𝜏 d2𝑟𝜓†

𝑖𝜕𝜏𝜓𝑖 +𝐻0 =

∫︁
d𝜏 d2𝑟𝜓𝑖𝛾

𝜇𝜕𝜇𝜓𝑖, (4.25)

where summation over the flavor indices 𝑖 = 1, 2, 3 is assumed from here on. In the single-
particle limit, this recovers three copies of two-component Dirac fermions [51], thus correctly
describing the low-energy physics of the model (3.16). The fermions are now represented
by Grassmann-valued fields with an additional dependence on imaginary time to account for
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quantum fluctuations in the functional integral. To find a continuum expression for the XY
interaction, we make use of the fact that its Majorana expression (3.34) takes the form of a
product of local densities 𝑛𝛼𝑖 = 1

2
𝑐⊺𝑖𝐿

𝛼𝑐𝑖. Since the densities commute, we can decompose the
product

ℋint = 𝐽
∑︁
⟨𝑖𝑗⟩

∑︁
𝛼=𝑥,𝑦

𝑛𝛼𝑖 𝑛
𝛼
𝑗 =

𝐽

4

∑︁
⟨𝑖𝑗⟩

∑︁
𝛼=𝑥,𝑦

[︀
(𝑛𝛼𝑖 + 𝑛𝛼𝑗 )

2 − (𝑛𝛼𝑖 + 𝑛𝛼𝑗 )
2
]︀

=
𝐽

4

∑︁
𝑖∈𝐴

∑︁
𝛿

∑︁
𝛼=𝑥,𝑦

[︀
(𝑛𝛼𝑖,𝐴 + 𝑛𝛼𝑖+𝛿,𝐵)

2 − (𝑛𝛼𝑖,𝐴 − 𝑛𝛼𝑖+𝛿,𝐵)
2
]︀

(4.26)

where we have used the bipartiteness of the honeycomb lattice to resolve the nearest-neighbor
sum explicitly in the second line. As usual, 𝑖-summation goes over sublattice 𝐴, whereas 𝛿
sums over the three bonds per unit cell, connecting sublattices 𝐴 and 𝐵. To leading order of
the gradient expansion, we can neglect the non-local contributions arising from the crossing
terms in Eq. (4.26), giving

ℋint =
3𝐽

4

∑︁
𝑖∈𝐴

∑︁
𝛼=𝑥,𝑦

[︀
(𝑛𝛼𝑖,𝐴 + 𝑛𝛼𝑖,𝐵)

2 − (𝑛𝛼𝑖,𝐴 − 𝑛𝛼𝑖,𝐵)
2
]︀
. (4.27)

The continuum limit can now be obtained by expressing the local densities in terms of the
field operators defined via Eq. (4.22). The continuum expressions for the local densities are,
as before, derived in momentum space. Only considering Fourier modes close to the Dirac
point, we obtain

∑︁
𝑖∈𝐴

(𝑛𝛼𝑖,𝐴 + 𝑛𝛼𝑖,𝐵) ↦→
∫︁

d2𝑟
3∑︁

𝑖,𝑗=1

𝜓†
𝑖 [12 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗, (4.28)

∑︁
𝑖∈𝐴

(𝑛𝛼𝑖,𝐴 − 𝑛𝛼𝑖,𝐵) ↦→
∫︁

d2𝑟
3∑︁

𝑖,𝑗=1

𝜓†
𝑖 [𝜎

𝑧 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗, (4.29)

from which we derive the continuum expression of the interaction Hamiltonian

ℋint = ℎ

∫︁
d2𝑟

[︂(︁
𝜓†
𝑖 [12 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗

)︁2
−
(︁
𝜓†
𝑖 [𝜎

𝑧 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗

)︁2]︂
, (4.30)

where we have absorbed all prefactors into a new four-fermion coupling ℎ ∝ 𝐽 and summation
over the flavor indices 𝑖, 𝑗 = 1, 2, 3 and 𝛼 = 𝑥, 𝑦 is assumed hereafter. The interaction now
consists of two terms, which both turn out to be invariant under SO(2) flavor rotations defined
via Eq. (4.2), and thus are allowed by symmetry. However, rewriting the interaction in a
manifestly covariant form,

ℋint = ℎ

∫︁
d2𝑟
[︁(︀
𝜓𝑖
[︀
𝛾0 ⊗ (𝐿𝛼)𝑖𝑗

]︀
𝜓𝑗
)︀2 − (︀𝜓𝑖 [12 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗

)︀2]︁
, (4.31)
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reveals that only the second term preserves the Lorentz invariance of the non-interacting action
(4.25). The next step is a little more subtle. As we will see in Sec. 4.3, critical exponents arise
from a loop expansion of the interaction. It can be shown that, due to 𝜎𝑧𝜎𝑧 = 12, both terms
in Eq. (4.31) produce the same contributions to the critical exponents at all orders of the
loop expansion such that both theories appear to belong to the same universality class [52].
Consequently, it is sufficient to keep only one of the terms for the further analysis of the critical
behavior. A more thorough discussion can be found in [34]. Note that this step is only valid
near the critical point. It is to be expected that the two terms produce different subleading
corrections, such that their qualitative behavior will start to differ when moving away from
criticality [52]. For simplicity, we keep only the second term, giving the full Euclidean effective
action

𝑆 =

∫︁
d𝜏 d2𝑟

[︁
𝜓𝑖𝛾

𝜇𝜕𝜇𝜓𝑖 − ℎ
(︀
𝜓𝑖 [12 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗

)︀2]︁
, (4.32)

featuring three flavors of two-component Dirac fermions coupled by a Lorentz-invariant four-
fermion interaction term. The model shares formal similarities with the Gross-Neveu model
[53], which was originally introduced as a toy model for chiral symmetry breaking in strongly
interacting electron systems. However, instead of exhibiting just a discrete symmetry under
chiral transformations of the fermions like the original Gross-Neveu model, Eq. (4.32) features
a continuous symmetry. Since the third generator of SO(3) does not appear explicitly in the
interaction, the model is invariant under infinitesimal transformations

𝜓𝑖 → (𝐿𝑧)𝑖𝑗𝜓𝑗, (4.33)

inducing SO(2) rotations in flavor space. In close analogy to the model introduced in Ref.
[23], which features a continuous SO(3) flavor symmetry, we call the model (4.32) Gross-
Neveu-SO(2) model.

4.2.2 Partial bosonization and mean-field theory

It is well known that interacting fermion systems like the one given by Eq. (4.32) naturally
exhibit instabilities towards strongly correlated phases, the most prominent being the Cooper
instability, which facilitates the transition to a superconducting state at arbitrary attractive
electron-electron interaction in metallic systems. Other examples include interacting spinless
fermions, which are unstable towards a charge-density-wave state [54]. Usually, these instabili-
ties are accompanied by the formation of a fermion condensate, whose appearance is associated
with a symmetry-breaking transition for which it acts as a composite order parameter. In the
literature, this is also called dynamical symmetry breaking [55]. In the symmetry-broken
phase, the fermion condensate acquires a non-vanishing expectation value. Since the low-
energy physics are governed by collective excitations of the fermionic degrees of freedom above
the condensate, it is useful to include the order-parameter fluctuations directly into the theory.
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However, the identification of the order parameter is not trivial, as four-fermion interactions
allow for multiple condensation channels, describing qualitatively different physical scenarios.
The identification of the physically relevant channel requires further insight [56].

Following the procedure introduced in Ref. [57], the decoupling is performed by the intro-
duction of an auxiliary field 𝜑, representing the order parameter, via a Hubbard-Stratonovich
transformation. The idea is to introduce a resolution of identity in form of a Gaussian func-
tional integral

1 = 𝒩
∫︁

𝒟𝜑 exp
[︂
−1

2

√
𝑟𝜑

]︂
, (4.34)

which can be multiplied with the partition function without changing the physical content of
the theory. The normalization constant 𝒩 does not affect any correlation functions and can
thus be safely absorbed into the functional integral measure. Since the integral bounds of Eq.
(4.34) approach infinity, a suitably chosen shift of the field variable allows us to cancel the
four-fermion interaction in Eq. (4.32) at the cost of an additional functional integration over
the order parameter field as well as the introduction of interactions between the fermions and
the order parameter. The partition function is then given by

𝑍 =

∫︁
𝒟𝜓𝒟𝜓𝒟𝜑 exp(−𝑆𝐻𝑆), (4.35)

with the partially bosonized Hubbard-Stratonovich action 𝑆𝐻𝑆[𝜓, 𝜓, 𝜑], which now explicitly
depends on both the fermionic fields as well as the order parameter field. In the previous
section, we have found evidence for the appearance of a quantum critical point associated
with a spontaneously broken U(1) spin rotation symmetry, SO(2) flavor rotation symmetry in
the fermionic formulation, with the Néel order parameter being given by the two-component
expectation value ⟨𝑐⊺𝑖𝐿𝛼𝑐𝑖⟩. Motivated by this result, we identify the order parameter field
with the fermion bilinear

𝜑𝛼 ∼
⟨︀
𝜓𝑖 [1⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗

⟩︀
. (4.36)

For the Gross-Neveu-SO(2) model, we thus introduce a real two-component order parameter
field 𝜑𝛼 and an appropriate shift proportional to Eq. (4.36)

1 = 𝒩
∫︁

𝒟𝜑 exp
[︃
−1

2

(︂√
𝑟𝜑𝛼 +

𝑔√
𝑟
𝜓𝑖 [12 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗

)︂2
]︃
, (4.37)

with new couplings 𝑟 and 𝑔. After multiplying Eq. (4.32) with this Gaussian factor, the
four-fermion interaction precisely cancels if we impose a constraint on the newly introduced
coupling constants

ℎ =
𝑔2

2𝑟
. (4.38)

As such, the new couplings are not independent, which is consistent with the fact that the
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physical theory from which Eq. (4.32) derives only contains a single parameter. The resulting
partially bosonized action reads

𝑆𝐻𝑆[𝜓, 𝜓, 𝜑] =

∫︁
d𝜏 d2𝑥

(︁
𝜓𝑖𝛾

𝜇𝜕𝜇𝜓𝑖 +
𝑟

2
𝜑𝛼𝜑𝛼 + 𝑔𝜑𝛼𝜓𝑖 [12 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗

)︁
, (4.39)

with the usual summation conventions. Thus, we have removed the four-fermion interaction
at the cost of the introduction of a collective order parameter field, which the fermions couple
to by an interaction of Yukawa type [53]. The SO(2) symmetry of the fermionic interaction is
preserved since the bosonic fields do not transform under flavor rotations

𝜓𝑖 → (𝐿𝑧)𝑖𝑗𝜓𝑗, 𝜑𝛼 → 𝜑𝛼. (4.40)

If the order parameter acquires a non-zero expectation value, the Yukawa interaction acts like
a mass term with mass 𝑚𝐹 = 𝑔

√
𝜑𝛼𝜑𝛼 for the Dirac fermions, thus dynamically generating

a fermion mass in the strongly coupled regime, which corresponds to an energy gap in the
condensed matter context. However, since the SO(3) generators possess a vanishing eigenvalue,
only two of the three Majorana fermions acquire a gap, in accordance with the results from
Sec. 4.1, see also Ref. [23].

The equivalence of Eqs. (4.39) and (4.32) becomes clear if we substitute 𝜑𝛼 with its classical
equation of motion

𝑟𝜑𝛼 = −𝑔𝜓𝑖 [12 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗, (4.41)

corresponding to Gaussian integration of the order parameter field. This also explains the
connection between the order parameter field and the fermion condensate. Due to the Ehrenfest
theorem we expect the classical equations of motion to hold for the quantum expectation
values, justifying Eq. (4.36). Note that the Hubbard-Stratonovich transformation is exact. As
such, it provides a formal justification for the mean-field decoupling of the interacting lattice
Hamiltonian (4.1). In principle it is possible, and necessary, to carry out similar decouplings
for the remaining channels [56]. However, since the order-parameter fluctuations dominate the
other contributions in the vicinity of the critical point, it is sufficient to consider the decoupling
of the order parameter to capture the relevant physics of the phase transition.

Mean-field theory

Since the fermionic degrees of freedom only appear bilinearly in the action (4.39), they can be
integrated out exactly to obtain an effective theory for the order parameter field. For that, it
is necessary to rewrite the action as

𝑆𝐻𝑆[𝜓, 𝜓, 𝜑] =

∫︁
d𝜏 d2𝑥

(︁𝑟
2
𝜑𝛼𝜑𝛼 + 𝜓† [︀𝛾0𝛾𝜇𝜕𝜇 ⊗ 13 + 𝛾0 ⊗ 𝑔𝜑𝛼𝐿𝛼

]︀
𝜓
)︁
, (4.42)
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where we have inserted adjoint operators for the Dirac conjugate. After reexponentiating the
determinant resulting from the Gaussian integration of the Grassmann-valued fermion bilinear,
we obtain

𝑆𝑒𝑓𝑓 [𝜑] =

∫︁
d𝜏 d2𝑥

𝑟

2
𝜑𝛼𝜑𝛼 − ln det

[︀
𝛾0𝛾𝜇𝜕𝜇 ⊗ 13 + 𝛾0 ⊗ 𝑔𝜑𝛼𝐿𝛼

]︀
=

∫︁
d𝜏 d2𝑥

𝑟

2
𝜑𝛼𝜑𝛼 − tr ln

[︀
𝛾0𝛾𝜇𝜕𝜇 ⊗ 13 + 𝛾0 ⊗ 𝑔𝜑𝛼𝐿𝛼

]︀
, (4.43)

which only depends on the 𝜑𝛼 and where we have used the identity ln detM = tr lnM. In
principle, this allows for the exact calculation of the partition function

𝑍 =

∫︁
𝒟𝜑 exp (−𝑆𝑒𝑓𝑓 [𝜑]) , (4.44)

and thus of any physical observable and the critical behavior. However, due to the appearance
of derivatives in the functional trace, the tr ln constitutes a highly non-local object. Addi-
tionally, the trace does not decouple in momentum space due to the presence of the order
parameter field, which mediates interactions between fermions of different momenta, making
an exact evaluation of the partition function impossible.

In a first approximation, we can treat the effective action as classical and approximate the
partition function by its saddle-point contribution, which follows from the solutions of the
saddle-point equations

𝛿

𝛿𝜑𝛼(x, 𝜏)
𝑆𝑒𝑓𝑓 [𝜑]

!
= 0. (4.45)

This is known as the stationary-phase approximation and is equivalent to the mean-field picture
we have assumed in Sec. 4.1 [56]. It provides a microscopic justification for the Landau-
Ginzburg approach, relating the phenomenological order parameter field to the microscopic
fermionic degrees of freedom. If we assume a homogeneous solution for the order parameter,
corresponding to Fourier components 𝜑𝛼(k, 𝜔) ∼ 𝛿(k)𝛿(𝜔), the momentum integrals in the
functional trace decouple and the classical solutions are given by the saddle points of the
zero-momentum action

𝑈(𝜑) =
𝑟

2
𝜑2 −

∫︁ Λ d𝜔 d2𝑘

(2𝜋)3
tr ln

[︀
𝑖𝜔 + (𝑖𝜎𝑧𝜎𝑦𝑘𝑥 + 𝑖𝜎𝑧𝜎𝑥𝑘𝑦)⊗ 13 + 𝜎𝑧 ⊗ 𝑔𝜑𝐿1

]︀
, (4.46)

where we have rescaled the order parameter 𝜑𝛼/(2𝜋)3 → 𝜑𝛼, explicitly inserted the represen-
tation of the 𝛾𝜇 and have assumed 𝜑𝛼 = (𝜑, 0)⊺ without loss of generality. Note that this
way, we break the U(1) symmetry of the model by hand, equivalent solutions may be obtained
by U(1) transformations of the chosen solution. The fate of inhomogeneous solutions to the
saddle-point equations will not be discussed in this work. The homogeneous saddle-point 𝜑0
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Figure 4.5: Dimensionless effective potential for various values of the dimensionless four-
fermion coupling ℎ = Λℎ. Below the critical coupling (blue line, ℎ = ℎ𝑐−1), the minimum is
pinned at the origin and the system is in the symmetric phase. Raising ℎ above the critical
point (orange line, ℎ = ℎ𝑐 + 5), the U(1) symmetry is spontaneously broken as the rescaled
order parameter acquires a non-zero expectation value. At the critical point the minimum
stays at the origin, but the quadratic contribution to the effective potential vanishes.

is then given by the minimum of the effective potential 𝑈(𝜑)

0
!
=

𝜕

𝜕𝜑
𝑈(𝜑)

⃒⃒⃒⃒
𝜑0

= 𝑟𝜑0 − 4𝑔2𝜑0

∫︁ Λ d𝜔 d2𝑘

(2𝜋)3
1

𝜔2 + 𝑘2 + (𝑔𝜑0)2

= 𝑟𝜑0 −
2𝑔2

𝜋2
𝜑0

[︂
Λ− 𝑔𝜑0 arctan

(︂
Λ

𝑔𝜑0

)︂]︂
≈ 𝑟𝜑0 −

2𝑔2

𝜋2
𝜑0

(︁
Λ− 𝑔|𝜑0|

𝜋

2

)︁
, (4.47)

where the last line holds for 𝑔|𝜑0| ≪ Λ, i. e. near the phase transition, where the order
parameter becomes arbitrarily small and thus the dynamically generated fermion mass 𝑚𝐹 =

𝑔|𝜑0| is small against the momentum cutoff Λ. Besides the trivial solution 𝜑0 = 0, solving for
𝑚𝐹 gives another solution

𝑚𝐹 = 𝑔|𝜑0| =
2

𝜋

(︂
Λ− 𝑟𝜋2

2𝑔2

)︂
=

2

𝜋

(︂
Λ− 𝜋2

4ℎ

)︂
, (4.48)

where we have inserted Eq. (4.47) to rewrite 𝑚𝐹 in terms of the physical four-fermion coupling
ℎ. Since the fermion mass cannot be negative, Eq. (4.48) does not have a physical solution
for Λ < 𝜋2/4ℎ. In this region, the ground state is given by the trivial solution and all three
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fermion flavors remain gapless. However, for Λ > 𝜋2/4ℎ, a finite solution is allowed. The
ground state spontaneously breaks the U(1) symmetry of the action (4.39) and two of the
three fermion flavors acquire an energy gap as we have explained earlier. Thus, the critical
value of the four-fermion coupling in the saddle-point approximation is given by

ℎ𝑐 =
𝜋2

4Λ
, (4.49)

which explicitly depends on Λ, i. e. on the microscopic details of the lattice theory. Note
that although the effective action (4.39) contains two parameters 𝑟 and 𝑔, the value of the
critical point is only sensitive to their ratio, corresponding to the physical parameter ℎ. This
is necessary for the description to be consistent, as the redundancy in the parameters in Eq.
(4.39) was introduced artificially through the Hubberd-Stratonovich transformation, and thus
cannot affect any physical properties of the system. To obtain the critical exponent for the
order parameter, we express Λ in terms of the critical coupling and insert into Eq. (4.48),
giving an expression that is regular at ℎ = ℎ𝑐 and can thus be expanded in a Taylor series.
Near the critical point, this gives

𝑚𝐹 =
𝜋

2

(︂
1

ℎ𝑐
− 1

ℎ

)︂
∝ ℎ− ℎ𝑐, (4.50)

such that the order parameter critical exponent is given by 𝛽 = 1, in agreement with the
lattice results from Sec. 4.1. To substantiate the symmetry-breaking picture, it is useful to
calculate the effective potential near the transition explicitly by integrating the third line of
Eq. (4.47)

𝑈(𝜑) =

∫︁ 𝜑

0

d𝜑′
[︂(︂
𝑟 − 2𝑔2Λ

𝜋2

)︂
𝜑′ +

𝑔3

𝜋
|𝜑′|𝜑′

]︂
=

1

𝜋

(︂
1

3
𝑔3|𝜑|3 − 𝑚𝐹

2
𝑔2𝜑2

)︂
, (4.51)

where the dependence on the physical parameters ℎ and Λ is implicitly contained in 𝑚𝐹 and
the Yukawa coupling 𝑔 can be absorbed into the definition of the order parameter. Reiterating
the observations we have made up to now, we see that for ℎ < ℎ𝑐 the quadratic term in the
effective potential is positive, stabilizing the minimum of the potential at the origin, whereas
for ℎ > ℎ𝑐 the quadratic term becomes negative, shifting the minima to finite values of 𝜑 and
signaling the onset of a symmetry-broken ground state. This is shown in Fig. 4.5.

4.3 Renormalization Group analysis

4.3.1 Gross-Neveu-SO(2) action

To go beyond the limitations of mean-field theory and systematically include fluctuations in
our analysis of the critical point, we apply the Renormalization Group methods introduced in
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Sec. 2.2. To this end, we allow the couplings in Eq. (4.39) to flow under RG transformations.
In principle, integrating out degrees of freedom in the partition function can produce any
symmetry-allowed term in the effective action, even if they do not appear in the initial action.
However, as we will see in Sec. 4.3.2, it turns out that close to the upper critical dimension,
most symmetry-allowed terms are irrelevant and flow to zero near the critical point and do not
affect the critical behavior, leaving only a select few relevant terms that have to be included
in the analysis. Importantly, the upper critical dimension of each term can be estimated
straightforwardly, such that one usually employs a semi-phenomenological approach to obtain
an ansatz for the effective action. For the microscopic action defined via Eq. (4.39), we thus
consider

𝑆 =

∫︁
d𝐷𝑥

(︂
𝜓𝑖𝛾

𝜇𝜕𝜇𝜓𝑖 +
1

2
𝜑𝛼
(︀
−𝜕2𝜇 + 𝑟

)︀
𝜑𝛼 + 𝑔𝜑𝛼𝜓𝑖 [1𝛾 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗 + 𝜆 (𝜑𝛼𝜑𝛼)2

)︂
, (4.52)

where we have added dynamics for the order parameter field as well as a symmetry-allowed
quartic potential with coupling 𝜆 > 0 that stabilizes the transition, which both vanish in the
microscopic action. Both terms turn out to be relevant below four dimensions, which we show
in the next section, such that they have to be included in the RG analysis. The form of the
kinetic term of the order parameter field is chosen to preserve the relativistic invariance of the
initial action, which in turn allows us to summarize the integration over 𝑑 space dimensions and
imaginary time into a single 𝐷 = 𝑑+ 1-dimensional Euclidean space-time integral. The order
parameter is given by a real vector field and takes the form of a bosonic field in the action, thus
we will from now on use the terminology interchangeably. Similarly, due to the resemblance
of the control parameter 𝑟 with the mass term in relativistic QFT, we will refer to 𝑟 as a mass
from now on. Additionally, we have generalized the action to allow for fermion fields with 𝑑𝛾

components, denoted by subscript 𝛾. Since a single 2𝑛-component fermion is equivalent to 𝑛
two-component fermions [58], this enables us to generalize the problem to arbitrary number
of two-component fermions, the fermion number being given by 𝑁𝐹 = 3

2
𝑑𝛾. Since we want to

integrate out momentum shells it is useful to write down the momentum-space action

𝑆 = 𝑆0 + 𝑆𝑔 + 𝑆𝜆, (4.53)

which we have divided up into a non-interacting part 𝑆0 and two interaction terms 𝑆𝑔 and 𝑆𝜆,
corresponding to Yukawa and self-interaction

𝑆0 =

∫︁ Λ

(d𝑝)

[︂
𝑖𝜓𝑖(𝑝)𝛾

𝜇𝑝𝜇𝜓𝑖(𝑝) +
1

2
𝜑𝛼(𝑝)

(︀
𝑝2 + 𝑟

)︀
𝜑𝛼(−𝑝)

]︂
, (4.54)

𝑆𝑔 = 𝑔

∫︁ Λ

(d𝑝1)(d𝑝2)𝜑
𝛼(𝑝1 − 𝑝2)𝜓𝑖(𝑝1) [1𝛾 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗(𝑝2), (4.55)

𝑆𝜆 = 𝜆

∫︁ Λ

(d𝑝1)(d𝑝2)(d𝑝3)𝜑
𝛼(𝑝1)𝜑

𝛼(𝑝2)𝜑
𝛽(𝑝3)𝜑

𝛽(−𝑝1 − 𝑝2 − 𝑝3), (4.56)



46 4.3 Renormalization Group analysis

where
∫︀
(d𝑝) =

∫︀
d𝐷𝑝
(2𝜋)𝐷

and the integrals are understood to possess a natural momentum-space
cutoff Λ as discussed in Sec. 4.2.

4.3.2 The Gaussian fixed point

We start the discussion by considering the non-interacting limit 𝑔 = 𝜆 = 0, which is given by
the action . This corresponds to a Gaussian action, such that the momentum-shell integration
can be carried out exactly. Following the setup in Sec. 2.3, we split the fields into fast modes
𝜒> and slow modes 𝜒< [41] defined by

𝜒>(𝑝) =

⎧⎨⎩𝜒(𝑝) if Λ/𝑏 < 𝑝 < Λ

0 otherwise
, (4.57)

𝜒<(𝑝) =

⎧⎨⎩𝜒(𝑝) if 𝑝 < Λ/𝑏

0 otherwise
, (4.58)

with fields 𝜒 = 𝜓, 𝜓, 𝜑. The first step of the momentum-shell RG consists of the integration
over fast modes in the partition function, leaving us with an effective action for the slow
modes with momenta 𝑝 < Λ/𝑏. Since the fields only appear quadratically in the action, there
is no coupling between different momentum scales and the action can be divided into two
independent parts 𝑆0 = 𝑆0< + 𝑆0>, integrating over fast and slow modes, respectively. Thus,
the partition function factorizes into contributions of slow and fast modes

𝒵 =

∫︁
𝒟𝜑<𝒟𝜓<𝒟𝜓< e−𝑆0<

∫︁
𝒟𝜑>𝒟𝜓>𝒟𝜓> e−𝑆0>

= 𝒵0<𝒵0>, (4.59)

such that integrating out high momenta does not produce any corrections in the coarse-grained
theory. Since the partition function of the fast modes only contains finite momenta, it con-
tributes to the regular part of the full partition function and can be safely absorbed into the
functional integral measure of the slow modes without modifying the non-analytic behavior
of the full partition function. Then, the coarse-grained effective action is given by the initial
non-interacting action for the slow modes

𝑆0< =

∫︁ Λ/𝑏

(d𝑝)

[︂
𝑖𝜓𝑖(𝑝)𝛾

𝜇𝑝𝜇𝜓𝑖(𝑝) +
1

2
𝜑𝛼(𝑝)

(︀
𝑝2 + 𝑟

)︀
𝜑𝛼(−𝑝)

]︂
, (4.60)

with momentum-space cutoff Λ/𝑏. To adequately compare the effective action to its ini-
tial counterpart, it is necessary to perform the remaining steps of the momentum-shell RG,
rescaling of momenta 𝑏𝑝 → 𝑝 and field renormalization. As discussed in Sec. 2.3, the field
renormalization is usually chosen such that the coefficients of the kinetic terms in the action
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are fixed under RG transformations. A peculiarity of Gaussian theories is that, due to the
decoupling of momentum scales, the fields renormalize according to their canonical dimension
(in momentum space), which can be obtained from naive dimensional analysis of the respective
kinetic terms in the Gaussian action (4.54), giving

𝜑→ 𝑏
𝐷+2
2 𝜑, 𝜓 → 𝑏

𝐷+1
2 𝜓, (4.61)

known as Gaussian renormalization [48]. The renormalized effective action is then given by

𝑆 ′
0< =

∫︁ Λ

(d𝑝)

[︂
𝑖𝜓𝑖(𝑝)𝛾

𝜇𝑝𝜇𝜓𝑖(𝑝) +
1

2
𝜑𝛼(𝑝)

(︀
𝑝2 + 𝑏2𝑟

)︀
𝜑𝛼(−𝑝)

]︂
, (4.62)

from which we can read off the renormalized order parameter mass

𝑟(𝑏) = 𝑏2𝑟. (4.63)

For vanishing 𝑟 = 0, the theory is trivially scale invariant, since there are no finite parameters in
the action. Consequently, this point constitutes an RG fixed point, usually called the Gaussian
fixed point. Since 𝑟 renormalizes away from the fixed point under repeated RG iterations for any
finite initial value, the fixed point is unstable against deviations of 𝑟. Notably, this is true for
any space-time dimension 𝐷. Thus, in the RG sense, 𝑟 is always relevant and flows away from
the Gaussian fixed point under the RG flow. To assess the stability of the fixed point against the
interactions given by Eqs. (4.55) and (4.56), more profound considerations are needed. Since
interactions, in contrast to Gaussian terms, generically couple different momentum scales, they
also couple fast and slow modes in the partition function (4.59). Consequently, the partition
function does not factorize and integration over fast modes will generate corrections to the
effective slow-mode action. A quantitative treatment of these corrections will be introduced
in the next section. For now, we can keep the discussion on a simpler level. Since we expect
the corrections to scale with some positive power of the interaction, we can, to lowest order,
neglect them and compute the scaling behavior of the interactions at the Gaussian fixed point,
giving

𝑔(𝑏) = 𝑏
4−𝐷
2 𝑔, 𝜆(𝑏) = 𝑏4−𝐷𝜆. (4.64)

In contrast to the boson mass, Gaussian scaling for both 𝑔 and 𝜆 depends explicitly on the
space-time dimension 𝐷, both having an upper critical space-time dimension 𝐷𝑐 = 4. This
allows for the following physical interpretation. Since 𝑟 is always relevant, it acts as a control
parameter for a phase transition whose critical point is given by the IR stable fixed point in the
𝑔-𝜆 plane. Above the upper critical dimension, the interactions are irrelevant, which means
that interactions in the microscopic theory ultimately flow towards the Gaussian limit after
many RG iterations, such that the critical behavior is governed by the Gaussian fixed point.
The corresponding RG flow can be derived from the recursion relation (4.63), giving
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d𝑟

d ln 𝑏
= 2𝑟, (4.65)

from which we can read off the correlation length exponent 𝜈 = 1
2
. Thus, the Gaussian fixed

point describes the mean-field behavior of the corresponding O(N) Landau-Ginzburg-Wilson
theory [30], in the present case with N=2. Note that this is not the mean-field behavior
we have described in Sec. 4.2, due to the dependence of the integral in Eq. (4.47) on the
dimension. At 𝐷 = 4, the mean-field expansion from the previous section gives the desired
result. Similarly, right at 𝐷𝑐 the interactions become marginal, and the fixed point acquires
logarithmic corrections to the mean-field scaling [40]. However, below the critical dimension,
and thus for the physically interesting situation of 𝐷 = 3, both interaction terms become
relevant. The Gaussian fixed point thus has three relevant directions and cannot represent a
critical point since there is only a single tunable parameter in the underlying lattice theory.
As we will see in the following sections, the interactions instead flow towards a new, non-
trivial fixed point located at finite interactions, which is characterized by a new set of critical
exponents.

Another important point that we have already touched upon in the previous section is the
fate of other symmetry-allowed terms in the full action (4.52). As already stated, we added a
kinetic term and a bosonic self-interaction that were not present in the effective action derived
from the microscopic model. One of the key insights of the RG theory is that the notion of
relevant and irrelevant terms greatly restricts the amount of terms that have to be included
in the quantitative analysis. Irrelevant terms vanish near criticality and can thus be safely
ignored, whereas relevant terms become large and their corrections to the effective action will
provide dominant contributions in the IR. Since we ultimately want to analyze the critical
behavior below 𝐷𝑐, where 𝜆 is relevant, 𝑆𝜆 has to be included. A similar argument can be
made for higher-order symmetry-allowed terms, like e. g. 𝑝2𝜑4 or 𝜑6. Gaussian scaling reveals
that none of these higher-order becomes relevant for 𝐷 = 3, and can thus be safely neglected.
Note that strictly speaking, the 𝜑6 term becomes marginal at the Gaussian fixed point for
𝐷 = 3. However, it is believed that interaction corrections will make the term irrelevant.
Interestingly, this argument also provides a rather satisfying justification for the applicability
of the continuum limit to the theory of phase transitions, where we have discarded all but the
lowest contributing terms in a momentum expansion. Gaussian scaling shows that all higher-
order contributions are irrelevant and the microscopic lattice theory indeed flows towards the
continuum theory given by the action (4.52) under repeated RG iterations.

4.3.3 The ε-expansion

To get a better understanding of the RG flow away from the Gaussian fixed point, we repeat the
momentum-shell RG calculation with the full action (4.52). While the presence of interactions
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will leave the form of the action unchanged under RG, the coefficients obtain corrections from
the coupling of slow and fast modes in the interaction terms. Thus, our ansatz for the effective
slow-mode action reads

𝑆< =

∫︁ Λ
𝑏

(d𝑝)

[︂
𝑍𝜓𝑖𝜓𝑖𝛾

𝜇𝑝𝜇𝜓𝑖 + 𝑍𝜑
1

2
𝑝2𝜑𝛼𝜑𝛼 +

1

2
(𝑟 + 𝛿𝑟)𝜑𝛼𝜑𝛼

]︂
+

∫︁ Λ
𝑏

(d𝑝1)(d𝑝2)(𝑔 + 𝛿𝑔)𝜑𝛼𝜓𝑖 [1𝛾 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗

+

∫︁ Λ
𝑏

(d𝑝1)(d𝑝2)(d𝑝3)(𝜆+ 𝛿𝜆)𝜑𝛼𝜑𝛼𝜑𝛽𝜑𝛽, (4.66)

where the momentum dependence of the fields has been suppressed for notational convenience
and 𝛿𝑟, 𝛿𝑔 and 𝛿𝜆 refer to corrections to the couplings. Additionally, we have added wave
function renormalizations 𝑍𝜓 and 𝑍𝜑 to encode corrections to the respective kinetic terms.
The corrections are obtained by integrating out the momentum shell 𝑞 ∈ [Λ/𝑏,Λ] in the
partition function

𝒵 =

∫︁
𝒟𝜑<𝒟𝜓<𝒟𝜓< e−𝑆0<

∫︁
𝒟𝜑>𝒟𝜓>𝒟𝜓> e−𝑆0>−𝑆𝑔−𝑆𝜆

= 𝒵0>

∫︁
𝒟𝜑<𝒟𝜓<𝒟𝜓< e−𝑆0<

⟨︀
𝑒−𝑆𝑔−𝑆𝜆

⟩︀
0
, (4.67)

where 𝒵0> again denotes the contribution of the fast modes to the non-interacting partition
function and ⟨︀

𝐴
⟩︀
0
=

1

𝑍0>

∫︁
𝒟𝜑> e−𝑆0> 𝐴 (4.68)

defines the Gaussian average over the fast modes. The most straightforward way to deal with
the average over the exponential is a perturbative expansion

⟨︀
𝑒−𝑆𝑔−𝑆𝜆

⟩︀
0
= 1−

⟨︀
𝑆𝑔 + 𝑆𝜆

⟩︀
0
+

1

2

⟨︀
(𝑆𝑔 + 𝑆𝜆)

2 ⟩︀
0
+ . . . , (4.69)

which in turn reduces the problem to the evaluation of a series of Gaussian averages over field
monomials. For small interactions, we can truncate the expansion at low order and expand
the resulting logarithm. After re-exponentiation, the partition function is then given by

𝒵 =

∫︁
𝒟𝜑<𝒟𝜓<𝒟𝜓< e−𝑆< , (4.70)
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with the effective action

𝑆< = 𝑆0< − ln
⟨︀
𝑒−𝑆𝑔−𝑆𝜆

⟩︀
0

= 𝑆0< − ln
(︁
1−

⟨︀
𝑆𝑔 + 𝑆𝜆

⟩︀
0
+

1

2

⟨︀
(𝑆𝑔 + 𝑆𝜆)

2 ⟩︀
0
+ . . .

)︁
= 𝑆0< +

⟨︀
𝑆𝑔 + 𝑆𝜆

⟩︀
0
− 1

2

⟨︀
(𝑆𝑔 + 𝑆𝜆)

2 ⟩︀
0
+ . . . (4.71)

For the problem at hand however, there is no obvious small parameter. Specifically, the non-
trivial fixed point might be located at strong couplings, which would require the evaluation
of many terms of the expansion (4.17) or a non-perturbative approach. A solution to this
problem is presented by the 𝜀-expansion [59]. The idea is as follows. Instead of considering a
fixed space-time dimension, we promote 𝐷 to a continuous variable. Assuming that the critical
point is located at some finite values 𝑔*, 𝜆* below the upper critical dimension, we expect both
to approach zero as 𝐷 → 𝐷𝑐 = 4, where the interactions become marginal and the new fixed
point is expected to merge with the Gaussian fixed point. Thus, for small deviations from the
upper critical dimension 𝜀 = 4−𝐷 the Gaussian scalings of the interactions read

𝑔(𝑏) = 𝑏𝜀/2𝑔, 𝜆(𝑏) = 𝑏𝜀𝜆, (4.72)

and we expect the fixed point values to be of order

𝑔2*, 𝜆*, 𝑟* = 𝒪(𝜀). (4.73)

Consequently, close to the upper critical dimension, the fixed point values are small and a
perturbative expansion in the interaction about the Gaussian fixed point is justified. To
linear order in 𝜀, it is then sufficient to truncate the expansion in Eq. (4.71), only keeping
the leading corrections for each term in the effective action (4.66), making the necessary
calculations manageable. To obtain results in the physical dimension 𝐷 = 3, we extrapolate
the results for small 𝜀 to 𝜀 = 1. Obviously, we cannot expect a linear approximation to give
numerically accurate results, since 𝜀 is not small here and we expect higher-order terms to
provide significant corrections to the critical exponents. However, the topology of the RG flow
generally does not [41]. Thus, while any numerical estimates from the 𝜀-expansion should be
treated with caution, it provides a powerful tool to classify universality classes and understand
the emergence of quantitatively different critical phenomena, depending on dimensionality
and symmetry of the underlying system. Additionally, systematic higher-order expansions,
coupled with appropriate resummation techniques, allow for rather precise approximations of
the critical exponents [41].
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Perturbative corrections and Feynman diagrams

Having established the validity of a perturbative approach, we now return to Eq. (4.71).
At first order, the expansion contains two terms,

⟨︀
𝑆𝜆
⟩︀
0

and
⟨︀
𝑆𝑔
⟩︀
0
. To get familiar with the

nature of the contributions arising from the expansion, we take a detailed look at the first-order
correction due to the self-interaction

⟨︀
𝑆𝜆
⟩︀
0
= 𝜆

∫︁ Λ

(d𝑝1)(d𝑝2)(d𝑝3)
⟨︀
𝜑𝛼𝜑𝛼𝜑𝛽𝜑𝛽

⟩︀
0
. (4.74)

Since the interaction contains fields of all momenta up to the cutoff 𝑝 ∈ [0,Λ], but only fast
modes 𝑝 ∈ [Λ/𝑏,Λ] are averaged over, we can rewrite the interaction in terms of slow and fast
modes, giving

⟨︀
𝑆𝜆
⟩︀
0
= 𝜆

∫︁ Λ

(d𝑝1)(d𝑝2)(d𝑝3)

[︃
𝜑𝛼<𝜑

𝛼
<𝜑

𝛽
<𝜑

𝛽
< +

⟨︀
𝜑𝛼>𝜑

𝛼
>𝜑

𝛽
>𝜑

𝛽
>

⟩︀
0

+2𝜑𝛼<𝜑
𝛼
<

⟨︀
𝜑𝛽>𝜑

𝛽
>

⟩︀
0⏟  ⏞  

𝐼𝑎

+4𝜑𝛼<𝜑
𝛽
<

⟨︀
𝜑𝛼>𝜑

𝛽
>

⟩︀
0⏟  ⏞  

𝐼𝑏

]︃
, (4.75)

where the equality follows from the different momentum support of fast and slow fields. We
see that momentum-shell integration results in three types of terms. The first term only
contains slow fields which survive the integration. This case recovers the slow part of the
initial interaction 𝑆𝜆 and could have been separated together with 𝑆0< in Eq. (4.67) from the
start. Conversely, the second term encompasses only fast fields 𝜑>, meaning that all fields
contribute to the average. Regardless of its actual value, this contribution adds a constant to
the partition function. Thus, it only produces a contribution to the analytic part of the effective
action, which we absorb into the functional integral measure, aligning with prior discussions.
We are primarily interested in the last two terms, denoted by 𝐼𝑎 and 𝐼𝑏. They both involve
two fast fields, which are integrated out, and two slow fields that remain after integration,
producing 𝒪(𝜆) corrections to the bosonic part of the Gaussian action. The prefactors are
the combinatorial weights of the terms, denoting in how many different ways these terms can
be formed. For example, for 𝐼𝑎, we could have also averaged over the 𝜑𝛼 fields, giving two
contributions. Similarly, 𝐼𝑏 can be constructed in four different ways. Note that formally, Eq.
(4.75) also contains terms with odd number of fast modes. However, Gaussian integrals over
odd powers of the integration variable vanish trivially, such that we can safely ignore these
contributions.
The evaluation of the interesting terms is straightforward, since they only contain two-point
averages. We start with the first term

𝐼𝑎 = 2𝜆

∫︁ Λ/𝑏

(d𝑝1)(d𝑝2)𝜑
𝛼(𝑝1)𝜑

𝛼(𝑝2)

∫︁ Λ

Λ/𝑏

(d𝑝3)(d𝑝4)
⟨︀
𝜑𝛽(𝑝3)𝜑

𝛽(𝑝4)
⟩︀
0
𝛿(𝑝1 + . . .+ 𝑝4), (4.76)
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where we have reintroduced the momentum conservation of the self-interaction and have set
the integral bounds to account for the different momentum support of fast and slow modes.
The two-point average is given by the propagator of the bosonic sector of the Gaussian action

⟨︀
𝜑𝛼(𝑝1)𝜑

𝛽(𝑝2)
⟩︀
0
=

1

𝑝21 + 𝑟
𝛿𝛼𝛽𝛿(𝑝1 + 𝑝2). (4.77)

After insertion into Eq. (4.76), the momentum conservation in the propagator resolves one
of the momentum-shell integrals, leaving us with a single integral over fast momenta 𝑞. The
𝛿-expression for the remaining momenta is simplified, giving

𝐼𝑎 = 2𝜆

∫︁ Λ/𝑏

(d𝑝1)(d𝑝2)𝜑
𝛼(𝑝1)𝜑

𝛼(𝑝2)𝛿(𝑝1 + 𝑝2)

∫︁ Λ

Λ/𝑏

(d𝑞)
1

𝑞2 + 𝑟
𝛿𝛽𝛽

=

∫︁ Λ/𝑏

(d𝑝)
1

2
𝜑𝛼(𝑝)𝜑𝛼(−𝑝)

∫︁ Λ

Λ/𝑏

(d𝑞)
8𝜆

𝑞2 + 𝑟
, (4.78)

where we have summed over the components 𝛽 = 1, 2 of the bosonic field. The remaining
slow part is quadratic in 𝜑𝛼 and adds up with its corresponding term in Eq. (4.66), thus
renormalizing the boson mass

𝛿𝑟
⃒⃒
𝐼𝑎

= 8𝜆

∫︁ Λ

Λ/𝑏

(d𝑞)
1

𝑞2 + 𝑟
. (4.79)

The expression for 𝐼𝑏 can be similarly obtained, also producing a correction to 𝑟. Thus, to
order 𝒪(𝜆) the momentum-shell integration produces an effective contribution to the boson
mass given by

𝛿𝑟
⃒⃒
𝜆
= 𝛿𝑟

⃒⃒
𝐼𝑎+𝐼𝑏

= 16𝜆

∫︁ Λ

Λ/𝑏

(d𝑞)
1

𝑞2 + 𝑟
. (4.80)

The evaluation of the integral will be discussed shortly.

The leading corrections to the other couplings can be obtained from higher-order terms in the
perturbation expansion, which generally contain averages over higher-order field monomials.
We have already seen in Sec. 4.1 that such averages can be resolved by application of Wick’s
theorem, enabling us to rewrite the 𝑛-point terms arising from the expansion as a sum over
all possible permutations of products of two-point averages. Since all resulting terms are
formally equivalent and produce the same contributons, this only adds additional combinatorial
factors. Wick’s theorem allows for a neat representation of the perturbative expansion in
terms of Feynman diagrams. The diagrammatic conventions in this work will loosely follow
the representation in Ref. [41]. To this end, we introduce graphical representations for the
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self-interaction and the boson propagator

α α

β β

λ = 𝜆𝜑𝛼(𝑝1)𝜑
𝛼(𝑝2)𝜑

𝛽(𝑝3)𝜑
𝛽(𝑝4)𝛿(𝑝1 + 𝑝2 + 𝑝3 + 𝑝4),

α β

p
= 𝜑𝛼(𝑝)𝜑𝛽(−𝑝) = 1

𝑝2 + 𝑟
𝛿𝛼𝛽. (4.81)

The interaction term 𝑆𝜆 is represented by a vertex with four emanating dotted lines, which de-
pict the bosonic fields in the interaction, commonly known as the tree-level vertex. Integration
over the momenta of the outgoing fields is assumed. The solid line at the vertex emphasizes
that the field indices 𝛼, 𝛽 appear twice and are summed over. In the Wick expansion, terms are
generated by pairing up two fields each, known as a contraction in QFT terminology, denoted
by

𝜑𝛼𝜑𝛽 ≡
⟨︀
𝜑𝛼𝜑𝛽

⟩︀
0

(4.82)

In the diagrammatic representation, contractions are realized by connecting pairs of outgo-
ing lines. In the corresponding integral expression, contracted fields are substituted by their
Gaussian propagator. Thus, contracted lines represent fast modes 𝜑>, while external lines rep-
resent slow modes 𝜑< which survive the momentum-shell integration. Similarly, we introduce
the tree-level vertex for the Yukawa interaction and the fermion propagator

α

i

j

g = 𝜆𝜑𝛼(𝑝1)𝜓𝑖(𝑝2) [1𝛾 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗(𝑝3)𝛿(𝑝1 + 𝑝2 + 𝑝3),

i j

p
= 𝜓𝑖(𝑝)𝜓𝑗(𝑝) = −𝑖𝛾

𝜇𝑝𝜇
𝑝2

𝛿𝑖𝑗, (4.83)

following the same guidelines as the prior definition. The fermion propagator is obtained from
the fermionic sector of the Gaussian action by Gaussian integration of the Grassmann variables
𝜓, 𝜓. Since a fermionic excitation is described by two variables, the fermion propagator is
directed, denoted by an arrow on the fermionic lines in the Feynman diagrams. This expresses
that only combinations ⟨𝜓𝜓⟩ can be contracted, whereas ⟨𝜓𝜓⟩ = ⟨𝜓𝜓⟩ = 0, limiting the
amount of contributions in the Wick expansion.

From these basic rules, so called Feynman rules, all terms in Eq. (4.71) can be systematically
expressed as diagrams and reorganized in a loop expansion [48]. We have seen that renormal-
ization corrections are produced by contributions where the fields are only partially integrated
out, corresponding to diagrams with external lines. For example, the contributions 𝐼𝑎 and 𝐼𝑏
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arise from diagrams (a) and (b) in Fig 4.1 by contracting two of the four fields in 𝑆𝜆. To linear
order in 𝜀, only the leading corrections contribute, corresponding to all diagrams with a single
internal loop. For the action (4.52), this amounts to the remaining diagrams depicted in Fig.
4.1, loop corrections to higher-order monomials can be omitted since those are irrelevant near
the upper critical dimension.

4.3.4 One-loop calculations

The calculation of the Feynman diagrams is straightforward. Contractions are replaced by
the appropriate propagators, carrying the momentum of the respective inner line. Due to
momentum conservation at each vertex, we have to perform one momentum-shell integral per
loop in the diagram. Additionally, each diagram receives a combinatorial weight that expresses
in how many different ways the diagram can be realized in the Wick expansion. Since we are
ultimately interested in the differential equations governing the RG flow, we will consider an
infinitesimally small momentum-shell here and in the forthcoming calculations, corresponding
to ln 𝑏≪ 1. Since the scale parameter only appears explicitly in the integral bounds, expansion
about ln 𝑏 = 0 gives ∫︁ Λ

Λ/𝑏

d𝑞𝑓(𝑞) ≃ Λ𝑓(Λ) ln 𝑏, (4.84)

which is linear in the logarithmic scale ln 𝑏. This reduces the integral to the evaluation of the
integrand at the cutoff, significantly easing the calculation of the momentum-shell integrals
we derive from the diagrammatic representation.

Boson propagator

We begin by calculating the corrections to the boson propagator, which is given by the
quadratic part of the action (4.52). This comprises three one-loop diagrams, (a)–(c) in Fig.
4.6. We have already derived and discussed the integral expressions for the first two diagrams
in Eq. (4.80). Due to the rotational invariance of the integrand, we can split off the angular
integration and use Eq. (4.84) to evaluate the remaining integral

𝛿𝑟
⃒⃒
𝜆
= 16𝜆

𝑆𝐷
(2𝜋)𝐷

∫︁ Λ

Λ/𝑏

d𝑞
𝑞𝐷−1

𝑞2 + 𝑟

= 16𝜆
𝑆𝐷

(2𝜋)𝐷
Λ𝐷−2

1 + 𝑟
Λ2

ln 𝑏, (4.85)

where 𝑆𝐷 denotes the surface area of the 𝐷-dimensional unit sphere. Diagram (c) arises from
the 𝑆2

𝑔 contribution of the perturbative expansion and is historically know as the boson self-
energy. Since it is a second-order term, it enters negatively into the effective action and obtains
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α, 0 β, 0

γ, 0 δ, 0
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q
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α, 0 δ, 0

α, 0 δ, 0
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q
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α, 0 γ, 0

α, 0 δ, 0
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q

(h)

α, 0 γ, 0

β, 0 δ, 0

q

q

(i)

Figure 4.6: All one-loop diagrams contributing to the effective action of the Gross-Neveu-
SO(2) model. Diagrams (a)–(d) denote corrections to the Gaussian part of the action,
whereas (e)–(i) provide corrections to the Yukawa and self-interaction vertices.

a factor of 1
2
. The corresponding integral expression reads

𝐼𝑐 = −𝑔
2

2

∫︁ Λ/𝑏

(d𝑝)

∫︁ Λ

Λ/𝑏

(d𝑞)𝜑𝛼𝜓𝑖[1𝛾 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗𝜑
𝛽𝜓𝑘[1𝛾 ⊗ (𝐿𝛽)𝑘𝑙]𝜓𝑙

=
𝑔2

2

∫︁ Λ/𝑏

(d𝑝)𝜑𝛼𝜑𝛽
∫︁ Λ

Λ/𝑏

(d𝑞) tr
(︁
[1𝛾 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗𝜓𝑘[1𝛾 ⊗ (𝐿𝛽)𝑘𝑙]𝜓𝑙𝜓𝑖

)︁
, (4.86)

where we have used 𝜓𝜓 = tr(𝜓𝜓) and the anticommuting properties of the fermionic fields.
The next step is to replace the contractions by fermionic propagators with momenta 𝑞 and
𝑝+ 𝑞, giving

𝐼𝑐 =
𝑔2

2

∫︁ Λ/𝑏

(d𝑝)𝜑𝛼𝜑𝛽
∫︁ Λ

Λ/𝑏

(d𝑞) tr
(︁
[1𝛾 ⊗ (𝐿𝛼)𝑖𝑗]

𝑖𝛾𝜇𝑞𝜇
𝑞2

𝛿𝑗𝑘[1𝛾 ⊗ (𝐿𝛽)𝑘𝑙]
𝑖𝛾𝜇(𝑝𝜇 + 𝑞𝜇)

(𝑝+ 𝑞)2
𝛿𝑙𝑖

)︁
= −𝑔

2

2

∫︁ Λ/𝑏

(d𝑝)𝜑𝛼𝜑𝛽(𝐿𝛼)𝑖𝑗(𝐿
𝛽)𝑗𝑖

∫︁ Λ

Λ/𝑏

(d𝑞) tr

[︂
𝛾𝜇𝑞𝜇(𝛾

𝜈𝑝𝜈 + 𝛾𝜈𝑞𝜈)

𝑞2(𝑝+ 𝑞)2

]︂
= −𝑔

2

2

∫︁ Λ/𝑏

(d𝑝)𝜑𝛼𝜑𝛽(𝐿𝛼)𝑖𝑗(𝐿
𝛽)𝑗𝑖

∫︁ Λ

Λ/𝑏

(d𝑞)
𝑝𝜇𝑞

𝜇 + 𝑞2

𝑞2(𝑝+ 𝑞)2
tr(1𝛾), (4.87)

where we have used the general properties of the Dirac matrices to resolve the expression
under the trace in the last line. The remaining trace over the unit matrix is trivial, giving
tr(1𝛾) = 𝑑𝛾. Additionally, there is a group-theoretical part [60] connected to the algebra of the
SO(3) generators 𝐿𝛼. From their explicit form given in Eq. (3.30) we straightforwardly obtain
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(𝐿𝛼)𝑖𝑗(𝐿
𝛽)𝑗𝑖 = tr(𝐿𝛼𝐿𝛽) = 2𝛿𝛼𝛽, reducing Eq. (4.87) to

𝐼𝑐 = −2𝑑𝛾𝑔
2

∫︁ Λ/𝑏

(d𝑝)
1

2
𝜑𝛼𝜑𝛼

∫︁ Λ

Λ/𝑏

(d𝑞)
𝑝𝜇𝑞

𝜇 + 𝑞2

𝑞2(𝑝+ 𝑞)2
(4.88)

In contrast to the first two diagrams, this expression retains an explicit momentum-dependence
after integration, making the momentum-shell integral rather difficult to solve. Here, we make
use of the fact that only the terms to lowest order in the surviving momenta are relevant at
the Gaussian fixed point near four dimensions. With

1

(𝑝+ 𝑞)2
=

1

𝑞2

(︂
1− 2𝑝𝜇𝑞

𝜇

𝑞2
− 𝑝2

𝑞2
+

4(𝑝𝜇𝑞
𝜇)2

𝑞4
+𝒪(𝑝3)

)︂
, (4.89)

we can expand the integrand up to order 𝒪(𝑝2), giving

𝐼𝑐 = −2𝑑𝛾𝑔
2

∫︁ Λ/𝑏

(d𝑝)
1

2
𝜑𝛼𝜑𝛼

∫︁ Λ

Λ/𝑏

(d𝑞)

[︂
1

𝑞2
− 𝑝𝜇𝑞

𝜇

𝑞4
− 𝑝2

𝑞4
+

2(𝑝𝜇𝑞
𝜇)2

𝑞6
+𝒪(𝑝3)

]︂
. (4.90)

Higher-order momentum contributions scale to zero near the critical point and can be safely
ignored. The first and the third term of the integrand are rotationally invariant and can
be solved similarly to Eq. (4.85). The second term is odd in 𝑞 and thus vanishes under
momentum-shell integration. The fourth term requires additional consideration. With∫︁

(d𝑞)𝑞𝜇𝑞
𝜈 =

𝛿𝜈𝜇
𝐷

𝑆𝐷
(2𝜋)𝐷

∫︁
d𝑞𝑞𝐷+1, (4.91)

which can be proven by elementary integration in Cartesian coordinates, we can rewrite the
momentum integral∫︁ Λ

Λ/𝑏

(d𝑞)
2(𝑝𝜇𝑞

𝜇)2

𝑞6
= 2𝑝𝜈𝑝

𝜇

∫︁ Λ

Λ/𝑏

(d𝑞)
𝑞𝜇𝑞

𝜈

𝑞6
= 𝑝2

2

𝐷

𝑆𝐷
(2𝜋)𝐷

∫︁ Λ

Λ/𝑏

d𝑞𝑞𝐷−5. (4.92)

With that, Eq. (4.90) simplifies to

𝐼𝑐 = −2𝑑𝛾𝑔
2

∫︁ Λ/𝑏

(d𝑝)
1

2
𝜑𝛼𝜑𝛼

𝑆𝐷
(2𝜋)𝐷

∫︁ Λ

Λ/𝑏

d𝑞

[︂
𝑞𝐷−3 + 𝑝2

(︂
2

𝐷
− 1

)︂
𝑞𝐷−5

]︂
= −2𝑑𝛾𝑔

2

∫︁ Λ/𝑏

(d𝑝)
1

2
𝜑𝛼𝜑𝛼

𝑆𝐷
(2𝜋)𝐷

[︂
Λ𝐷−2 − 1

2
𝑝2Λ𝐷−4

]︂
ln 𝑏, (4.93)

producing two distinct corrections to the effective action. The first term, similar to the first two
diagrams, decouples from the remaining momenta and provides a static contribution, thereby
renormalizing the boson mass

𝛿𝑟
⃒⃒
𝑔2

= −2𝑑𝛾𝑔
2 𝑆𝐷
(2𝜋)𝐷

Λ𝐷−2 ln 𝑏. (4.94)
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The second term contains a quadratic momentum-dependence and thus provides a contribution
to the kinetic term, giving the wave-function renormalization

𝑍𝜑 = 1 + 𝑑𝛾𝑔
2 𝑆𝐷
(2𝜋)𝐷

Λ𝐷−4 ln 𝑏. (4.95)

Note that all corrections we have determined up to now contain the same prefactor 𝑆𝐷/(2𝜋)𝐷.
It is convenient to remove the prefactor and the explicit dependence on the cutoff Λ by appro-
priate rescaling of the parameters

𝑟

Λ2
→ 𝑟,

𝑆𝐷
(2𝜋)𝐷

Λ𝐷−4𝜆→ 𝜆,
𝑆𝐷

(2𝜋)𝐷
Λ𝐷−4𝑔2 → 𝑔2, (4.96)

which will also apply to all following calculations. With that, the full one-loop correction to
the boson propagator is given by

𝛿𝑟 =

(︂
16𝜆

1

1 + 𝑟
− 4𝑁𝐹

3
𝑔2
)︂
ln 𝑏, (4.97)

𝑍𝜑 = 1 +
2𝑁𝐹

3
𝑔2 ln 𝑏, (4.98)

where we have substituted 𝑁𝐹 = 3
2
𝑑𝛾, as discussed, to allow for arbitrary number of fermions.

Thus, the boson mass receives corrections due to both interactions, whereas changes in the
wave-function renormalization are only induced by the Yukawa interaction at one-loop order.

Fermion propagator

We continue with the renormalization of the fermion propagator. At one-loop order only
diagram (d), the fermion self-energy, in Fig. 4.6, contributes a correction to the fermion
bilinear in the action (4.54). The corresponding integral expression reads

𝐼𝑑 = −𝑔
2

2

∫︁ Λ/𝑏

(d𝑝)

∫︁ Λ

Λ/𝑏

(d𝑞)𝜑𝛼𝜓𝑖[1𝛾 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗𝜑
𝛽𝜓𝑘[1𝛾 ⊗ (𝐿𝛽)𝑘𝑙]𝜓𝑙

= 𝑔2(𝐿𝛼)𝑖𝑗(𝐿
𝛼)𝑗𝑙

∫︁ Λ/𝑏

(d𝑝)

∫︁ Λ

Λ/𝑏

(d𝑞)𝜓𝑖𝑖𝛾
𝜇𝑞𝜇𝜓𝑙

1

𝑞2 [(𝑝− 𝑞)2 + 𝑟]
, (4.99)

where we have again substituted the contractions with the appropriate propagators. The
fermionic fields can be contracted in two different ways, giving an additional factor of two.
The momentum expansion of the integrand

𝑞𝜇

𝑞2
1

(𝑝− 𝑞)2 + 𝑟
=

𝑞𝜇

𝑞2(𝑞2 + 𝑟)
+

2𝑞𝜇𝑞𝜈𝑝
𝜈

𝑞2(𝑞2 + 𝑟)2
+𝒪(𝑝2), (4.100)

can already be truncated at linear order, since for the fermionic fields even contributions
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with quadratic momentum are irrelevant near four dimensions. The evaluation of the integral
proceeds in a similar fashion to the previous one. After rescaling of all parameters, Eq. (4.99)
reads

𝐼𝑑 =
𝑔2

2

1

(1 + 𝑟)2
(𝐿𝛼)𝑖𝑗(𝐿

𝛼)𝑗𝑙

∫︁ Λ/𝑏

(d𝑝)𝜓𝑖𝑖𝛾
𝜇𝑝𝜇𝜓𝑖 ln 𝑏. (4.101)

A peculiarity appears when studying the group-theoretical factor

(𝐿𝛼)𝑖𝑗(𝐿
𝛼)𝑗𝑙 = 𝐿𝛼𝐿𝛼 =

⎛⎜⎝1 0 0

0 1 0

0 0 2

⎞⎟⎠ (4.102)

which turns out not to be proportional to the unit matrix for 𝛼 = 𝑥, 𝑦. This constitutes one of
the main qualitative differences between the SO(2)-symmetric model considered in this work
and the Gross-Neveu-SO(3) model introduced in Ref. [23]. Here, the order parameter has two
components and thus only couples to two of the three SO(3) generators. Consequently, we
obtain two distinct wave-function renormalizations

𝑍𝜓,12 = 1 +
𝑔2

2

1

(1 + 𝑟)2
ln 𝑏, (4.103)

𝑍𝜓,3 = 1 + 𝑔2
1

(1 + 𝑟)2
ln 𝑏, (4.104)

where 𝑍𝜓,1 provides the renormalization of the kinetic term for fermion flavors 𝜓1, 𝜓2, whereas
flavor 𝜓3 is renormalized by 𝑍𝜓,2.

Vertex corrections

Effective contributions to the interactions only arise at higher order in perturbation theory.
Similar to the second-order corrections to the bosonic and fermionic propagator, the one-loop
expressions depend non-trivially on momentum. However, for interaction corrections near four
dimensions, only the static part produces relevant contributions and the momentum-dependent
part of the vertex corrections can be fully neglected [59], meaning that external momenta are
assumed to vanish. This amounts to the calculation of diagrams (e)–(i) in Fig. 4.6. Since the
evaluation of the diagrams follows roughly the same steps as before, we only state the results
here. The Yukawa vertex receives a single one-loop correction, given by diagram (e), arising
from contraction of 𝑆3

𝑔 . The corresponding integral reads
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𝐼𝑒 =
𝑔3

6

∫︁ Λ/𝑏

(d𝑝1)(d𝑝2)

∫︁ Λ

Λ/𝑏

(d𝑞)×

× 𝜑𝛼𝜓𝑖[1𝛾 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗𝜑
𝛽𝜓𝑘[1𝛾 ⊗ (𝐿𝛽)𝑘𝑙]𝜓𝑙𝜑

𝛾𝜓𝑚[1𝛾 ⊗ (𝐿𝛽)𝑚𝑛]𝜓𝑛

= −𝑔3 1

1 + 𝑟

∫︁ Λ/𝑏

(d𝑝1)(d𝑝2)𝜑
𝛼𝜓𝑚[1𝛾 ⊗ (𝐿𝛽)𝑚𝑙]𝜓𝑙 ln 𝑏, (4.105)

from where we can read off the renormalization correction to the Yukawa interaction

𝛿𝑔 = −𝑔3 1

1 + 𝑟
ln 𝑏. (4.106)

The quartic self-interaction receives corrections from two types of diagrams. The first is given
by diagram (f), arising from contraction of 𝑆4

𝑔 , and thus only depends on the Yukawa coupling
𝑔. We get

𝐼𝑒 = −𝑔
4

24

∫︁ Λ/𝑏

(d𝑝1)(d𝑝2)(d𝑝3)

∫︁ Λ

Λ/𝑏

(d𝑞)×

× 𝜑𝛼𝜓𝑖[1𝛾 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗𝜑
𝛽𝜓𝑘[1𝛾 ⊗ (𝐿𝛽)𝑘𝑙]𝜓𝑙𝜑

𝛾𝜓𝑚[1𝛾 ⊗ (𝐿𝛽)𝑚𝑛]𝜓𝑛𝜑
𝛿𝜓𝑜[1𝛾 ⊗ (𝐿𝛽)𝑜𝑝]𝜓𝑝

= 𝑔4
𝑁𝐹

3

∫︁ Λ/𝑏

(d𝑝1)(d𝑝2)(d𝑝3)𝜑
𝛼𝜑𝛼𝜑𝛿𝜑𝛿 ln 𝑏, (4.107)

where we have again substituted 𝑁𝐹 = 3
2
𝑑𝛾. The three remaining diagrams (g)–(i) are obtained

by different contractions of 𝑆2
𝜆. The diagrams can be evaluated simultaneously

𝐼𝑔 + 𝐼ℎ + 𝐼𝑖 = −𝜆
2

2

∫︁ Λ/𝑏

(d𝑝1)(d𝑝2)(d𝑝3)

∫︁ Λ

Λ/𝑏

(d𝑞)×

×
(︁
𝜑𝛼𝜑𝛼𝜑𝛽𝜑𝛽𝜑𝛾𝜑𝛾𝜑𝛿𝜑𝛿 + 𝜑𝛼𝜑𝛼𝜑𝛽𝜑𝛽𝜑𝛾𝜑𝛾𝜑𝛿𝜑𝛿 + 𝜑𝛼𝜑𝛼𝜑𝛽𝜑𝛽𝜑𝛾𝜑𝛾𝜑𝛿𝜑𝛿

)︁
= −40𝜆2

1

(1 + 𝑟)2

∫︁ Λ/𝑏

(d𝑝1)(d𝑝2)(d𝑝3)𝜑
𝛼𝜑𝛼𝜑𝛽𝜑𝛽 ln 𝑏, (4.108)

providing the leading correction in 𝜆 to the self-interaction. Together with the result from Eq.
(4.107), we can read off the renormalization to the quartic coupling

𝛿𝜆 =

(︂
𝑁𝐹

3
𝑔4 − 40𝜆2

1

(1 + 𝑟)2

)︂
ln 𝑏. (4.109)

RG transformation

Having obtained all the necessary one-loop corrections for our ansatz (4.66), we now proceed
with the second and third step of the RG procedure. In analogy to the procedure for the
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Gaussian theory in Sec. 4.3.2, we first rescale momenta 𝑏𝑝 → 𝑝 to bring the cutoff of the
effective action back to Λ, giving

𝑆< =

∫︁ Λ

(d𝑝)

[︂
𝑏−𝐷−1𝑍𝜓,1 𝑖𝜓𝑖𝛾

𝜇𝑝𝜇𝜓𝑖⏟  ⏞  
𝑖=1,2

+𝑏−𝐷−1𝑍𝜓,2𝑖𝜓3𝛾
𝜇𝑝𝜇𝜓3

+ 𝑏−𝐷−2𝑍𝜑
1

2
𝑝2𝜑𝛼𝜑𝛼 + 𝑏−𝐷

1

2
(𝑟 + 𝛿𝑟)𝜑𝛼𝜑𝛼

]︂
+

∫︁ Λ

(d𝑝1)(d𝑝2)𝑏
−2𝐷(𝑔 + 𝛿𝑔)𝜑𝛼𝜓𝑖 [1𝛾 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗,

+

∫︁ Λ

(d𝑝1)(d𝑝2)(d𝑝3)𝑏
−3𝐷(𝜆+ 𝛿𝜆)𝜑𝛼𝜑𝛼𝜑𝛽𝜑𝛽. (4.110)

As usual, the field renormalization is defined as to keep the kinetic terms constant under
RG transformations. In contrast to the Gaussian theory, where the decoupling of momentum
scales ensures that the fields scale with their canonical dimension, the field renormalization is
modified by the appearance of non-trivial wave-function renormalizations

𝜑→ 1√︀
𝑍𝜑
𝑏
𝐷+2
2 𝜑, 𝜓1,2 →

1√︀
𝑍𝜓,12

𝑏
𝐷+1
2 𝜓1,2, 𝜓3 →

1√︀
𝑍𝜓,3

𝑏
𝐷+1
2 𝜓3. (4.111)

Gaussian field renormalization is recovered for 𝑍 = 1. For ln 𝑏 ≪ 1 we can expand the
wave-function renormalization in scaling form

𝑍𝛼 = eln𝑍𝛼 = e𝜂𝛼 ln 𝑏 = 𝑏𝜂𝛼 , (4.112)

where we have introduced the flowing anomalous dimension [28]

𝜂𝛼 =
d ln𝑍𝛼
d ln 𝑏

⃒⃒⃒
ln 𝑏=0

, (4.113)

by which the field renormalizations simplify to

𝜑→ 𝑏
𝐷+2−𝜂𝜑

2 𝜑, 𝜓1,2 → 𝑏
𝐷+1−𝜂𝜓,12

2 𝜓1,2, 𝜓3 → 𝑏
𝐷+1−𝜂𝜓,3

2 𝜓3, (4.114)

with the explicit values of the flowing anomalous dimensions being

𝜂𝜑 =
2𝑁𝐹

3
𝑔2, 𝜂𝜓,12 =

𝑔2

2

1

(1 + 𝑟)2
, 𝜂𝜓,3 = 𝑔2

1

(1 + 𝑟)2
. (4.115)

As the name already suggests, we can identify the fixed point value of the flowing anomalous
dimension with the critical exponent defined via Eq. (2.8). This follows from inserting the field
renormalization into the homogeneity relation of the correlation function at the critical point
[28]. Therefore, we refer to both as anomalous dimensions from here on. With Eq. (4.110),
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the renormalized effective action reads

𝑆ren =

∫︁ Λ

(d𝑝)

[︂
𝑖𝜓𝑖𝛾

𝜇𝑝𝜇𝜓𝑖 +
1

2
𝑝2𝜑𝛼𝜑𝛼 +

1

2
𝑟(𝑏)𝜑𝛼𝜑𝛼

]︂
+ 𝑔(𝑏)

∫︁ Λ

(d𝑝1)(d𝑝2)𝜑
𝛼𝜓𝑖 [1𝛾 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗,

+ 𝜆(𝑏)

∫︁ Λ

(d𝑝1)(d𝑝2)(d𝑝3)𝜑
𝛼𝜑𝛼𝜑𝛽𝜑𝛽, (4.116)

taking the same form as the initial momentum-space action (4.53). Collecting all one-loop
corrections and inserting 𝜀 = 4−𝐷, we finally obtain the renormalized couplings

𝑟(𝑏) = 𝑏2−𝜂𝜑
[︂
𝑟 +

(︂
16𝜆

1

1 + 𝑟
− 4𝑁𝐹

3
𝑔2
)︂
ln 𝑏

]︂
, (4.117)

𝑔(𝑏) = 𝑏
1
2
(𝜀−𝜂𝜑−𝜂𝜓,12−𝜂𝜓,3)

(︂
𝑔 − 𝑔3

1

1 + 𝑟
ln 𝑏

)︂
, (4.118)

𝜆(𝑏) = 𝑏𝜀−2𝜂𝜑

[︂
𝜆+

(︂
𝑁𝐹

3
𝑔4 − 40𝜆2

1

(1 + 𝑟)2

)︂
ln 𝑏

]︂
. (4.119)

4.3.5 RG flow and critical exponents

The differential recursion relations governing the RG flow can now be obtained by differentiat-
ing the renormalized couplings (4.117)–(4.119) with respect to the logarithmic scale parameter
ln 𝑏. At one-loop order, the flow equations of the squared Yukawa coupling 𝑔2 and the self-
interaction of the order parameter 𝜆 read

d𝑔2

d ln 𝑏
= 𝑔2(𝜀− 𝜂𝜑 − 𝜂𝜓,1 − 𝜂𝜓,2)− 2𝑔4

1

1 + 𝑟
, (4.120)

d𝜆

d ln 𝑏
= 𝜆(𝜀− 2𝜂𝜑) +

𝑁𝐹

3
𝑔4 − 40𝜆2

1

(1 + 𝑟)2
, (4.121)

where 𝜂𝜑, 𝜂𝜓,12 and 𝜂𝜓,3 again refer to the anomalous dimensions defined in Eq. (4.115).
Equally, the flow of the order parameter mass 𝑟 is given by

d𝑟

d ln 𝑏
= 𝑟(2− 𝜂𝜑)−

4𝑁𝐹

3
𝑔2 + 16𝜆

1

1 + 𝑟
. (4.122)

Since the microscopic theory only has a single tunable parameter, the RG fixed point de-
scribing the phase transition has one relevant direction. In the context of the 𝜀-expansion,
all parameters are considered small and we can expand the non-linearities appearing in the
flow equations and anomalous dimensions. Since the expansion of the non-linear factors only
produces 𝑟-dependent contributions at subleading order, this effectively fixes 𝑟* = 0 to leading
order in 𝜀. Within this approximation, we obtain the beta functions for the couplings 𝑔2 and
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𝜆 at criticality

𝛽𝑔2 = 𝑔2(𝜀− 𝜂𝜑 − 𝜂𝜓,1 − 𝜂𝜓,2)− 2𝑔4, (4.123)

𝛽𝜆 = 𝜆(𝜀− 2𝜂𝜑) +
𝑁𝐹

3
𝑔4 − 40𝜆2. (4.124)

Since 𝑟 decouples from both beta functions (4.123) and (4.124), it turns out to be a relevant
direction for all fixed points at 𝒪(𝜀). Consequently, the critical manifold is fixed at 𝑟 = 0 and
the fixed point associated with the transition is given by the fully stable IR fixed point of the
beta functions for 𝑔2 and 𝜆. The inverse of the correlation length exponent 𝑦 = 1

𝜈
can then be

computed by linearizing the flow of the order parameter mass 𝑟, given by Eq. (4.122), near
the fixed point

𝑦 =
1

𝜈
=

𝜕

𝜕𝑟

d𝑟

d ln 𝑏

⃒⃒⃒⃒
*
= 2− 2𝑔2* − 16𝜆*, (4.125)

where we again have set 𝑟* = 0 to leading order in 𝜀. This is a recurring pattern in the
𝜀-expansion and one of the reasons why we are able to do analytical calculations based on
the momentum-shell RG. In principle, we could have assumed 𝑟* = 0 from the start, severely
simplifying the discussion. We make use of this feature in the following chapter to study a more
complicated model, whose critical behavior would be inaccessible without this simplification.
However, beyond the leading order, we expect the fixed point to acquire a finite value 𝑟*, such
that the critical manifold is generally curved.

As illustrated in Fig. 4.7, the flow of the couplings 𝑔2 and 𝜆 in the critical manifold features
several fixed points. Linearizing the RG flow in the vicinity of the fixed points gives

d

d ln 𝑏

(︃
𝛿𝑔2

𝛿𝜆

)︃
=

(︃
𝜀− 11𝑔2* 0

2𝑔2* − 4𝜆* 𝜀− 4𝑔2* − 80𝜆*

)︃(︃
𝛿𝑔2

𝛿𝜆

)︃
+𝒪(𝑔4, 𝜆2), (4.126)

where the coefficients are given by the Jacobian of the beta functions for 𝑔2 and 𝜆, evaluated at
the fixed point. The eigenvectors of the linearized RG flow determine relevant and irrelevant di-
rections of the fixed point, given by positive and negative eigenvalues, respectively. For 𝑔2 = 0,
two fixed points are found, corresponding to the Gaussian fixed point at (𝑔2*, 𝜆*) = (0, 0), which
is fully unstable and the O(2) Wilson-Fisher fixed point at (𝑔2*, 𝜆*) = (0, 𝜀

40
) + 𝒪(𝜀2), which

is stable in the 𝜆 direction, but unstable against small Yukawa couplings 𝑔2. The appear-
ance of the Wilson-Fisher fixed point is no surprise, as setting 𝑔 = 0 in the action (4.52)
decouples the fermionic degrees of freedom from the order parameter field and reduces to the
Landau-Ginzburg-Wilson action of a two-component order parameter field, whose criticality is
described by the O(2) Wilson-Fisher fixed point. Thus, we expect the fixed point to be charac-
terized by the same critical exponents as well as a vanishing fermionic anomalous dimensions
𝜂𝜓,12 and 𝜂𝜓,3 to all orders in 𝜀, whose appearance can be fully attributed to the Yukawa
coupling. Evaluation of Eq. (4.125) and calculation of the boson anomalous dimension given
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Figure 4.7: RG flow in the critical surface of the Gross-Neveu-SO(2) model. The Gaussian
and O(2)-Wilson-Fisher fixed points both turn out to be unstable against Yukawa inter-
actions. The critical fixed point is located at finite interactions (𝑔2*, 𝜆*) = ( 2

11𝜀,
3+

√
649

880 𝜀),
giving the critical exponents 1

𝜈 = 2 − 0.881𝜀 and 𝜂𝜑 = 2
11𝜀. A fourth fixed point is located

at unphysical negative self-interactions and can be safely ignored, as discussed in the main
text.

in Eq. (4.115) gives

𝑦 =
1

𝜈
= 2− 0.4𝜀+𝒪(𝜀2),

𝜂𝜑 = 0,
(4.127)

which precisely agrees with the one-loop results at linear order in 𝜀 for the O(2) Wilson-Fisher
universality class [30]. Thus, the inclusion of the Yukawa interaction in the action may be seen
as the addition of an extra relevant coupling that drives the criticality away from Wilson-Fisher
type to a new universality class.
Additionally, the RG flow admits a fixed point at finite Yukawa couplings 𝑔2, which is fully
IR stable and thus describes the critical point of the action (4.52). To leading order in 𝜀, the
fixed point values of the couplings are

(𝑔2*, 𝜆*) =

(︃
6

4𝑁𝐹 + 21
,
−4𝑁𝐹 +

√︀
16𝑁2

𝐹 + 1752𝑁𝐹 + 441 + 21

80(4𝑁𝐹 + 21)

)︃
𝜀+𝒪(𝜀2). (4.128)

The critical exponents for the relevant case of 𝑁𝐹 = 3 fermions, which describes criticality in
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Figure 4.8: RG flow of the Gross-Neveu-SO(2) model away from the critical surface for
the order parameter mass 𝑟. All couplings flow towards the fixed point after only a few RG
iterations. Systems far away from the fixed point only stay in its vicinity for a few iterations,
whereas systems close to criticality stay for many iterations, thus providing a microscopic
explanation for universal behavior.

the Kitaev-XY spin-orbital model, are then given by

1

𝜈
= 2− 0.881𝜀+𝒪(𝜀2), (4.129)

𝜂𝜑 =
4

11
𝜀+𝒪(𝜀2), (4.130)

𝜂𝜓,1 =
1

11
𝜀+𝒪(𝜀2), (4.131)

𝜂𝜓,2 =
2

11
𝜀+𝒪(𝜀2). (4.132)

Thus, two numerical estimates for the correlation length exponent 𝜈 can be found. First, a
direct calculation from Eq. (4.125) gives

𝜈 =
1

𝑦
=

1

2− 0.881𝜀
. (4.133)

A second, possibly more rigorous estimate is given by an expansion of the correlation length
exponent to linear order in 𝜀

𝜈 =
1

𝑦
=

1

2
+ 0.220𝜀+𝒪(𝜀2), (4.134)
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𝜀 = 1 𝜈 𝜂𝜑 𝜂𝜓,12 𝜂𝜓,3 𝛼 𝛽 𝛾 𝛿

(a) 0.894 4/11 1/11 2/11 0.212 0.162 1.463 10

(b) 0.720 4/11 1/11 2/11 0.560 0.131 1.178 10

Table 4.2: Critical exponents of the Gross-Neveu-SO(2)* universality class for 𝑁𝐹 = 3 in
𝐷 = 3 space-time dimensions. (a) refers to the value obtained from the direct calculation in
Eq. (4.133), whereas (b) stems from the proper 𝒪(𝜀) approximation given by Eq. (4.134).
Surprisingly, the exponent for the critical isotherm 𝛿 = 10 agrees for both approximations.
The fermion anomalous dimensions are listed for completeness and are not measurable in
the fractionalized theory.

which is consistent with the preceding discussion where we have neglected all but the leading
order terms in 𝜀. Extrapolating to 𝜀 = 1, the values of the above critical exponents for
the physically relevant case of a (2+1)-dimensional space-time can be obtained. With the
hyperscaling relations given by Eqs. (2.12) and (2.13), the universal critical exponents 𝛼, 𝛽, 𝛾
and 𝛿 of the U(1) symmetry-breaking transition can be derived. Numerical estimates for the
critical exponents can be read off of Table 4.2. Interestingly, the critical exponent 𝛿, describing
the critical isotherm, here giving the magnetization curve at the critical coupling 𝐽𝑐, evaluates
to 𝛿 = 10 in both approximations. For completeness, let us note that there is a fourth fixed
point, located at negative quartic interaction 𝜆. Since the effective potential for the order
parameter becomes unbound from below for 𝜆 < 0, such a fixed point is deemed unphysical.
Moreover, Fig. 4.7 shows that no physical theories flow into the unphysical sector, so that this
fixed point can be safely ignored.

Away from the critical manifold, i. e. for finite renormalized mass 𝑟, the renormalization group
flow can be integrated numerically for suitable initial conditions for the couplings 𝑔0, 𝜆0 and 𝑟0,
which represent the non-universal couplings of a specific microscopic theory. To understand
the behavior of theories near criticality, it is instructive to consider the RG trajectory of a
theory near the critical manifold but away from the stable fixed point. For the flow relevant
to the spin-orbital model, i. e. 𝑁𝐹 = 3 and 𝜀 = 1, the evolution of 𝑟 and 𝑔2 under repeated
iterations of the renormalization group for such initial parameters is depicted in Fig. 4.8.
We observe that the flow of the boson mass divides into two sectors, corresponding to 𝑟

aprroaching positive or negative infinity, respectively. Here, the sector which flows towards
𝑟 → ∞ corresponds to the symmetric phase, while the sector with 𝑟 → −∞ describes the
symmetry-broken phase. Another important observation is given by the rate of evolution
under repeated RG transformations in dependence of its distance to the critical point. While
large deviations from the critical value 𝑟𝑐 approach infinity after only a few renormalization
group iterations, initial values close to 𝑟𝑐, stay near the critical point for many iterations.
This also justifies the identification of the fixed point criticality with the physical behavior
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close to the phase transition and provides a microscopic explanation for the phenomenon of
universality. Theories in the vicinity of the critical point will need infinite renormalization
group iterations to approach infinity, and thus, their behavior at all length scales is governed
by the linearized flow of the IR stable fixed point in the critical manifold.
Note that in the spin-orbital model, the fermionic excitations are fractionalized. The main
consequence is that single-fermion excitations are not gauge invariant and thus forbidden in
the spectrum. Thus, in principle, the fermion anomalous dimensions are not measurable. This
defines a new type of fractionalized universality class, coined Gross-Neveu-SO(2)*. Due to
gauge invariance of the order parameter and its excitations, both the correlation length expo-
nent 𝜈 and the boson anomalous dimension 𝜂𝜑 agree with the values for the non-fractionalized
universality class. Consequently, the hyperscaling relations imply that the macroscopic criti-
cal exponents also agree. This is in stark contrast to their bosonic O(n)* counterparts, where
the absence of a gauge-invariant local order parameter gives rise to highly nontrivial critical
behavior [25]. Still, due to a mapping of the scaling dimensions of a conformal field theory
to its finite-size spectrum on a torus, it is still possible to physically differentiate between
the fractionalized GN-SO(2)* and its trivial counterpart. Within this approach, fractionalized
universality classes are characterized by missing energy levels in their torus spectrum, cor-
responding to the scaling dimensions of operator that are not gauge-invariant. Additionally,
the spectrum of the conformal field theory is expected to feature a topological ground-state
degeneracy, emphasizing the topological nature of the quantum critical point [25].



5 Anisotropic Kitaev spin-orbital
model

Having developed the necessary methods in detail in the previous chapter, the stage is now
set to take a closer look at a more interesting model, which is the anisotropic Kitaev spin-
orbital model defined via Eq. (3.36), where an independent Ising interaction along the 𝑧-axis
in the spin sector is introduced in addition the XY term. As we have already seen in Sec.
3.2, The model encompasses both the model discussed in the previous chapter, as well as the
SU(2)-symmetric model introduced in Ref. [23] as limiting cases and allows for the continuous
deformation of one into the other by introducing an easy-plane anisotropy. Since both of these
models have been shown to support paramagnetic phases that are adiabatically connected to
the exact solution of the SU(2)-symmetric model given in Eq. (3.16) at weak perturbations, we
expect the same to happen for the region between the two theories in the extended parameter
space of the anisotropic model. This suggests the appearance of a line of symmetry-breaking
transitions at strong couplings with finite anisotropy and the question naturally arises as to
which universality class describes the critical behavior at this transition line. For the study
of critical phenomena, the anisotropic model is particularly interesting due to the presence of
two tunable parameters in the theory. As such, RG fixed points with two relevant directions
become physically accessible, facilitating the appearance of multicritical behavior in the phase
diagram.

The discussion of the critical behavior will proceed in a similar manner to the one in the
previous chapter. First we uncover the mean-field phase diagram on the lattice and characterize
all appearing phases in Sec. 5.1, before proceeding with the RG analysis of the low-energy
effective field theory in Sec. 5.2 to obtain the equations governing the RG flow, which is
shown to exhibit various critical regimes and supports multiple critical points with different
associated exponents.
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5.1 Majorana mean-field theory

5.1.1 Mean-field Hamiltonian

In the lattice formulation, an approriate mean-field description of the anisotropic Kitaev spin-
orbital model (3.36) can again be derived from the Majorana representation. Assuming that
the ground-state is located in the flux-free sector 𝑢𝑖𝑗 = +1 of the spin-orbital Hamiltonian
(3.36), we get

ℋext
𝐾 = 𝐾

∑︁
⟨𝑖𝑗⟩

𝑖𝑐⊺𝑖 𝑐𝑗 + 𝐽𝑥𝑦
∑︁
⟨𝑖𝑗⟩

∑︁
𝛼=𝑥,𝑦

(︂
1

2
𝑐⊺𝑖𝐿

𝛼𝑐𝑖

)︂(︂
1

2
𝑐⊺𝑗𝐿

𝛼𝑐𝑗

)︂

+ 𝐽𝑧
∑︁
⟨𝑖𝑗⟩

(︂
1

2
𝑐⊺𝑖𝐿

𝑧𝑐𝑖

)︂(︂
1

2
𝑐⊺𝑗𝐿

𝑧𝑐𝑗

)︂
, (5.1)

where all conventions carry over from Secs. 3.2 and 4.1. The U(1)×Z2 symmetry in the spin-
orbital formulation maps onto SO(2)×Z2 in flavor space. Due to the structural similarity of
Eqs. (4.1) and (5.1), we can again decouple the interaction into on-site and bond parameters

𝜑𝛼𝑖 =
⟨︀1
2
𝑐⊺𝑖𝐿

𝛼𝑐𝑖
⟩︀
, 𝜒𝛼𝑖𝑗 = ⟨𝑖𝑐𝛼𝑖 𝑐𝛽𝑗 ⟩, (5.2)

where we have summarized the diagonal and off-diagonal decouplings in Eq. (4.7) into a
single tensor 𝜒𝛼𝛽𝑖𝑗 . The off-diagonal components again vanish when enforcing the SO(2)×Z2

symmetry. Assuming translational invariance, 𝜑𝛼𝑖,𝑗 = 𝜑𝛼𝐴,𝐵 and 𝜒𝛼𝛽𝑖𝑗 = 𝜒𝛼𝛽 with 𝑖(𝑗) belonging
to sublattices 𝐴(𝐵). We have seen in Sec. 4.1 that the sublattice symmetry ensures 𝜑𝛼𝐴 = −𝜑𝛼𝐵,
such that we obtain the mean-field Hamiltonian

ℋmf =
∑︁

k∈𝐵𝑍/2

(︁
𝑐†k,𝐴, 𝑐†k,𝐵

)︁[︃(︃ 0 𝑖(𝐾 − 𝜒𝐽)𝑓(k)

−𝑖(𝐾 − 𝜒𝐽)𝑓
*(k) 0

)︃
⊗ 13

+ 6𝐽𝑥𝑦
∑︁
𝛼=𝑥,𝑦

(︃
−𝜑𝛼𝐴 0

0 𝜑𝛼𝐴

)︃
⊗ 𝐿𝛼 + 6𝐽𝑧

(︃
−𝜑𝑧𝐴 0

0 𝜑𝑧𝐴

)︃
⊗ 𝐿𝑧

]︃(︃
𝑐k,𝐴

𝑐k,𝐵

)︃
+ 𝐶(𝜑, 𝜒), (5.3)

where the matrix 𝜒 reads

𝜒𝐽 =

⎛⎜⎝𝐽𝑥𝑦𝜒
𝑧 + 𝐽𝑧𝜒

𝑦 0 0

0 𝐽𝑥𝑦𝜒
𝑧 + 𝐽𝑧𝜒

𝑥 0

0 0 𝐽𝑥𝑦(𝜒
𝑥
𝑖𝑗 + 𝜒𝑦𝑖𝑗)

⎞⎟⎠ . (5.4)

The constant contribution to the mean-field Hamiltonian now depends on both exchange
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(𝐽𝑥𝑦, 𝐽𝑧) 𝜑𝑥𝐴 𝜑𝑦𝐴 𝜑𝑧𝐴 = 𝑛𝑧 |𝑛𝑥𝑦| 𝜒𝑥 𝜒𝑦 𝜒𝑧 𝜒𝑥 + 𝜒𝑦

(0.5, 0.5) 0 0 0 0 -0.5248 -0.5248 -0.5248 -1.0496

(0.5, 0.2) 0 0 0 0 -0.5248 -0.5248 -0.5248 -1.0496

(0.2, 0.5) 0 0 0 0 -0.5248 -0.5248 -0.5248 -1.0496

(0.6, 0.2) 0.0727 0.0898 0 0.1155 -0.5233 -0.5238 -0.5222 -1.0471
0.0819 0.0815 0 0.1155 -0.5236 -0.5236 -0.5222 -1.0471

(0.2, 0.6) 0 0 0.2405 0 -0.5132 -0.5132 -0.5248 -1.0264
0 0 0.2405 0 -0.5132 -0.5132 -0.5248 -1.0264

(0, 0.5) 0 0 0.1278 0 -0.5217 -0.5217 -0.5248 -1.0434
0 0 0.1278 0 -0.5217 -0.5217 -0.5248 -1.0434

Table 5.1: Self-consistent solutions for the mean-field parameters for typical values of the
exchange couplings 𝐽𝑥𝑦 and 𝐽𝑧 after 1000 iterations for an 𝑁 = 48 × 48 unit cell lattice,
where |𝑛𝑥𝑦|2 = (𝜑𝑥𝐴)

2 + (𝜑𝑦𝐴)
2 is the XY Néel order parameter. The first three points

reside in the symmetric phase, characterized by vanishing sublattice magnetization and the
characteristic value for the bond variables. At larger couplings, two distinct symmetry-
broken phases stabilize, characterized by finite XY and Ising-type Néel order parameters,
whereas the opposite order parameter vanishes.

couplings 𝐽𝑥𝑦 and 𝐽𝑧, as well as all symmetry-allowed mean-field parameters, giving

𝐶(𝜑, 𝜒) = −3𝑁𝐽𝑥𝑦
∑︁
𝛼=𝑥,𝑦

(𝜑𝛼𝐴𝜑
𝛼
𝐵 − 𝜒𝑧𝜒𝛼)− 3𝑁𝐽𝑧(𝜑

𝑧
𝐴𝜑

𝑧
𝐵 − 𝜒𝑥𝜒𝑦), (5.5)

which reduces to Eq. (4.12) in the limit 𝐽𝑧 = 0. The self-consistency equations again take the
form of Eqs. (4.12), (4.13) and (4.16), which we will repeat for availability

𝜑𝛼𝑥 = −2𝑖

𝑁
𝜀𝛼𝛽𝛾

∑︁
k∈𝐵𝑍/2

⟨(𝑐𝛽𝑘,𝑥)†𝑐𝛾𝑘,𝑥, ⟩ (𝑥 = 𝐴,𝐵), (5.6)

𝜒𝛼 =
𝑖

3𝑁

∑︁
k∈𝐵𝑍/2

[︀
𝑓(k)⟨(𝑐𝛼𝑘,𝐴)†𝑐𝛼𝑘,𝐴⟩ − 𝑓 *(k)⟨(𝑐𝛼𝑘,𝐵)†𝑐𝛼𝑘,𝐵⟩

]︀
. (5.7)

The ground-state energy for a particular set of mean-field parameters is given by

𝐸0 =
∑︁

k∈𝐵𝑍/2

∑︁
𝑛

𝜀𝑛(k)⟨𝛾†𝑛,k𝛾𝑛,k⟩+ 𝐶(𝜑, 𝜒). (5.8)

5.1.2 Numerical results and phase diagram

The self-consistency equations (5.5) and (5.6) are again solved iteratively with random initial
values for the iteration procedure. Since we are already familiar with the approach, we will
proceed directly to the numerical results. The model supports four distinct stable phases,
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Figure 5.1: Mean-field phase diagram of the anisotropic Kitaev spin-orbital model. At
small interactions 𝐽𝑥𝑦 and 𝐽𝑧, the model supports a paramgnetic Kitaev SOL phase with
three gapless itinerant Majorana fermions. The phase is adiabatically connected to the
ground state of the exactly solvable model at vanishing interaction. At stronger couplings,
the model transitions into a Kitaev SOL phase with a single remaining gapless Majorana
fermion, with concomitant Z2 or U(1) symmetry-breaking in spin-space, depending on the
anisotropy. They are separated by a symmetry-enhanced first-order transition, where both
phases become unstable against the formation of order breaking both symmetries.

which we will discuss briefly, as well as phase transitions between those phases. The phase
diagram is shown in Fig. 5.1. Typical values of the mean-field parameters, characterizing the
respective phase, are given in Table 5.1. The symmetric phase, describing a 𝜈 = 3 Kitaev
SOL characterized by vanishing sublattice magnetization and the characteristic value of the
bond parameters, extends into the region where both 𝐽𝑥𝑦 and 𝐽𝑧 are finite, provided they
are small. At strong couplings, the system transitions into a symmetry-broken phase with
antiferromagnetic long-range order, whose nature depends on the type of anisotropy present
in the system. In contrast to the model studied in Ch. 4, the additional Ising term in Eq. (5.1)
introduces competition between two ordering channels. To characterize the emerging phases,
we introduce two Néel order parameters

𝑛𝛼𝑥𝑦 =
𝜑𝛼𝐴 − 𝜑𝛼𝐵

2
= 𝜑𝛼𝐴 (𝛼 = 𝑥, 𝑦), (5.9)

which acquires a finite value under spontaneous breaking of the U(1) sector of the Hamiltonian
(3.36), whereas

𝑛𝑧 =
𝜑𝑧𝐴 − 𝜑𝑧𝐵

2
= 𝜑𝑧𝐴 (5.10)

describes spontaneous symmetry breaking in the Z2 sector. In both definitions, the second
equality is due to the sublattice symmetry and the antiferromagnetic nature of the interactions,
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Figure 5.2: Representative spectra for (a) the U(1) SSB phase at (𝐽𝑥𝑦, 𝐽𝑧) = (0.6, 0.2) and
(b) the Z2 SSB phase at (𝐽𝑥𝑦, 𝐽𝑧) = (0.2, 0.6). Spectrum (a) is adiabatically connected to
the ordered phase of the Kitaev-XY spin-orbital model and thus shares the same qualitative
features as the dispersion in Fig. 4.2b. Spectrum (b) features two degenerate gapped modes
with one remaining Dirac cone, a defining feature of the Z2 symmetry-broken phase.

as discussed before. We again consider 𝐾 = 1 for simplicity.

U(1) symmetry-breaking transition

Sec. 4.1 shows that in the limit of vanishing Ising exchange coupling 𝐽𝑧 = 0, the model exhibits
a U(1) symmetry under spin rotations along the 𝑧-axis, which is spontaneously broken at strong
couplings, transitioning into an magnetically ordered phase where the XY order parameter
defined via Eq. (5.9) acquires a finite value. At the mean-field level the critical value is given
by 𝐽 𝑐𝑥𝑦(𝐽𝑧 = 0) = 0.5320. For finite 𝐽𝑧 < 𝐽𝑥𝑦, the easy-plane anisotropy is preserved, such
that the system still favors XY order at strong couplings. Since the Z2 symmetry is fully
preserved, which follows from the vanishing of the Ising order parameter 𝑛𝑧, the ordered phase
in the easy-plane regime is adiabatically connected to the ordered phase at 𝐽𝑧 = 0, sharing all
of its features. We call this phase U(1) SSB. The equivalence between the ordered phases
with vanishing and finite 𝐽𝑧 also becomes clear from Fig. 5.2, which depicts a representative
spectrum in the XY-ordered phase. Apart from small numerical differences, the spectrum is
equal to the one shown in Fig 4.2b. Especially in the low-energy limit both spectra share the
same qualitative features, describing two non-degenerate gapped modes that only coincide at
the K point and a remaining Dirac cone. The transition is now described by an extended
line in parameter space, whose position can be obtained as before by extrapolation of the
XY order parameter 𝑛𝑥𝑦 close to criticality. Due to the competition of the two symmetry-
breaking channels, the critical line is shifted towards stronger couplings 𝐽𝑥𝑦 for growing 𝐽𝑧.
To illustrate this, we consider the transition at 𝐽𝑧 = 0.2, for which the XY order parameter
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Figure 5.3: Extrapolation of the order parameter to obtain the critical value at 1000
iterations for 𝑁 = 48×48 unit cells for (a) the U(1) symmetry-breaking transition described
by the XY order parameter 𝑛𝑥𝑦 at 𝐽𝑧 = 0.2, giving 𝐽𝑐𝑥𝑦(𝐽𝑧 = 0.2) = 0.5600, and (b) the
Z2 symmetry-breaking transition at 𝐽𝑥𝑦 = 0.2, which gives 𝐽𝑐𝑧 (𝐽𝑥𝑦 = 0.2) = 0.5159, arising
from a linear fit of the Ising order parameter 𝑛𝑧 = 𝜑𝑧𝐴.

close to the transition and the extrapolation are depicted in Fig. 5.3b, giving the critical value
𝐽 𝑐𝑥𝑦(𝐽𝑧 = 0.2) = 0.5600. Other points may be obtained similarly.

Z2 symmetry-breaking transition

Conversely, in the opposite limit 𝐽𝑥𝑦 = 0, the exactly solvable model (3.24) is perturbed by a
pure Ising interaction, featuring a Z2 spin-flip symmetry along the 𝑧-axis, which has not been
discussed before. The corresponding spin-orbital interaction is given by (c) in Table 3.2. Due
to the absence of the XY interaction in this limit, only a single symmetry-breaking channel
remains and the system undergoes a transition into an ordered state, characterized by a finite
Ising order parameter 𝑛𝑧 and a spontaneously broken Z2 symmetry. Similar to the previous
case, the ordered phase remains stable in the region of finite 𝐽𝑥𝑦 under the assumption that 𝐽𝑧 is
sufficiently large and that the system is in the easy-axis regime 𝐽𝑥𝑦 < 𝐽𝑧. The SO(2) symmetry
is preserved in the ordered phase due to |𝑛𝑥𝑦| = 0, thus we call this phase Z2 SSB. The last two
lines in Table 5.1 reveal that the ordered phase exhibits several interesting features that we did
not find with the U(1) SSB phase. First, we observe that the ground-state value of the bond
parameter 𝜒𝑧 assumes the characteristic value associated with the symmetric phase even in the
ordered phase. To understand this, we consider how the mean-field Hamiltonian (5.3) changes
at the phase transition. We have seen in Sec. 4.1 that the ground-state values for the bond
parameters in the ordered phase deviate from the characteristic value due to the coupling of
the Majorana fermions to the order parameter. However, in the Z2 SSB phase, only the Ising
order parameter 𝑛𝑧 acquires a finite value, which couples to only two of the three Majorana
flavors due to the specific form of the generator 𝐿𝑧. Consequently, the single remaining flavor
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Figure 5.4: (a) Extrapolation of the composite order parameter 𝑛SO(3) close to the SO(3)
symmetry-breaking transition at 1000 iterations for 𝑁 = 48 × 48 unit cells, giving the
critical coupling 𝐽𝐻 = 𝐽𝑥𝑦 = 𝐽𝑧 = 0.6185. (b) Mean-field values of the XY and Ising order
parameters close to the first-order transition. At the transition, the adjacent phases become
unstable against a state breaking both symmetries. The finite values close to the transition
are numerical artifacts, as discussed in the main text.

remains effectively non-interacting even after breaking the Z2 symmetry and thus retains the
bond parameter associated with the non-interacting limit 𝐽𝑥𝑦 = 𝐽𝑧 = 0. Similarly, the ground-
state values of the bond parameters 𝜒𝑥 and 𝜒𝑦 turn out to be equal and independent of the
random initial conditions. This is because only the Z2 sector of the full symmetry was broken
at the transition, such that the SO(2) symmetry is still intact. Consequently, the results
must be invariant under SO(2), leading to the observed values. The high symmetry of the
mean-field solutions in the Z2 SSB phase, and thus of the mean-field Hamiltonian (5.3) also
leaves traces in the spectrum. Due to the SO(2) symmetry, the interaction affects the two
gapped Majorana flavors equivalently, leading to a full degeneracy of the two gapped bands,
as shown in Fig. 5.2b. However, the phenomenology of the remaining Dirac cone matches the
observations made in the U(1) SSB phase, such that the Z2 SSB phase also describes a 𝜈 = 1

Kitaev SOL, but associated with a different broken symmetry. To obtain the location of the
transition line, we thus have to extrapolate the values of the Ising order parameter 𝑛𝑧 close
to the transition at fixed 𝐽𝑥𝑦. This is illustrated exemplary in Fig. 5.3b for the transition at
𝐽𝑥𝑦 = 0.2, giving 𝐽 𝑐𝑧(𝐽𝑥𝑦 = 0.2) = 0.5159.

Symmetric limit and symmetry-enhanced first-order transition

In the symmetric limit 𝐽𝑥𝑦 = 𝐽𝑧, no anisotropy is present and the interaction in the spin-orbital
model (3.36) simplifies to a Heisenberg interaction. The symmetry of the Hamiltonian (5.1)
is enhanced to SO(3), corresponding to the low-energy (flux-free) description of the SU(2)-
symmetric spin-orbital model (3.32). As discussed in Sec. 3.2.2, a Majorana mean-field analysis
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has of this model has already been performed in Ref. [23]. We recover their results, predicting
a phase transition to a Néel-ordered phase with a spontaneously broken SU(2) symmetry in
the spin sector upon variation of the Heisenberg coupling 𝐽𝐻 . In Majorana flavor space, the
transition is described by a composite SO(3) order parameter

𝑛SO(3) = (𝑛𝑥𝑦, 𝑛𝑧)
⊺, (5.11)

originating from the enhanced symmetry on the symmetric line. Within our implementation,
we obtain a critcal value of 𝐽 𝑐𝐻 = 0.6185, see Fig. 5.4a, which is close to the value from Ref.
[23]. The critical point acts as an endpoint for the neighboring SO(2) and Z2 transition lines.
This raises the question of the nature of the transition between the two anisotropic ordered
phases. Since both phases break different symmetries of the general model, we naturally expect
the appearance of a first-order transition, which is confirmed by our mean-field calculations.
This is shown in Fig. 5.4b for couplings 𝐽𝑥𝑦 and 𝐽𝑧 close to the symmetric line. Starting out
in the U(1) SSB phase, the XY order parameter has a finite value, whereas the Ising order
parameter vanishes. Upon tuning 𝐽𝐻 through the symmetric line the order parameters jump,
and the system transitions into the Z2 SSB phase. However, instead of showing the usual
phase coexistence at the transition, where the ground-state energy is minimized for just the
two adjacent phases, both phases become unstable against the formation of a state that breaks
both symmetries due to the enhanced SO(3) symmetry of the system at the transition point.
This is a typical feature of a symmetry-enhanced first-order transition [61], whose origin will
be discussed later.

A small remark is to be made concerning the numerical data points close to the transition,
which, within the iterative scheme, acquire a finite value for both order parameters. This is an
artifact of the numerical approach, which can be explained by the large ground-state degener-
acy at the transition. Close to the transition, the iteration converges to a local minimum close
to the actual ground-state energy. This can be remedied by comparing with the ground-state
energy of the respective ordered phases, which turn out to be the global minima.

5.2 RG analysis

5.2.1 Effective field theory

We have seen in the previous section that the introduction of anisotropy facilitates the appear-
ance of a bicritical point. A bicritical point arises naturally in the presence of two independent
order parameters connected to the breaking of different symmetries and describes the point
where both order parameters change non-analytically. Most generally, its emergence is de-



5.2.1 Effective field theory 75

scribed by the Landau free energy [41]

𝑓 =
1

2
𝑟1|𝜑1|2 +

1

2
𝑟2|𝜑2|2 + 𝜆1|𝜑1|4 + 𝜆2|𝜑2|4 + 2𝜆𝑐𝑟|𝜑1|2|𝜑2|2, (5.12)

where (𝑟𝛼, 𝜆𝛼 > 0) denote pairs of parameters for the individual effective potentials of the
two order parameters 𝜑1 and 𝜑2 and 𝜆𝑐𝑟 > 0 is an additional independent parameter 𝜆𝑐𝑟
describing the interaction between the order parameters. At 𝜆𝑐𝑟 = 0, Eq. (5.12) describes two
independent symmetry breaking transitions at 𝑟1 = 0 and 𝑟2 = 0, corresponding to either 𝜑1

or 𝜑2 acquiring a finite expectation value. Thus, the phase diagram features four qualitatively
different regimes. Besides the symmetric regime for 𝑟1, 𝑟2 > 0 and the regimes where one of
the two order parameters becomes finite, there is a regime with 𝑟1, 𝑟2 < 0, where both 𝜑1 and
𝜑2 acquire finite values, spontaneously breaking their associated symmetry group. Finite 𝜆𝑐𝑟
introduce an energy penalty for configurations with both finite 𝜑1 and 𝜑2, effectively narrowing
the region where both symmetries are broken. In this case, four continuous transitions meet at
the at 𝑟1 = 𝑟2 = 0, describing a tetracritical point. For 𝜆2𝑐𝑟 ≥ 𝜆1𝜆2, the phase with fully broken
symmetry vanishes completely and is replaced by a first-order transition between the phases
associated with partial symmetry breaking. Thus, 𝑟1 = 𝑟2 = 0 now connects two distinct
continuous transition lines and equally marks the end point of a line of first-order transition.
Such a scenario defines a bicritical point.
For the specific case of the Hamiltonian (5.1) the symmetry group is given by U(1)×Z2. Thus,
Eq. (5.12) accurately describes the phenomenology of the phase diagram obtained in the
previous section if we choose 𝜑1 = (𝜑𝑥, 𝜑𝑦)⊺ as an XY order parameter associated with the
U(1) spin rotation symmetry in the x-y plane, and 𝜑2 = 𝜑𝑧, corresponding to an Ising order
parameter which spontaneously breaks the Z2 spin-flip symmetry along the z-axis. Following
the considerations from Sec. 4.2, we can construct a partially bosonized effective field theory for
the Hamiltonian (5.1) near criticality by including dynamics in space and imaginary time and
by coupling the itinerant Majorana fermions to both order parameters via Yukawa couplings
𝑔𝑥𝑦 and 𝑔𝑧. With the dynamical critical exponent 𝑧 = 1 for both fields, the corresponding
action is Lorentz invariant and can be written as an integral over 𝐷 = 𝑑 + 1-dimensional
space-time if generalized to arbitrary spatial dimension 𝑑, giving

𝒮 =

∫︁
d𝐷𝑥

[︃
𝜓𝑖𝛾

𝜇𝜕𝜇𝜓𝑖 +
1

2
𝜑𝛼(−𝜕2𝜇 + 𝑟𝑥𝑦)𝜑

𝛼 +
1

2
𝜑𝑧(−𝜕2𝜇 + 𝑟𝑧)𝜑

𝑧

+𝑔𝑥𝑦𝜑
𝛼𝜓𝑖

(︁
1𝑑𝛾 ⊗ (𝐿𝛼)𝑖𝑗

)︁
𝜓𝑗 + 𝑔𝑧𝜑

𝑧𝜓𝑖

(︁
1𝑑𝛾 ⊗ (𝐿𝑧)𝑖𝑗

)︁
𝜓𝑗

+𝜆𝑥𝑦

(︁
𝜑𝛼𝜑𝛼

)︁2
+ 𝜆𝑧 (𝜑

𝑧)4 + 2𝜆𝑐𝑟 (𝜑
𝑧)2 𝜑𝛼𝜑𝛼

]︃
, (5.13)

which describes three massless fermion flavors 𝜑𝑖, representing the Majorana fermions, coupled
to two real bosonic fields 𝜑𝛼 and 𝜑𝑧 with masses 𝑟𝑥𝑦 and 𝑟𝑧, representing the two order param-
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Figure 5.5: Possible critical scenarios in the anisotropic Gross-Neveu-SO(3) model. The
realized scenario depends on the strength of the quartic interactions, based on the mini-
mization of the effective action. (a) For 𝜆2

𝑐𝑟 < 𝜆𝑥𝑦𝜆𝑧, the model features a tetracritical
point, acting as an endpoint for four continuous transitions. (b) For 𝜆2

𝑐𝑟 > 𝜆1𝜆2, the phase
where both symmetries break is suppressed to a line of first-order transitions, denoted by the
double line. Note that the exact values and the shape of the phase boundaries are expected
to change under RG transformations. From the RG flow, the nature of the multicritical
behavior can be deduced from the fixed point values of the quartic couplings.

eters. The fields are assumed to be space-time dependent to include quantum fluctuations and
𝑑𝛾 =

2
3
𝑁𝐹 again denotes the number of components of the fermionic fields, generalized to arbi-

trary number of Majorana flavors. Summation over 𝑖, 𝑗 = 1, 2, 3, referring to the three fermion
flavors, and 𝛼 = 𝑥, 𝑦, denoting the components of the U(1) order parameter, is assumed. The
conventions for the Dirac matrices 𝛾𝜇 and the Dirac conjugate spinor 𝜓𝑖 = 𝜓†

𝑖𝛾
0 carry over

from the discussion in Sec. 4.3 as well. In accordance with Eq. (5.12), we have also added
local self-interactions 𝜆𝑥𝑦, 𝜆𝑧 for each order parameter, as well as a crossing term parameter-
ized by 𝜆𝑐𝑟, describing local interactions between the different order parameter fields, which
is unconstrained due to the absence of symmetry relations between the two order parameters.
The two possible critical scenarios of the model are shown in Fig. 5.5, following the earlier
arguments. In momentum space, we again divide the action into three contributions

𝑆 = 𝑆0 + 𝑆𝑔 + 𝑆𝜆, (5.14)

which consists of a non-interacting part 𝑆0 as well as interaction terms 𝑆𝑔, containing the two
Yukawa interactions, and 𝑆𝜆, which encompasses the quartic interactions of the bosonic fields,
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given by

𝑆0 =

∫︁ Λ

(d𝑝)

[︂
𝑖𝜓𝑖𝛾

𝜇𝑝𝜇𝜓𝑖 +
1

2
𝜑𝛼
(︀
𝑝2 + 𝑟𝑥𝑦

)︀
𝜑𝛼 +

1

2
𝜑𝑧
(︀
𝑝2 + 𝑟𝑧

)︀
𝜑𝑧
]︂
, (5.15)

𝑆𝑔 =

∫︁ Λ

(d𝑝1)(d𝑝2)
{︀
𝑔𝑥𝑦𝜑

𝛼𝜓𝑖 [1𝛾 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗 + 𝑔𝑧𝜑
𝑧𝜓𝑖 [1𝛾 ⊗ (𝐿𝑧)𝑖𝑗]𝜓𝑗

}︀
, (5.16)

𝑆𝜆 =

∫︁ Λ

(d𝑝1)(d𝑝2)(d𝑝3)
[︀
𝜆𝑥𝑦𝜑

𝛼𝜑𝛼𝜑𝛽𝜑𝛽 + 𝜆𝑧 (𝜑
𝑧)4 + 2𝜆𝑐𝑟𝜑

𝛼𝜑𝛼 (𝜑𝑧)2
]︀
, (5.17)

where the momentum-dependence of the fields has been suppressed and takes the same form
as in Eqs. (4.54)–(4.56). Thus, the action contains seven independent parameters, which we
will assume to be scale-dependent in the ensuing RG analysis. It is straightforward to show
that all interactions included in have the upper critical dimension 𝐷𝑐 = 4 at the Gaussian
fixed point, such that the critical behavior of the model is accessible in 𝐷 = 4− 𝜀 space-time
dimensions.

5.2.2 Momentum-shell RG

The momentum-shell transformation proceeds in similar fashion to the procedure presented in
Sec. 4.3. We start by splitting the fields into fast and slow Fourier modes. After integrating
out the fast modes in the partition function, the effective action for the slow modes takes the
form

𝑆< =

∫︁ Λ
𝑏

(d𝑝)

[︂
(1 + 𝜂𝜓 ln 𝑏)𝑖𝜓𝑖𝛾

𝜇𝑝𝜇𝜓𝑖 + (1 + 𝜂𝜑,𝑥𝑦 ln 𝑏)
1

2
𝑝2𝜑𝛼𝜑𝛼 + (1 + 𝜂𝜑,𝑧 ln 𝑏)

1

2
𝑝2(𝜑𝑧)2

]︂
+

1

2
(𝑟𝑥𝑦 + 𝛿𝑟𝑥𝑦)𝜑

𝛼𝜑𝛼 +
1

2
(𝑟𝑧 + 𝛿𝑟𝑧)(𝜑

𝑧)2

+

∫︁ Λ
𝑏

(d𝑝1)(d𝑝2)
[︁
(𝑔𝑥𝑦 + 𝛿𝑔𝑥𝑦)𝜑

𝛼𝜓𝑖 [1𝛾 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗 + (𝑔𝑧 + 𝛿𝑔𝑧)𝜑
𝑧𝜓𝑖 [1𝛾 ⊗ (𝐿𝑧)𝑖𝑗]𝜓𝑗

]︁
+

∫︁ Λ
𝑏

(d𝑝1)(d𝑝2)(d𝑝3)
[︁
(𝜆𝑥𝑦 + 𝛿𝜆𝑥𝑦)𝜑

𝛼𝜑𝛼𝜑𝛽𝜑𝛽 + (𝜆𝑧 + 𝛿𝜆𝑧) (𝜑
𝑧)4

+ 2(𝜆𝑐𝑟 + 𝛿𝜆𝑐𝑟)𝜑
𝛼𝜑𝛼 (𝜑𝑧)2

]︁ , (5.18)

where we have introduced corrections to all couplings and anomalous dimensions to the kinetic
terms of the fermionic sector and the two order parameters via Eqs. (4.12) and (4.113). Since
the order parameter masses 𝑟𝑥𝑦 and 𝑟𝑧 can be tuned independently, the corresponding Gaussian
propagators read

⟨︀
𝜑𝛼(𝑝)𝜑𝛽(−𝑝)

⟩︀
0
=

1

𝑝2 + 𝑟𝑥𝑦
𝛿𝛼𝛽, (5.19)⟨︀

𝜑𝑧(𝑝)𝜑𝑧(−𝑝)
⟩︀
0
=

1

𝑝2 + 𝑟𝑧
, , (5.20)



78 5.2 RG analysis

gxy gz

gxy gz

α z

α z

(a)

λxy λcr

α z

α z

(b)

λcr λz

α z

α z

(c)

λcr

α z

α z

λz

(d)

λcr

z α

z α

λxy

(e)

α α

z z

λcrλcr

(f)

Figure 5.6: All diagrams contributing to the renormalization of the quartic boson-boson
interaction 𝜆𝑐𝑟. After careful evaluation of the combinatorial factors, the diagrams are
evaluated following the scheme in Sec. 4.3.4.

the fermion propagator remains unchanged. In the 𝜀-expansion, we only keep the leading
contributions to the effective action, which are obtained from all one-loop Feynman diagrams
in the diagrammatic expansion introduced in Sec. 4.3. Formally, the appearance of additional
interaction terms requires the definition of corresponding interaction vertices in the diagram-
matic representation. However, due to the structural similarity to the terms appearing in the
action (4.52), the topology of the new vertices does not change. Thus, we can reuse the same
vertices, differentiating between the interaction terms in (5.13) with the coupling constants and
field indices of outgoing lines. To obtain all contributing diagrams, we now have to consider all
combinations of the new interaction vertices for each diagram in Fig. 4.6. Besides the diagrams
considered in Sec. 4.3 and the equivalent contributions from the new interactions, which are
calculated analogously, this procedure introduces diagrams that contract two different vertices.
To illustrate this, we consider all diagrams contributing to the fermion propagator

i j =
i gxy gxy

j +
i gz gz

j +
i gxy gz

j . (5.21)

The first diagram has already been evaluated in Eq. 4.101 and the value for the second,
corresponding to the Ising contribution, contains the same loop integral and is obtained anal-
ogously. The third diagram contains both Yukawa couplings linearly and is therefore a first
order term in the perturbative expansion. Evaluation of the diagram gives

i gxy gz
j =

∫︁ Λ/𝑏

(d𝑝)

∫︁ Λ

Λ/𝑏

(d𝑞)𝜑𝛼𝜑𝑧⏟ ⏞ 
=0

𝜓𝑖[1𝛾 ⊗ (𝐿𝛼)𝑖𝑗]𝜓𝑗𝜓𝑘[1𝛾 ⊗ (𝐿𝑧)𝑘𝑙]𝜓𝑙 = 0, (5.22)

where the contraction of the two order parameter vanishes due to the diagonal form of the
boson propagators (5.19) and (5.20). As before, we thus obtain two distinct fermion anomalous
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dimensions

𝜂𝜓,12 =
𝑔2𝑥𝑦
2

1

(1 + 𝑟𝑥𝑦)2
+
𝑔2𝑧
2

1

(1 + 𝑟𝑧)2
, (5.23)

𝜂𝜓,3 =
𝑔2𝑥𝑦

(1 + 𝑟𝑥𝑦)2
. (5.24)

The boson propagator receives no crossing terms because the external legs of the corresponding
diagram are fixed, giving the anomalous dimensions

𝜂𝜑,𝑥𝑦 =
2

3
𝑁𝐹𝑔

2
𝑥𝑦, (5.25)

𝜂𝜑,𝑧 =
2

3
𝑁𝐹𝑔

2
𝑧 . (5.26)

Similarly, most terms in the action (5.14) receive no corrections from crossing terms. Their
contribution to the effective action can be calculated following Sec. 4.3.4. Only the vertex
corrections to the quartic boson-boson coupling 𝜆𝑐𝑟 has to be treated with special care, the con-
tributing diagrams are depicted in Fig. 5.5. Collecting all contributions, we rescale momenta
and renormalize the fields as in Sec. 4.3.4 and obtain the renormalized boson masses

𝑟𝑥𝑦(𝑏) = 𝑏2−𝜂𝜑,𝑥𝑦
(︂
𝑟𝑥𝑦 +

[︂
16𝜆𝑥𝑦
1 + 𝑟𝑥𝑦

+
4𝜆𝑐𝑟
1 + 𝑟𝑧

− 4𝑁𝐹

3
𝑔2𝑥𝑦

]︂
ln 𝑏

)︂
, (5.27)

𝑟𝑧(𝑏) = 𝑏2−𝜂𝜑,𝑧
(︂
𝑟𝑧 +

[︂
12𝜆𝑧
1 + 𝑟𝑧

+
8𝜆𝑐𝑟

1 + 𝑟𝑥𝑦
− 4𝑁𝐹

3
𝑔2𝑧

]︂
ln 𝑏

)︂
, (5.28)

and the renormalized interactions

𝑔𝑥𝑦(𝑏) = 𝑏
1
2
(𝜀−𝜂𝜑,𝑥𝑦−𝜂𝜓,12−𝜂𝜓,3)

(︂
𝑔𝑥𝑦 −

𝑔3𝑥𝑦
1 + 𝑟𝑥𝑦

)︂
, (5.29)

𝑔𝑧(𝑏) = 𝑏
1
2
(𝜀−𝜂𝜑,𝑥𝑦−2𝜂𝜓,12)

(︂
𝑔𝑧 −

𝑔3𝑧
1 + 𝑟𝑥𝑦

)︂
, (5.30)

𝜆𝑥𝑦(𝑏) = 𝑏𝜀−2𝜂𝜑,𝑥𝑦

(︂
𝜆𝑥𝑦 +

𝑁𝐹

3
𝑔4𝑥𝑦 −

40𝜆2𝑥𝑦
(1 + 𝑟𝑥𝑦)2

− 4𝜆2𝑐𝑟
(1 + 𝑟𝑧)2

)︂
, (5.31)

𝜆𝑧(𝑏) = 𝑏𝜀−2𝜂𝜑,𝑧

(︂
𝜆𝑧 +

𝑁𝐹

3
𝑔4𝑧 −

36𝜆2𝑥𝑦
(1 + 𝑟𝑧)2

− 8𝜆2𝑐𝑟
(1 + 𝑟𝑥𝑦)2

)︂
, (5.32)

𝜆𝑐𝑟(𝑏) = 𝑏𝜀−𝜂𝜑,𝑥𝑦−𝜂𝜑,𝑧
(︂
𝜆𝑐𝑟 +

𝑁𝐹

3
𝑔2𝑥𝑦𝑔

2
𝑧 −

16𝜆𝑥𝑦𝜆𝑐𝑟
(1 + 𝑟𝑥𝑦)2

− 12𝜆𝑧𝜆𝑐𝑟
(1 + 𝑟𝑧)2

− 16𝜆2𝑐𝑟
(1 + 𝑟𝑥𝑦)(1 + 𝑟𝑧)

)︂
. (5.33)
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5.2.3 Renormalization Group flow and critical exponents

Next, we differentiate the renormalized couplings (5.27)–(5.33) with respect to the logarithmic
scale parameter ln 𝑏, giving the flow equations for the masses

d𝑟𝑥𝑦
𝑑 ln 𝑏

=(2− 𝜂𝜑,𝑥𝑦)𝑟𝑥𝑦 − 2𝑑𝛾𝑔
2
𝑥𝑦 +

16𝜆𝑥𝑦
1 + 𝑟𝑥𝑦

+
4𝜆𝑐𝑟
1 + 𝑟𝑧

, (5.34)

d𝑟𝑧
d ln 𝑏

=(2− 𝜂𝜑,𝑧)𝑟𝑧 − 2𝑑𝛾𝑔
2
𝑧 +

12𝜆𝑧
1 + 𝑟𝑧

+
8𝜆𝑐𝑟

1 + 𝑟𝑥𝑦
, (5.35)

and the interactions

d𝑔2𝑥𝑦
d ln 𝑏

=(𝜀− 𝜂𝜑,𝑥𝑦 − 𝜂𝜓,12 − 𝜂𝜓,3)𝑔
2
𝑥𝑦 −

2𝑔4𝑥𝑦
1 + 𝑟𝑥𝑦

, (5.36)

d𝑔2𝑧
d ln 𝑏

=(𝜀− 𝜂𝜑,𝑧 − 2𝜂𝜓,12)𝑔
2
𝑧 −

2𝑔4𝑧
1 + 𝑟𝑧

, (5.37)

d𝜆𝑥𝑦
d ln 𝑏

=(𝜀− 2𝜂𝜑,𝑥𝑦)𝜆𝑥𝑦 +
𝑁𝐹

3
𝑔4𝑥𝑦 −

40𝜆2𝑥𝑦
(1 + 𝑟𝑥𝑦)2

− 4𝜆2𝑐𝑟
(1 + 𝑟𝑧)2

, (5.38)

d𝜆𝑧
d ln 𝑏

=(𝜀− 2𝜂𝜑,𝑧)𝜆𝑧 +
𝑁𝐹

3
𝑔4𝑧 −

36𝜆2𝑥𝑦
(1 + 𝑟𝑧)2

− 8𝜆2𝑐𝑟
(1 + 𝑟𝑥𝑦)2

, (5.39)

d𝜆𝑐𝑟
d ln 𝑏

=(𝜀− 𝜂𝜑,𝑧 − 𝜂𝜑,𝑥𝑦)𝜆𝑐𝑟 +
𝑁𝐹

3
𝑔2𝑥𝑦𝑔

2
𝑧 −

16𝜆𝑥𝑦𝜆𝑐𝑟
(1 + 𝑟𝑥𝑦)2

− 12𝜆𝑧𝜆𝑐𝑟
(1 + 𝑟𝑧)2

− 16𝜆2𝑐𝑟
(1 + 𝑟𝑥𝑦)(1 + 𝑟𝑧)

. (5.40)

Following the arguments in Sec. 4.3.5, the critical manifold in the 𝜀-expansion is located
at vanishing boson mass. Since we have two order parameters, whose masses can be tuned
independently, this presents us with three critical regimes. The 𝑟𝑥𝑦 = 𝑟𝑧 = 0 regime corre-
sponds to tuning both physical parameters to their critical value, describing the multicritical
regime. The multicritical behavior is governed the corresponding IR stable fixed point in the
five-dimensional interaction subspace. The critical lines between the symmetric phase and the
partially symmetry-broken phases are given by 𝑟𝑥𝑦 = 0, 𝑟𝑧 > 0, describing the SO(2) symmetry-
breaking transition and 𝑟𝑥𝑦 > 0, 𝑟𝑧 = 0, describing the Z2 symmetry-breaking transition, as
shown in Fig 5.5. The critical behavior at the line is governed by the respective IR fixed point.
Since the flow of the boson masses is relevant near the multicritical point, they flow towards
infinity under repeated RG transformations. This reveals two more critical regimes: The criti-
cal behavior of the SO(2) line is described by the IR fixed point in the 𝑟𝑥𝑦 = 0, 𝑟𝑧 → ∞ regime,
whereas the fixed point governing the Z2 line resides in the 𝑟𝑥𝑦 → ∞, 𝑟𝑧 = 0 regime.

Multicritical point

We first discuss the multicritical regime. A similar analysis has been carried out for a Gross-
Neveu-Yukawa theory in the context of competing order in graphene-like materials, but with
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Figure 5.7: RG flow of the anisotropic Gross-Neveu-SO(3) model in the bicritical manifold.
The IR stable fixed point is GN-SO(3)*, featuring an emergent SO(3) symmetry. The
quantum critical points GN-SO(2)* and GN-Ising* are retained in the XY and Ising limit,
respectively.

an SO(3)×Z2 composite order parameter [62] and an even amount of fermion flavors. The
procedure followed here is based on their work. For vanishing boson masses, the flow equations
for the interactions (5.36)–(5.40) simplify, giving the multicritical beta functions for the Yukawa
couplings

𝛽𝑔𝑥𝑦 = (𝜀− 𝜂𝜑,𝑥𝑦 − 𝜂𝜓,12 − 𝜂𝜓,3)𝑔
2
𝑥𝑦 − 2𝑔4𝑥𝑦, (5.41)

𝛽𝑔𝑧 = (𝜀− 𝜂𝜑,𝑧 − 2𝜂𝜓,12)𝑔
2
𝑧 − 2𝑔4𝑧 , (5.42)

and the flow of the quartic couplings

𝛽𝜆𝑥𝑦 = (𝜀− 2𝜂𝜑,𝑥𝑦)𝜆𝑥𝑦 +
𝑁𝐹

3
𝑔4𝑥𝑦 − 40𝜆2𝑥𝑦 − 4𝜆2𝑐𝑟, (5.43)

𝛽𝜆𝑧 = (𝜀− 2𝜂𝜑,𝑧)𝜆𝑧 +
𝑁𝐹

3
𝑔4𝑧 − 36𝜆2𝑥𝑦 − 8𝜆2𝑐𝑟, (5.44)

𝛽𝜆𝑐𝑟 = (𝜀− 𝜂𝜑,𝑧 − 𝜂𝜑,𝑥𝑦)𝜆𝑐𝑟 +
𝑁𝐹

3
𝑔2𝑥𝑦𝑔

2
𝑧 − 16𝜆𝑥𝑦𝜆𝑐𝑟 − 12𝜆𝑧𝜆𝑐𝑟 − 16𝜆2𝑐𝑟. (5.45)

where the anomalous dimensions have also been evaluated at 𝑟𝑥𝑦 = 𝑟𝑧 = 0. The flow of the
Yukawa couplings decouples from the bosonic sector, such that the fixed point values of the
Yukawa couplings and their stability are independent of the quartic couplings and can be
obtained analytically in the 𝑔2𝑥𝑦−𝑔2𝑧 subspace. The fixed point values for the quartic couplings
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are then obtained from the RG flow bosonic subspace, at the respective Yukawa fixed point.
In the Yukawa subspace, we find four fixed points, which are displayed in Fig. 5.7. Apart from
the Gaussian fixed point at the origin, we find a fixed point

(𝑔2𝑥𝑦*, 𝑔
2
𝑧*) =

(︂
6𝜀

4𝑁𝐹 + 21
, 0

)︂
+𝒪(𝜀2), (5.46)

which recovers the GN-SO(2) fixed point discussed in the previous Chapter, corresponding to
the limit 𝑔𝑧 = 𝜆𝑧 = 𝜆𝑐𝑟 = 0. Another fixed point is located at

(𝑔2𝑥𝑦*, 𝑔
2
𝑧*) =

(︂
0,

3𝜀

2𝑁𝐹 + 9

)︂
+𝒪(𝜀2), (5.47)

which turns out to describe yet another fractionalized universality class, corresponding to the
limit 𝑔𝑥𝑦 = 𝜆𝑥𝑦 = 𝜆𝑐𝑟 = 0, at which the anisotropic model reduces to a Z2-symmetric model
describing the low-energy physics of the Kitaev spin-orbital Hamiltonian (3.16) with an Ising
interaction. The details will be worked out shortly. The fourth fixed point is given by

(𝑔2𝑥𝑦*, 𝑔
2
𝑧*) =

(︂
3𝜀

2𝑁𝐹 + 12
,

3𝜀

2𝑁𝐹 + 12

)︂
+𝒪(𝜀2), (5.48)

displaying SO(3) symmetry. The stability of the fixed points is determined by the linearized
flow close to the fixed point

d

d ln 𝑏

(︃
𝛿𝑔2𝑥𝑦

𝛿𝑔2𝑧

)︃
=

(︃
𝜀− (4𝑁𝐹

3
+ 7)𝑔𝑥𝑦

2
* − 1

2
𝑔𝑧

2
* −1

2
𝑔𝑥𝑦

2
*

−𝑔𝑧2* 𝜀− (4𝑁𝐹
3

+ 1)𝑔𝑥𝑦
2
* − 6𝑔𝑧

2
*

)︃(︃
𝛿𝑔2𝑥𝑦

𝛿𝑔𝑧

)︃
+𝒪(𝑔4𝑥𝑦, 𝑔

4
𝑧),

(5.49)
revealing the SO(3)-symmetric fixed point (5.48) to be IR stable, describing the fractionalized
bicritical Gross-Neveu-SO(3)* universality class. Both the SO(2) and the Z2 fixed point have
one relevant and one irrelevant eigenvalue each, realizing quantum critical points in their
respective limits. For the fixed-point values of the Yukawa couplings, the bosonic flow admits
two symmetric fixed points with opposite sign, of which the positive fixed point is stable,
giving the fixed point value

𝜆𝑥𝑦* = 𝜆𝑧* = 𝜆𝑐𝑟* =
6−𝑁𝐹 +

√︀
𝑁2
𝐹 + 120𝑁𝐹 + 36

88(𝑁𝐹 + 6)
, (5.50)

such that the fixed point retains its SO(3) symmetry. This allows for two conclusions. The fixed
point values for the quartic couplings provide information about the nature of the multicritical
behavior. Due to the symmetry, 𝜆2𝑐𝑟 = 𝜆𝑥𝑦𝜆𝑧. As discussed earlier, this explains the appearance
of a bicritical point and the symmetry-enhanced first-order transition in the microscopic model.
However, it might be interesting to investigate if additional interactions change the nature of
the transition due to the proximity of the fixed point to the tetracritical regime. Additionally,
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the fixed point possesses an emergent SO(3) symmetry. For the microscopic model, this is
trivial, since the bicritical point is inherently SO(3) symmetric. However, since all theories on
the critical manifold define critical theories, more complicated systems realizing this bicritical
point might not feature this inherent symmetry. The critical behavior of the fixed point is
characterized by two relevant directions with associated correlation length exponents. They
are obtained from diagonalizing the linearized flow of the boson masses

d

d ln 𝑏

(︃
𝛿𝑟𝑥𝑦

𝛿𝑟𝑧

)︃
=

(︃
2− 2𝑁𝐹

3
𝑔𝑥𝑦

2
* − 16𝜆𝑥𝑦

2
* −8𝜆𝑐𝑟*

−4𝜆𝑐𝑟
2
* 2− 2𝑁𝐹

3
𝑔𝑧

2
* − 12𝜆𝑧

2
*

)︃(︃
𝛿𝑟𝑥𝑦

𝛿𝑟𝑧

)︃
+𝒪(𝑟2𝑥𝑦, 𝑟

2
𝑧), (5.51)

giving the two critical exponents for the physically relevant case 𝑁𝐹 = 3

𝑦1 =
1

𝜈1
= 2− 0.567𝜀+𝒪(𝜀2), (5.52)

𝑦2 =
1

𝜈2
= 2− 0.917𝜀+𝒪(𝜀2), (5.53)

The leading divergence of the correlation length is given by the larger correlation length expo-
nent 𝜈2, the corresponding eigenvector is parallel to the symmetric line 𝑟𝑥𝑦 = 𝑟𝑧 and the fixed
point anomalous dimensions read

𝜂𝜑,𝑥𝑦 = 𝜂𝜑,𝑧 =
𝜀

3
+𝒪(𝜀2), 𝜂𝜓,12 = 𝜂𝜓,3 =

𝜀

6
+𝒪(𝜀2), (5.54)

recovering the critical behavior of the GN-SO(3)* universality class. Before we proceed with
the discussion, a small remark regarding the relevance of the fixed point (5.48) is necessary.
In the Ising limit, the RG flow equations reduce to the two-dimensional subspace

𝛽𝑔𝑧 = (𝜀− 2𝑁𝐹

3
𝑔2𝑧)𝑔

2
𝑧 − 3𝑔4𝑧 , (5.55)

𝛽𝜆𝑧 = (𝜀− 2𝑁𝐹

3
𝑔2𝑧)𝜆𝑧 +

𝑁𝐹

3
𝑔4𝑧 − 36𝜆2𝑥𝑦. (5.56)

The flow supports a non-trivial stable fixed point, which, for 𝑁𝐹 = 3 is given by

(𝑔2𝑧*, 𝜆𝑧*) = (
𝜀

5
,
1 +

√
145

360
𝜀) +𝒪(𝜀2), (5.57)

with the fixed point anomalous dimensions

𝜂𝜑,𝑧 =
6𝜀

15
+𝒪(𝜀2), 𝜂𝜓,12 =

𝜀

10
+𝒪(𝜀2), 𝜂𝜓,3 = 0, (5.58)

and the inverse correlation length exponent

𝑦 =
1

𝜈
= 2− 0.835𝜀+𝒪(𝜀2). (5.59)
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Figure 5.8: RG flow in the critcal regime 𝑟𝑥𝑦 = 0, 𝑟𝑧 → ∞, describing the U(1) symmetry-
breaking transition line in the mean-field phase diagram. The IR stable fixed point recovers
the exponents recovers the exponents of the GN-SO(2)* universality class.

This defines the Gross-Neveu-Z*
2 universality class, which presents another instance of a frac-

tionalized fermionic quantum critical point. Remarkably, the fixed point anomalous dimension
𝜂𝜓,3 vanishes at one-loop order. This is in accordance with our findings in the lattice calcu-
lations of the Ising limit, where one of the three Majorana flavors did not participate in
the interaction. Since its correlation function scales according to dimensional analysis at the
critical point, it effectively decouples from the interaction. It is not clear whether the the
anomalous dimension acquires a finite value at higher orders of the expansion, similar to the
situation of the O(N) universality class [30].

SO(2) transition line

We continue with the analysis of the SO(2) transition line in the mean-field phase diagram. As
discussed, the critical behavior is governed by the stable fixed point in the regime 𝑟𝑥𝑦 = 0, 𝑟𝑧 →
∞. There, the non-linear contributions arising from Ising order parameter are suppressed and
𝑟𝑥𝑦 remains as the only relevant direction. The beta functions in the Yukawa sector read

𝛽𝑔𝑥𝑦 = (𝜀− 𝜂𝜑,𝑥𝑦 − 𝜂𝜓,12 − 𝜂𝜓,3)𝑔
2
𝑥𝑦 − 2𝑔4𝑥𝑦, (5.60)

𝛽𝑔𝑧 = (𝜀− 𝜂𝜑,𝑧 − 2𝜂𝜓,12)𝑔
2
𝑧 , . (5.61)
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Figure 5.9: RG flow describing the Z2 symmetry-breaking transition line in the mean-field
phase diagram. The IR stable fixed point recovers the exponents recovers the exponents of
the GN-Ising* universality class.

The RG flow is depicted in Fig. 5.8. The IR stable fixed point is given by

(𝑔2𝑥𝑦*, 𝑔
2
𝑧*) =

(︂
2𝜀

4𝑁𝐹 + 7
,

4𝑁𝐹 + 5

2𝑁𝐹 (4𝑁𝐹 + 7)
𝜀

)︂
+𝒪(𝜀2), (5.62)

and the corresponding fixed point values in the bosonic sector for 𝑁𝐹 = 3 read

𝜆𝑥𝑦* =
3 +

√
649

880
𝜀+𝒪(𝜀2), (5.63)

𝜆𝑧* =
4212

√
649− 85860

177408
𝜀+𝒪(𝜀2), (5.64)

𝜆𝑐𝑟* =
3
√
649− 39

352
𝜀+𝒪(𝜀2). (5.65)

We can tune through the transition line by varying the only relevant parameter 𝑟𝑥𝑦, giving the
critical exponent

𝑦 =
1

𝜈
=

𝜕

𝜕𝑟𝑥𝑦

d𝑟

d ln 𝑏

⃒⃒⃒⃒
*
= 2− 𝜂𝜑,𝑥𝑦* − 16𝜆𝑥𝑦*, (5.66)

which takes the same form as as the critical exponent in Eq. (4.125). Interestingly, the fixed
point values 𝑔𝑥𝑦* and 𝜆𝑥𝑦* take the same values as the fixed point in Eq. (4.128). This can be
understood from the redundancy introduced via Hubbard-Stratonovich transformation. The
physical coupling is ℎ ∝ 𝑔2

2𝑟
. Thus, the limits 𝑔 = 0 and 𝑟 → ∞ describe the same physical

system and the fixed point (5.62) describes the same quantum critical point as the transition
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𝑁𝐹 = 3, 𝜀 = 1 1/𝜈1 1/𝜈2 𝜂𝜑,𝑥𝑦 𝜂𝜑,𝑧 𝜂𝜓,12 𝜂𝜓,3 universality class

bicritical 1.083 1.433 1/3 1/3 1/6 1/6 GN-SO(3)*

SO(2) line 1.119 - 4/11 0 1/11 2/11 GN-SO(2)*

Z2 line 1.165 - 0 6/15 1/10 0 GN-Z*
2

Table 5.2: Critical regimes in the anisotropic Kitaev spin-orbital model. The bicritical
point is governed by the GN-SO(3)* universality class. The divergence at the bicritical point
is dominated by its largest correlation length exponent. Moving away from the bicritical
point, the IR limit of the SO(2) (Z2) critical line is located at 𝑟𝑧(𝑟𝑥𝑦) → ∞, recovering GN-
SO(2)* (GN-Ising*) criticality, both possessing only a single correlation length exponent.
Remarkably, the fixed point anomalous dimension for one of the fermion flavors vanishes at
one-loop order for GN-Ising*, acquiring Gaussian scaling at criticality, effectively decoupling
from the interaction. The fermion anomalous dimensions are listed for completeness and are
not measurable in the fractionalized theory.

discussed in Ch. 4. We conclude that the critical behavior of the SO(2) transition line in the
mean-field phase diagram is described by the same exponents as the transition in the extreme
limit 𝐽𝑧 = 0 in the lattice model and thus also belongs to the GN-SO(2)* universality class.

Z2 transition line

In the regime 𝑟𝑥𝑦 → ∞, 𝑟𝑧 = 0, describing the IR limit of the Z2 transition line in the mean-
field phase diagram, the RG flow in the Yukawa couplings reduces to

𝛽𝑔𝑥𝑦 = (𝜀− 𝜂𝜑,𝑥𝑦 − 𝜂𝜓,12 − 𝜂𝜓,3)𝑔
2
𝑥𝑦, (5.67)

𝛽𝑔𝑧 = (𝜀− 𝜂𝜑,𝑧 − 2𝜂𝜓,12)𝑔
2
𝑧 − 2𝑔4𝑧 , . (5.68)

The corresponding RG flow is depicted in Fig. (5.9). Since the calculation proceeds analogous
to the previous one, we will just state the results. As before, the IR limit of the critical
line describes a known fixed point, recovering the exponents of the GN-SO(2)* universality
class. Thus, the phenomenology of the critical behavior is the same as before. Close to the
Z2 transition line, the critical exponents are the same as those associated with the Ising limit
in the lattice model. Extrapolating our to 𝜀 = 1, we summarize the findings of this section in
Table (5.2) for the physical dimension 𝐷 = 3, corresponding to two space dimensions.



6 Summary and outlook

In this work, we have studied the behavior of exactly solvable Kitaev spin-orbital models with
additional antiferromagnetic nearest-neighbor interactions. We have started out by investi-
gating the ground state and low-energy excitations of various Kugel-Khomskii type models
with Kitaev interactions in the orbital sector in Ch. 3. The models were exactly solved with
the Majorana representation introduced in Ref. [20], displaying 𝜈 = 3 Kitaev SOL ground
states whose Z2 gauge excitations are fully gapped and provide a static background for three
flavors of itinerant fractionalized Majorana fermions in the flux-free sector. Besides the SU(2)-
symmetric Kitaev spin-orbital model, which form the basis of the larger part of this thesis, we
studied models of lower symmetry, whose Majorana spectra feature interesting characteristics,
such as flat bands and or inequivalent Fermi velocities between the Majorana flavors.

Motivated by the findings of Ref. [23], we have studied the critical behavior of the Kitaev-XY
spin-orbital model, which comprises the SU(2)-symmetric exactly solvable model perturbed
with a spin-only XY interaction in Ch. 4. An approximate phase diagram was obtained using
a Majorana mean-field expansion, predicting a transition into a Néel-ordered phase at strong
XY couplings, spontaneously breaking the U(1) spin rotation symmetry of the model. In
Majorana flavor space, this corresponds to SO(2) symmetry breaking. At the transition, only
two of the three Majorana flavors couple to the order parameter. One flavor remains gapless,
such that the ordered phase describes a 𝜈 = 1 Kitaev SOL, with additional magnetic order in
the spin sector, displaying a similar phenomenology as the model studied in Ref. [23]. This
behavior is typical for the transitions considered in this thesis, owing to the properties of the
SO(3) generators used to construct the interaction.

The quantum critical point is described by a partially bosonized Gross-Neveu-SO(2) model,
which we have shown to describe the continuum limit of the microscopic model. We have
obtained estimates for the critical exponents associated with the phase transition by performing
a momentum-shell RG transformation to leading order in an 𝜀-expansion about the upper
critical space-time dimension 𝐷𝑐 = 4. The fixed-point structure of the RG flow predicts the
transition in the lattice model to be described by a new fractionalized fermionic universality
class, which we have called GN-SO(2)*, whose critical exponents are the same as those of the
non-fractionalized version of the theory. Numerical estimates for the critical exponents relevant
to the U(1) symmetry-breaking transition in the Kitaev-XY spin-orbital model, corresponding
to 𝜀 = 1 and 𝑁𝐹 = 3, are shown in Table 4.2.
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Furthermore, we have constructed a model with anisotropic spin interactions in Ch. 5 by
adding both XY and Ising terms to the SU(2)-symmetric Kitaev spin-orbital model, reducing
the symmetry of the model to U(1)×Z2. Majorana mean-field theory predicts a rich phase
diagram, shown in Fig. 5.1, which supports several symmetry-breaking phases. In the easy-
plane regime, the phase diagram shows a line of transitions to a 𝜈 = 1 Kitaev SOL phase
breaking the U(1) sector of the full symmetry, while the easy-axis regime supports a tran-
sition to an Ising-ordered phase, such that the phase diagram is characterized by two order
parameters associated with the two symmetry-breaking channels. In the isotropic limit, the
model exhibits full SU(2) symmetry and, in agreement with the results of Ref. [23], a tran-
sition to an SU(2) symmetry breaking phase. The enhanced symmetry of the model at the
transition between the two phases with partially broken symmetry facilitates the appearance
of a symmetry-enhanced first-order transition, where both neighbouring phases become unsta-
ble with respect to the SU(2) symmetry-breaking phase and both order parameters acquire a
finite value. The transition point on the isotropic line describes a bicritical point where two
continuous transitions and a first-order transition meet.

To study the critical behavior of the anisotropic model, we have constructed an effective field
theory for two order parameter fields, coupled to the gapless Majorana fermions. The RG flow
resides in a seven-dimensional theory space and describes three critical regimes, corresponding
to the continuous transitions in the mean-field phase diagram. The U(1) symmetry-breaking
line was shown to be governed by the GN-SO(2) universality class. The bicritical point is de-
scribed by a fixed point with two relevant eigenvalues, featuring an emergent SO(3) symmetry
at the fixed point, defining the fractionalized bicritical GN-(SO(2)+I)* universality class. The
scaling behavior of the correlation length is dominated by the largest exponent, which recov-
ers the critical behavior of the GN-SO(3)* universality class. Studying the critical regime,
we have uncovered yet another fractionalized universality class, GN-Ising*, describing the Z2

symmetry-breaking transition in the easy-axis regime, as well as in the limit of vanishing XY
interaction. Remarkably, the anomalous dimension of one of the Majorana flavors vanishes at
the Z2 transition, such that it stays decoupled at the transition. The critical exponents for
the anisotropic Kitaev spin-orbital model are listed in Table 5.2.

An obvious direction for further research would be to solidify the results we have obtained in
this thesis by considering higher orders in 𝜀, as well as comparison with other RG schemes,
such as the large-𝑁 expansion or functional RG. For the Gross-Neveu-SO(3) model, such
calculations have been carried out [47], providing even more precise estimates for the critical
exponents. Since no other estimates on the critical exponents besides our results are available
right now, it is difficult to estimate the reliability of our approach, especially in the anisotropic
model. The close proximity of the bicritical point to the tetracritical regime naturally leads
to the question, whether the first-order transition, which we were able to confirm to leading
order in 𝜀, survives at higher orders or in non-perturbative approaches.
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Another possible avenue is to consider some of the more exotic spin-orbital models introduced
in Ch. 2 and study their behavior in the presence of interactions. An example would be
the model (3.26), which introduces independent Fermi velocities for each Majorana flavor.
A similar analysis with anisotropic velocities at nematic quantum phase transitions has been
carried out in Ref. [63], predicting non-trivial behavior. From a more general point of view, it is
remarkable that we have observed the appearance of a bicritical point describing a topological
phase transition under such similar circumstances as in a conventional magnetic system. It
might be possible to construct other interactions in the spin sector, describing topological
analogs to similar well-known transitions in conventional magnetic materials. To this end, it
would be important to clarify under which conditions Lieb’s theorem is applicable beyond the
limit of non-interacting systems.
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