TECHNISCHE
@ UNIVERSITAT
DRESDEN

Emergence and Breakdown of Quantum
Scale Symmetry: From Correlated
Condensed Matter to Physics Beyond
the Standard Model

Dissertation
zur Erlangung des Hochschulgrades
Doctor rerum naturalium (Dr. rer. nat.)

vorgelegt von

SHOURYYA RAY
geboren am 03.02.1996 in Kolkata

Arbeitsgruppe Quantum Critical Matter
Institut fiir Theoretische Physik
Fakultat Physik
Bereich Mathematik und Naturwissenschaften
Technische Universitat Dresden

2022






1. Gutachter: Prof. Dr. Matthias Vojta

2. Gutachter: Prof. Dr. Holger Gies
3. Gutachter: Dr. Lukas Janssen
Abgabedatum:

Datum der Disputation:






Abstract

Scale symmetry is notoriously fickle: even when (approximately) present at the classical level,
quantum fluctuations often break it, sometimes rather dramatically. Indeed, contemporary physics
encompasses the study of very different phenomena at very different scales, e.g., from the
(nominally) meV scale of spin systems, via the eV of electronic band structures, to the GeV of
elementary particles, and possibly even the 10'® GeV of quantum gravity. However, there are
often — possibly surprising — analogies between systems across these seemingly disparate settings.
Studying the possible emergence of quantum scale symmetry and its breakdown is one way to
systematically exploit these similarities, and in fact allows one to make testable predictions within
a unified technical framework (viz., the renormalization group). The aim of this thesis is to do so
for a few explicit scenarios. In the first four of these, quantum scale symmetry emerges in the
long-wavelength limit near a quantum phase transition, over length scales of the order of the
correlation length. In the fifth example, quantum scale symmetry is restored at very high energies
(i.e., at and above the Planck scale), but severely constrains the phenomenology at ‘low’ energies
(e.g., at accelerator scales), despite scale invariance being badly broken there.

We begin with the Gross—Neveu (= chiral) SO(3) transition in D = 2+ 1 spacetime dimensions,
which notably has been proposed to describe the transition of certain spin-orbital liquids to
antiferromagnets. The chiral fermions that suffer a spontaneous breakdown of their isospin
symmetry in this setting are fractionalized excitations (called spinons), and are as such difficult to
observe directly in experiment. However, as gapless degrees of freedom, they leave their imprint on
critical exponents, which may hence serve as a diagnostic tool for such unconventional excitations.
These may be computed using (comparatively) conventional field-theoretic techniques. Here, we
employ three complementary methods: a three-loop expansion in D = 4—e spacetime dimensions, a
second-next-leading order expansion in large flavour number N, and a non-perturbative calculation
using the functional renormalization group in the improved local potential approximation. The
results are in fair agreement with each other, and yield combined best-guess estimates that
may serve as benchmarks for numerical simulations, and possibly experiments on candidate spin
liquids.

We next turn our attention to spontaneous symmetry breaking at zero temperature in
quasi-planar (electronic) semimetals. We begin with Luttinger semimetals, i.e., semimetals where
two bands touch quadratically at isolated points of the Brioullin zone; Bernal-stacked bilayer
graphene (BBLG) within certain approximations is one example. Luttinger semimetals are
unstable at infinitesimal 4-Fermi interaction towards an ordered state (i.e., the field theory is
asymptotically free rather than safe). Nevertheless, since the interactions are marginal, there are
several pathologies in the critical behaviour. We show how these pathologies may be understood
as a collision between the IR-stable Gauflian fixed point and a critical fixed point distinct from
the Gauflian one in d = 2 + € spatial dimensions. Observables like the order-parameter expectation
value develop essential rather than power-law singularities; their exponent, as shown herein
by explicit computation for the minimal model of two-component ‘spinors’, is distinct from
the mean-field one. More tellingly, although finite critical exponents often default to canonical
power-counting values, the susceptibility exponent turns out to be one-loop exact, and, in said
minimal model takes the value v = 2vmean-field = 2. Such an exact yet non-mean-field prediction
can serve as a useful benchmark for numerical methods.

We then proceed to scenarios in D = 2 + 1 spacetime dimensions where Dirac fermions
can arise from Luttinger fermions due to low rotational symmetry. In BBLG, the ‘Dirac from
Luttinger’ mechanism can occur both due to explicit and spontaneous breaking of rotational
symmetry. The explicit symmetry breaking is due to the underlying honeycomb lattice, which only
has C3 symmetry around the location of the band crossings (so-called K points). As a consequence,
the quadratic band crossing points each split into four Dirac cones, which is shown explicitly
by computing the two-loop self-energy in the 4-Fermi theory. Within our approximations, we
can estimate the critical coupling upto which a semimetallic state survives; it is finite (unlike a
quadratic band touching point with high rotational symmetry), but significantly smaller than
a vanilla Dirac semimetal. Based on the ordering temperature of BBLG, our rough estimate
further shows that the (effective) coupling strength in BBLG may be close to the critical value, in
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sharp contrast to other quasi-planar Dirac semimetals (such as monolayer graphene). Rotational
symmetry in BBLG may also be broken spontaneously, i.e., due to the presence of nematic
order, whereby a quadratic band crossing splits into two Dirac cones. Such a scenario is also very
appealing for BBLG, since the precise nature of the ordered ground state of BBLG has not been
established unambiguously: whilst some experiments show an insulating ground state with a full
bulk gap, others show a partial gap opening with four isolated linear band crossings. Here, we
show within a simplified phenomenological model using mean-field theory that there exists an
extended region of parameter space with coexisting nematic and layer-polarized antiferromagnetic
order, with a gapless nematic phase on one side and a gapped antiferromagnetic phase on the
other. We then show that the nematic-to-coexistence quantum phase transition has emergent
Lorentz invariance to one-loop in D = 2 + ¢ as well as D = 4 — ¢ dimensions, and thus falls
into the celebrated Gross—Neveu Heisenberg universality class. Combining previous higher-order
field-theoretic results, we derive best-guess estimates for the critical exponents of this transition,
with the theoretical uncertainty coming out somewhat smaller than in the monolayer counterpart
due to the enlarged number of fermion components. Overall, BBLG may hence be a promising
candidate for experimentally accessible Gross—Neveu quantum criticality in D = 2 + 1 spacetime
dimensions.

Finally, we turn our attention to the ‘low-energy’ consequences of transplanckian quantum
scale symmetry. Extensions to the Standard Model that tend to lower the Higgs mass have many
phenomenologically attractive properties (e.g., it would allow one to accommodate a more stable
electroweak vacuum). Dark matter is one well-motivated candidate for such an extension. However,
even in the most conservative settings, one usually has to contend with a significantly enlarged
number of free parameters, and a concomitant reduction of predictivity. Here, we investigate how
asymptotic safety (i.e., imposing quantum scale symmetry at the Planck scale and above) may
constrain the Higgs mass in Standard Model (plus quantum gravity) when coupled to Yukawa
dark matter via a Higgs portal. Working in a toy version of the Standard Model consisting of the
top quark and the radial Higgs mode, we show within certain approximations that the Higgs mass
may be lowered by the necessary amount if the dark scalar undergoes spontaneous symmetry
breaking, as a function of the dark scalar mass, which is the only free parameter left in the theory.



Kurzfassung

Skalensymmetrie ist notorisch fiir ihre Unbestandigkeit: Selbst wenn sie auf klassischer Ebene
(annéhernd) gilt, wird sie durch Quantenfluktuationen meist gebrochen, manchmal mit recht
dramatischem Ergebnis. In der Tat befasst sich die gegenwartige Physik mit sehr unterschiedlichen
Phénomenen auf sehr unterschiedlichen Skalen, z.B. von der (nominellen) meV-Skala von Spin-
systemen, iiber die eV-Skala elektronischer Bandstrukturen, bis hin zur GeV-Skala von El-
ementarteilchen — und eventuell sogar der 10'? GeV-Skala von Quantengravitation. Es gibt
jedoch erstaunlich hiufig (moglicherweise iiberraschende) Analogien zwischen Systemen in diesen
scheinbar so verschiedenen Bereichen. Die Untersuchung der moglichen Emergenz von Quanten-
skalensymmetrie und ihrer Brechung ist eine Art und Weise, diese Ahnlichkeiten systematisch
auszunutzen; tatsachlich erlaubt diese Vorgehensweise sogar, priifbare Vorhersagen innerhalb
eines vereinheitlichten technischen Rahmens (ndmlich der Renormierungsgruppe) zu machen. Das
Ziel dieser Arbeit ist es, ebendies fiir einige explizite Szenarien zu tun. In den ersten vier dieser
Szenarien tritt die Quantenskalensymmetrie im Limes langer Wellenlangen in der Néhe eines
Quantenphaseniibergangs auf, iber Langenskalen in der GréBenordnung der Korrelationslédnge. Im
fiinften Beispiel wird die Quantenskalensymmetrie bei sehr hohen Energien (d.h. bei und oberhalb
der Planck-Skala) wiederhergestellt, schriankt aber die Phianomenologie bei ,niedrigen“ Energien
(z.B. bei fiir Teilchenbeschleuniger relevanten Skalen) stark ein, obwohl die Skaleninvarianz dort
stark gebrochen ist.

Wir beginnen mit einem Studium des Gross-Neveu (= chiralen) SO(3) Ubergangs in D = 2+1
Raumzeitdimensionen. Insbesondere fillt der Ubergang einer bestimmten Klasse von Spin-Orbital-
Flissigkeiten zu Antiferromagneten in diese Universalitidtsklasse. Die chiralen Fermionen, deren
Isospinsymmetrie spontan gebrochen wird, stellen in diesem Zusammenhang fraktionalisierte
Anregungen (sog. Spinonen) dar, welche als solche schwer — wenn {iberhaupt — direkt experimentell
beobachtbar sind. Dennoch hinterlassen sie als Anregungen ohne Energieliicke ihren Abdruck auf
kritischen Exponenten, welche sodann als ein diagnostisches Mittel fiir solche unkonventionelle
Anregungen dienen koénnen. Die kritischen Exponenten wiederum kénnen mit (vergleichsweise)
konventionellen feldtheoretischen Techniken berechnet werden. Hier verwenden wir drei sich
gegenseitig ergdnzende Methoden: Eine Entwicklung zur Dreischleifenordnung in D = 4 — ¢
Raumzeitdimensionen, eine Entwicklung in groler Flavourzahl N inklusive Korrekturen zweiter
Ordnung zum fithrenden Beitrag, und eine nichtperturbative Rechnung mithilfe der funktionalen
Renormierungsgruppe in der verbesserten Lokalpotentialapproximation. Die Ergebnisse der
unterschiedlichen Methoden sind in akzeptabler Ubereinstimmung miteinander, und liefern
kombinierte Schatzungen, die als Vergleichswerte fiir kiinftige numerische Simulationen — und
moglicherweise sogar fiir Experimente an Spinfliissigkeit-Kandidaten — dienen kénnen.

Wir widmen uns dann der spontanen Symmetriebrechung bei Null Temperatur in quasi-
planaren (elektronischen) Halbmetallen. Wir beginnen mit Luttinger-Halbmetallen, d.h., Halb-
metalle, in denen sich zwei Bander quadratisch an isolierten Punkten der Brillouinzone beriihren;
AB-geschichteter Zweilagengraphen (BBLG, engl. Bernal-stacked bilayer graphene) in gewisser
Néherung ist ein Beispiel dafiir. Luttinger-Halbmetalle sind instabil bei infinitesimaler 4-Fermi-
Wechselwirkung gegentiber einem geordneten Grundzustand (d.h., die Feldtheorie ist asymptotisch
frei anstelle statt sicher). Da diese Wechselwirkungen aber marginal sind, gibt es dennoch einige
Pathologien im kritischen Verhalten. Wir zeigen, wie diese Pathologien als Folge einer Kollision
zwischen dem IR-stabilen gaufischen Fixpunkt und einem kritischen Fixpunkt, der vom gaufischen
Fixpunkt bei d = 2 + € rdumlichen Dimensionen verschieden ist, verstanden werden kénnen.
Observablen wie der Erwartungswert des Ordnungsparameters weisen wesentliche Singularitaten
auf, anstelle von Singularitaten, die durch Potenzgesetze beschrieben werden konnen. Der Expo-
nent dieser wesentlichen Singularitdten, wie hier in einer expliziten Berechnung fiir das minimale
Modell mit zweikomponentigen ,,Spinoren* gezeigt wird, weicht klar vom Ergebnis der Molekular-
feldtheorie ab. Ein bezeichnenderes Ergebnis ist, dass obwohl die meisten endlichen kritischen
Exponenten ihre kanonische Werte annehmen, ist der Suszeptibilitdtsexponent nicht kanonisch,
aber einschleifenexakt, und nimmt im besagten minimalen Modell den Wert v = 29y, = 2 an.
Solche exakten und dennoch iiber Molekularfeldtheorie hinausgehende Resultate stellen niitzliche
Benchmarks fiir numerische Methoden dar.
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Wir wenden uns danach Szenarien in D = 2 + 1 Raumzeitdimensionen zu, wo Dirac-
Fermionen aus Luttinger-Fermionen aufgrund niedriger Rotationssymmetrie hervorgehen kénnen.
In BBLG kann der ,Dirac aus Luttinger“-Mechanismus sowohl durch explizite als auch spon-
tane Brechung der Rotationssymmetrie realisiert sein. Der Ursprung der expliziten Symme-
triebrechung ist das dem Graphen zugrundeliegende Honigwabengitter, welches nur Cs-Symmetrie
um die Beriithrungspunkte der Bander aufweisen. Als Folge davon spaltet sich jeder quadratis-
che Bandberiihrungspunkt in vier Dirac-Punkte auf, was wir durch eine explizite Berechnung
der Selbstenergie zur Zweischleifenordnung in der 4-Fermi-Theorie zeigen. Im Rahmen unserer
Naherung konnen wir die kritische Wechselwirkungsstirke bestimmen, bis zu der ein halbmet-
allischer Grundzustand iiberlebt; sie ist endlich (im Gegensatz zu einem Luttinger-Halbmetall
mit hoher Rotationssymmetrie), aber viel kleiner als wenn die Dispersion in der Néhe der
Bandberiihrungspunkte von Anfang an linear gewesen wire. Mithilfe dieser Rechnung kénnen
wir desweiteren, ausgehend von der Ordnungstemperatur von BBLG, grob die (effektive) Kop-
plungsstérke in BBLG abschétzen. Sie kommt in der Nahe der kritischen Kopplung heraus,
im starken Gegensatz zu anderen quasi-planaren Dirac-Materialen (z.B. Einlagengraphen). Ro-
tationssymmetrie kann in BBLG auch spontan — d.h., in Anwesenheit nematischer Ordnung —
gebrochen sein. Dabei spaltet ein quadratischer Bandberiithrungspunkt in zwei Dirac-Punkte
auf. Solch ein Szenario ist ebenfalls in BBLG naheliegend, da die genaue Natur des geordneten
Grundzustands von BBLG noch nicht abschliefend geklart ist: Wéahrend manche Experimente
einen isolierenden Grundzustand mit einer vollen Energieliicke finden, weisen andere Experimente
auf eine teilweise gedffnete Energieliicke mit vier linearen Bandkreuzungen hin. Hier zeigen wir
in einem vereinfachten phdnomenologischen Modell mittels Molekularfeldtheorie, dass es einen
ausgedehnten Bereich im Parameterraum gibt, wo nematische und antiferromagnetische Ordnung
koexistieren. Auf der einen Seite diesen Bereichs gibt es eine nematische Phase ohne Energielticke,
auf der anderen eine antiferromagnetische Phase mit voller Energieliicke. Wir zeigen dann, dass
am Ubergang von der nematischen in die Koexistenzphase Lorentzsymmetrie emergent ist, zur
Einschleifenordnung in D = 2 + ¢ und D = 4 — ¢ Raumzeitdimensionen; der Ubergang fillt daher
in die berithmte Gross—Neveu—Heisenberg Universalitatsklasse. Insgesamt kénnte daher BBLG
einen vielversprechenden Kandidaten fiir experimentell zugéangliche Gross—Neveu-Kritikalitét in
D = 2 + 1 Raumzeitdimensionen darstellen.

SchlieBlich widmen wir uns den , Niederenergie“-Konsequenzen von transplanckscher Quan-
tenskalensymmetrie. Erweiterungen des Standardmodells, welche tendenziell die Higssmasse
erniedrigen, haben viele attraktive Eigenschaften (z.B. wiirde es ein stabileres elektroschwaches
Vakuum zulassen). Dunkle Materie ist ein fundierter Kandidat fiir eine solche Erweiterung.
Allerdings gibt es selbst in den konservativsten Szenarien in der Regel sehr viele zusétzliche
freie Parameter, und eine entsprechend erniedrigte Vorhersagekraft. Hier untersuchen wir, wie
asymptotische Sicherheit (d.h., die Annahme, dass ab der Planck-Skala Quantenskalensymmetrie
herrscht) die Higgsmasse im Standardmodell (mit Quantengravitation), gekoppelt an Yukawa
dunkle Materie iiber ein Higgs-Portal, einschranken kann. Wir rechnen in einer Spielzeugversion
des Standardmodells bestehend aus dem Top-Quark und der radialen Mode des Higgsbosons,
und zeigen im Rahmen gewisser Approximationen, dass die Higgsmasse um die benotigte Menge
gesenkt werden kann, vorausgesetzt im dunklen Sektor findet spontane Symmetriebrechung statt,
als Funktion der Masse des dunklen Skalarbosons, welche als einziger freier Parameter in der
Theorie tibrig bleibt.
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Chapter 1

Introduction

‘If you tell yourself something over and over
again, right or wrong, it becomes intuitive.’

Sidney Coleman (1937-2007)

Symmetries and their breakdown by various mechanisms in particular are something of a
leitmotif in modern theoretical physics. As far as broken symmetries go, scale symmetry
may be considered one of its most ubiquitous exponents. Classically, for a field theory
to be scale invariant, it is sufficient to ensure all couplings are dimensionless. However,
corrections due to quantum fluctuations!) break scale invariance — the symmetry is no
longer valid at the quantum level, it is said to be anomalous. Contemporary experimental
physics encompasses the study of an immense multitude of scales, from the inverse TeV of
particle accelerators such as the LHC to the intergalactic scales studied by gravitational
wave detectors such as LIGO. Owing to the anomaly of scale symmetry, the physics at
different scales in general (and the pertinent degrees of freedom at said scales in particular)
may be vastly different. A particle accelarator operating at high enough energies ‘sees’ (for
instance in a proton-proton collision) the constituent quarks interacting by exchanging
virtual gluons. At lower energies, such as in an atom, these quarks appear only in triquark
bound states, viz., neutrons and the afore-mentioned protons; the virtual quanta they
exchange to interact with each other are mesons, themselves quark-antiquark bound
states. Strictly speaking, quarks have masses, and hence scale invariance is broken already
at the classical level. However, the breaking of scale symmetry due to the non-vanishing
quark masses pales in the face of the scale-dependence induced by quantum effects (in
this case colour confinement).

1.1 Scale invariance — why and where

Scale symmetry is thus one whose breakdown at the quantum level appears almost
inevitable in generic situations. Nevertheless, the study of quantum scale symmetry —
along with the concomitant search for the special conditions and systems that allow its
realization — turns out to be useful, both for conceptual as well as practical reasons. Let
us briefly discuss these reasons in the following.

U The same is true, mutatis mutandis, if the fluctuations are of a thermal nature rather than quantum,
as is the case in statistical field theory. The difference is essentially one of Wick rotation, and one we
shall not have occasion to pay much attention to during the course of this work.



2 1. Introduction

1.1.1 Fundamental quantum field theories

From the conceptual viewpoint, fundamental quantum field theories? are notoriously
tricky objects to deal with in a mathematically sound way. Constructing such an object
by the usual procedure of quantizing a classical field theory entails evaluating a path
integral, which is (informally speaking) an integral with an uncountably infinite domain
of integration. Giving a mathematically rigorous meaning to this procedure turns out to
be possible in general only for theories that are non-interacting, or can be expanded —
at least formally — in a perturbative series near a non-interacting theory. The situation
improves if some additional symmetry can be imposed, which would then constrain,
e.g., the correlation functions of the full quantized theory. Scale symmetry turns out
to be particularly powerful in this regard. In many applications, scale invariance in
fact implies conformal symmetry (i.e., spacetime transformations that locally preserve
angles). This poses constraints so severe that the theory can (at least in principle) be
determined uniquely from symmetry considerations alone, without having to confront
the path integral — or the ill-definedness thereof, as it were — as an intermediate step.
Figuratively, scale invariance thus serves as ‘bootstraps’ by which the theory pulls itself up
(and into mathematically rigorous existence). Indeed, such bootstrap programmes (most
prominently the so-called conformal bootstrap) constitute a major part of the current
arsenal used to non-perturbatively solve quantum field theories, with many remarkable
successes to date.?) Field theories that exhibit quantum scale symmetry hence act as
‘signposts’ or ‘markers’ in the grander endeavour of charting out the landspace of all
quantum field theories.

Beyond purely abstract mathematical curiosity, there is one physical context where it
is conceptually essential to have a fundamental theory (as opposed to one that is valid
only up to a specific scale), viz. the ‘Theory of Everything’ in elementary particle physics.
The Standard Model has survived all experimentally accessible tests thus far; nevertheless,
there are theoretical indications that it cannot be the complete story. First, there is
the so-called ‘triviality’ problem which plagues the U(1) gauge sector. This means the
fine-structure constant grows beyond bounds and hits a pole (a so-called Landau pole) at
some finite scale. This would mean that only the non-interacting (hence ‘trivial’) version of
the theory can be extended to arbitrary scales. The observation that the photon interacts
in the infrared with other Standard Model particles (e.g., the existence of a Coulomb
interaction between electrically charged particles) negates this scenario. Although the
existence of the Landau poles in the Standard Model has been established primarily using
perturbation theory, a non-perturbative resolution within the Standard Model has not
been found yet. A second reason concerns the fundamental forces of Nature. Although
the Standard Model contains the strong and electroweak forces, gravitation is missing
completely. Assuming that gravity must be quantized and quantum gravity ultimately
will exhibit experimentally measurable consequences at high enough energies (say, at the
Planck scale), an extension of the Standard Model must at least contain the graviton. In
principle, many extensions to the Standard Model are conceivable, that alleviate (at least
some of) these problems. A rather intriguing resolution of both problems is offered by the

) Here and henceforth, we understand a theory to be ‘fundamental’ if it does not need a short-distance
(= ultraviolet, UV) cut-off, or some other equivalent UV regularization, assuming appropriate renor-
malization of couplings; they are also called UV-complete. Since high energies/momenta correspond to
small length scales, UV-completeness means that there is no microscopic structure more fundamental
than what is already contained in the theory.

3) We have nothing to add to the bootstrap literature per se in this thesis, but the interested reader is
referred to Rychkov (2017) for a more detailed pedagogical introduction as well as further information.
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imposition of (approximate) scale invariance at high energies. In the gravitational context,
this programme specifically proposes that at high energies, the (quantized form of the)
Einstein—Hilbert action ultimately flows to an interacting scale-invariant theory. In the
literature, this is called asymptotic safety, following nomenclature introduced by Weinberg
(1979). Asymptotic safety may be understood as a generalization of asymptotic freedom
to allow for interacting UV-attractive fixed points: recall the similar-sounding notion
of asymptotic freedom, which is enjoyed by certain non-abelian gauge theories such as
quantum chromodynamics (QCD), to quote an example from within the Standard Model.
This is tantamount to saying the GauBian fixed point is UV-attractive. [At asymptotically
high energy scales, the theory becomes free (in the sense of non-interacting), hence the
name.] The theoretical existence of an asymptotically safe fixed point (the so-called
Reuter—Saueressig fixed point) has been confirmed in pure gravity, and it has been
shown to be capable of accommodating Standard Model matter; cf., e.g., the textbook
of Reuter & Saueressig (2019) for a more detailed account. The proposed scenario is
‘minimal’ in some sense. For one thing, it does not entail the introduction of new particles
beyond the graviton, which may be contrasted with a different symmetry principle
such as supersymmetry, which does have the potential to cure (at least to some extent)
the proliferation of divergences in perturbation theory (roughly speaking due to the
compensating effect of fermions and bosons), but requires a plethora of additional — as of
now yet to be observed — particles. It does not necessitate the abandonment of quantum
field theory as the ultimate framework of fundamental physics either — unlike, say, string
theory. Remarkably, it turns out that this way of solving the gravity problem might also
furnish a solution to the triviality problem: Gravity fluctuations modify the running of
Standard Model couplings such that those featuring a Landau pole in the absence of
quantum gravity become either asymptotically safe or free in its presence.

1.1.2 Universality

Reassuringly enough, physical realizations of quantum scale symmetry are not restricted
to the trans-Planckian regime. At comparatively terrestrial scales, quantum scale symme-
try can be emergent in the low-energy limit, as opposed to being restored at high energies.
[In terms of the renormalization group (RG), which we shall review in more detail in
Chap. 2, this means that we now need to look at fixed points that are — predominantly —
attractive towards the infrared (IR).] More specifically, it turns out that quantum scale
symmetry emerges at long distances — i.e., in the IR — when (some other) symmetry
spontaneously breaks down, provided the order parameter characterizing the ordered (or
equivalently, symmetry-broken) phase remains continuous across the transition. These are
precisely the so-called continuous phase transitions. The closer one is to such a transition,
the longer the length scale (called the correlation length) over which correlations of
the order parameter fluctuations persist. This corresponds to probing the deep infrared
behaviour of the corresponding low-energy effective field theory. At the transition itself,
the correlation length diverges; the erstwhile exponential decay of correlation functions is
turned into power-law decay, thus signalizing the emergence of scale invariance. Further-
more, observables such as the size of the order parameter (on the symmetry-broken side),
the correlation length itself, and other thermodynamic quantities such as specific heat
exhibit power-law scaling as a function of distance to criticality.*) The scaling behaviour

4 Measurements on a real system will invariably also pick up on background contributions that remain
smooth across the transition. Like any background, this has to be subtracted (or modelled separately)
before comparing to theory predictions. We shall neglect this background throughout this thesis.
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of observables at or near criticality is called critical scaling, and the exponents associated
with the power laws are called critical exponents. Schematically, this takes the form

Y o (T ;CTC>%Y (1.1)

where Y is a generic observable sensitive to the critical behaviour, sy is the corresponding
critical exponent, r is the parameter that tunes the system through the transition and 7.
its critical value. If r corresponds to temperature, the transition is called a thermal phase
transition. If r corresponds to a non-thermal parameter (e.g., pressure) and takes place
at zero temperature, it is called a quantum phase transition (as the transition takes place
at zero temperature, the ordered state can only be destroyed by quantum fluctuations).

It turns out the critical exponents are independent of microscopic details of the
system in question, and depend only on a few macroscopic characteristics. This is
called universality — a fact which is not only intellectually remarkable (though a prosaic
explanation can be given using the renormalization group), but also useful in practice.
Quantum many-body effects allow Nature — aided and abetted by human engineering — to
realize a veritable cornucopia of different phases of matter. Critical scaling behaviour of
phases in the vicinity of continuous phase transitions equip the ‘space’ of all continuous
transitions between phases of matter with a notion of equivalence and furnish a first
classification principle: if two phases of matter show the same critical exponents when one
or more of their symmetries are being spontaneously broken (or restored), the assorted
transitions are said to be in the same universality class.

Whilst critical exponents are insensitive to the finer microscopic details, they are
sensitive to those properties of a system that dominate the long-ranged (or equivalently,
low-energy) behaviour: the gapless degrees of freedom. In the majority of conventional
systems, these are precisely the order-parameter fluctuations, which become gapless
precisely at criticality; the universality class is then uniquely determined by the symmetry
of the order parameter and the dimensionality of the system. This is usually referred
to as the Ginzburg—Landau paradigm. Although the critical exponents follow directly
thence in principle, the required calculation is still quite challenging in practice, and
affords scope for the application (and refinement) of many sophisticated theoretical
techniques. The liquid-to-superfluid transition (often abbreviated to ‘lambda transition’)
in helium-4 may be seen as something of a poster child in this regard, replete even with a
figurative ‘arms race’ between theory and experiment devoted to determining its critical
exponents. On the theoretical side, an expansion to six-loop plus Borel resummation
has been performed (Guida & Zinn-Justin 1998). In numerical Monte Carlo simulations,
linear lattice sizes of up to L = 512 (corresponding to ~ 10® lattice sites in total) have
been reached by Hasenbusch (2019). On the experimental side, the singular behaviour
of the specific heat has been measured to such a high precision that the experiments
had to be performed in a space shuttle in order to reduce the influence of the earth’s
gravitational field on the critical temperature along the height of the sample (Lipa et al.
2003). The significance of superfluid helium-4, however, goes beyond the classification of
transitions between phases of matter. One can show that every phase transition governed
by — in technical terms — an interacting renormalization group fixed point furnishes an
example of asymptotic safety (see Chap. 2 for said technical details); or, as expressed
more polemically by Alexander Markovich Polyakov, universality allows one to ‘learn
about elementary particles by boiling water’.’) With the advantage of hindsight, the

5) This direct quote goes back to an interview of Polyakov at Princeton in 2003 (see Ashrafi & Schweber
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‘arms race’ between theory and experiment regarding the anomalous magnetic moment
of the electron is now seen as a major catalyst in the development of Feynman diagrams
and the perturbative theory of renormalization (Schweber 1994). Will we one day, with
the advantage of similar hindsight, ascribe to the superfluid transition of helium-4 the
same kind of significance with respect to the non-perturbative theory of renormalization
and asymptotic safety?

As in any scientific discipline, progress beyond the status quo is made when phenomena
that lie outside the conventional paradigm can be found. In the case of Ginzburg-Landau,
a natural place to look for these are systems which host gapless excitations beyond
order-parameter fluctuations. Quantum phase transitions in systems with non-vanishing
Fermi surfaces constitute a prominent example in this regard; the fermionic excitations
that ‘live’ on the Fermi surface are gapless® and produce significant corrections to the
critical exponents. The simplest”) realization of this are so-called semimetals, where the
Fermi surface consists of isolated points (in reciprocal space).

The most well-known representative of this class of materials is graphene; in some
sense, it may be seen as the ‘superfluid helium-4’ of this discipline. The band structure of
systems like graphene with honeycomb lattic structure is such that there are linear band
crossings at the corners (the so-called K-points) of the Brillouin zone. As a consequence,
the low-energy excitations are fermions with massless relativistic dispersion. Following
its experimental realization by Novoselov et al. (2004), graphene’s potential as ‘table-top
particle accelerators’ was soon recognized, and used to create efficient, experimentally
accessible testing grounds for non-trivial predictions from relativistic quantum mechanics,
such as Klein tunneling (Young & Kim 2009; Stander, Huard & Goldhaber-Gordon
2009) and zitterbewegung (Katsnelson 2009).8) The interaction-induced quantum phase
transition from a semimetallic ground state to a potential ordered one in graphene-like
systems are described by so-called chiral (often also referred to as Gross—Neveu) versions
of the corresponding bosonic universality class — i.e., the order-parameter field-theory is
Yukawa-coupled to one or more species of chiral fermions (Rosenstein, Yu & Kovner 1993).
For instance, the transition to a charge-density wave state, which breaks Zs symmetry, is
described by a Gross—Neveu-Ising universality class; a transition to an antiferromagnetic
state, which breaks SU(2) spin rotation symmetry, falls in the Gross-Neveu-Heisenberg
universality class. The precision achieved in determining critical exponents in these
chiral universality classes falls some way short of the success achieved previously in

2003). A similar sentiment, but with ‘elementary particles’ replaced by ‘deep inelastic scattering’, is
expressed in Polyakov (2012).

It is crucial that the temperature is zero. To see that it is indeed so, recall that computing a partition
function for a system in D spacetime dimensions corresponds to solving a Euclidean quantum field
theory in S*(1/T) x RP™!, where S*(1/T) is a circle with the inverse temperature as radius. Along
the compact direction, bosons (fermions) have (anti-)symmetric boundary conditions. A field ¢ can
be expanded for (7,2) € S'(1/T) x R”™" as ¢(1, ) = 3., .5, €“"" ¢n(x). (This is essentially a special
case of the Kaluza—Klein decomposition.) Here, w, = 27T (n + n/2) for n = 0 (1) are the bosonic
(fermionic) Matsubara frequencies. At finite temperature, only the w, = 0 can contribute. Thus, apart
from effectively reducing the spacetime dimension D — D — 1, it also excludes all fermions, since they
have an O(T') gap, from contributing to thermal phase transitions. At zero temperature, however, the
gap vanishes: fermions contribute to quantum criticality, as long as they are otherwise gapless. Note
also that S*(1/T) x RP~! — RP for T — 0, i.e. there is no coresponding dimensional reduction.

By simple, we mean tractable from an analytical point of view. Generically, the Fermi surface has
codimension unity; in two or more spatial dimensions, there would hence be an uncountable infinitude
of flavours. Whilst this often leads to a very rich phase diagram, controlled theoretical predictions are
made very difficult.

8) For a more in-depth review, see e.g. Castro Neto et al. (2009).

6)

7)
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conventional Ginzburg-Landau criticality. In diagrammatic approaches, for example, the
need to include an additional particle species leads to a proliferation of diagrams, not
just in terms of absolute numbers, but also in terms of permissible diagram topologies
and structures of necessary counterterms. The highest order in loop expansion (to name
but one such field-theoretic approach) attained thus far is four, by Zerf et al. (2017);
it is two orders lower than the case for loop expansion in scalar theories. Likewise, the
system sizes accessible to numerical methods such as QMC is several orders of magnitude
lower. Experimental estimates of graphene’s critical exponents are also hard to come
by, because graphene appears to be rather weakly interacting in its pristine form in the
low-energy limit; in particular, it is too far from the critical interaction strength for
spontaneous symmetry breaking to be triggered by the tuning of the usual external control
parameters such as pressure.?) Other materials are rather strongly-correlated and feature
stable symmetry-broken ground states, and it is difficult to tune these into symmetric
semimetallic phases. Examples in this class are honeycomb iridates or a-RuCls, in which
the spin-orbit coupling is also strong (Shitade et al. 2009; Winter et al. 2017). Much
like the energy frontier of (real) particle accelerators, this ‘correlation frontier’ is hence
one of the current challenges in table-top accelerators, and subject of much on-going
endeavour (see also the discussion in Chaps. 5 and 6). Just like the discussion above
for helium-4, a similar comment in connection with asymptotic safety is valid: quantum
criticality in two-dimensional Dirac semimetals constitute examples of asymptotic safety,
with fermionic matter degrees of freedom. Given that all matter particles in the Standard
Model (with the exception of the Higgs) are fermionic in nature, they hence provide
an intriguing sandbox for ideas concerning asymptotically safe UV completions of the
Standard Model. Experimental observation of quantum criticality in low-dimensional
semimetals thus contain an additional (figurative) dimension of significance.

1.1.3 Novel phases of matter

The study of low-energy quantum scale symmetry is also closely related to the search for

and investigation of novel phases of matter. This follows three main themes:

1.) Critical exponents as fingerprints. Most closely related to the discussion above,
this line of inquiry exploits the sensitivity of critical exponents to any and all low-
energy degrees of freedom. In particular, such degrees of freedom may be low-energy
excitations of exotic ground states. An example is constituted by spin liquids, which
are non-classical long-range entangled ground states of magnets with frustrated
exchange interactions. They are often characterized by a semimetallic ground state,
although the system had no mobile fermions to begin with. Rather, the fermionic
degrees of freedom arise due to fractionalization of the local magnetic moments (for
a more detailed review, cf., e.g., Vojta 2018). Such degrees of freedom are difficult to
observe directly in experiment, as are the corresponding ground states, which are
not characterized by a non-vanishing local order parameter, but instead by non-local
topological order difficult to establish directly by measurement. However, when an
exotic phase such as a spin liquid suffers breakdown of some symmetry, the critical
exponent will be modified due to the presence of the novel low-energy excitations.
If the state the spin liquid transitions into is a conventional one characterized by

9 Note, however, that transition to ordered states has in fact been observed when an external magnetic
field is applied (so-called magnetic catalysis). These ideas have in turn been further transported to the
quantum gravity context in the form of gravitational catalysis. Such settings, however, break several
symmetries explicitly, and is not within the scope of the present work.
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Figure 1.1: (Adapted from Vojta 2003) Quantum critical ‘fan’ at small but finite temperature
associated with a quantum phase transition tuned by control parameter r and characterized
by order parameter ®. At the critical point r = r. (maroon circle), the correlation length is
infinite. For sufficiently small distance to criticality, (r — r¢)/re < 1, the correlation length
will still be very large, and practically infinite compared to the temperature, £* » 1/T" (z is
the so-called dynamical critical exponent and measures to what degree time scales differently
from space at the RG fixed point). In this regime, marked light maroon, observables show
scaling behaviour as a function of T'. This extended region of the T phase diagram hence
behaves as a scale invariant phase, although the underlying fixed point has an RG-unstable
direction. The dashed line denotes a crossover to regimes where the length scales 7-'/# and &
are comparable in size and scaling behaviour no longer persists. At high enough temperatures,
the physics is no longer governed by the zero temperature critical point, marked ‘non-univ’.
See also Chap. 2 of this thesis for more details, and the review of Vojta (2003) and textbooks

such as Herbut (2007) or Sachdev (2010a) for even more details.

2.)

non-vanishing local order parameter, the transition will be amenable to detection by
usual experimental techniques. Thus, the critical exponents will carry the ‘fingerprints’
of the erstwhile unconventional state and its emergent low-energy excitations. We
shall use this principle ourselves in Chap. 3, where the spin(-orbital) liquid will
have emergent fermions (called spinons) with an unusual SO(3) flavour symmetry,
and a flavour number that would be uncompatible with Nielsen—Ninomiya theorem
if the fermions were complex rather than Majorana. A similar analysis has also
been performed for a so-called U(1) Dirac spin liquid, which features, in addition to
fractionalized fermionic excitations, gapless excitations of an emergent U(1) gauge
field in D = 3 spacetime dimensions (not to be confused with the photon of the
Standard Model) described by QED3, the three-dimensional analogue of quantum
electrodynamics, cf. Janssen et al. (2020).

The quantum critical fan. A quantum critical point strictly speaking demarcates the
boundary between two phases, rather than signifying a phase by itself. Nevertheless,
it turns out that in the r-T phase diagram (where T' is temperature and r is the
tuning parameter for the zero-temperature transition), there is an extended region
that shows scale-invariant behaviour of observables as a function of temperature
T (Fig. 1.1). Roughly speaking, if the correlation length is much larger than the
inverse temperature, the system effectively ‘feels’ as though the correlation length
is practically infinite. Interestingly, this region of the phase diagram often stretches
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out to rather high temperatures before non-universal effects take over (Vojta 2003),
and — somewhat counter-intuitively — ‘fans’ out away from the critical point r = r
at higher temperatures (Sachdev 2010a). If the corresponding RG fixed point is
a non-trivial interacting one, then the quantum critical fan as a phase does not
feature conventional quasiparticle excitations (i.e., the Green’s function has a branch
cut singularity rather than an algebraic pole), and the exponents deviate from
canonical (e.g., Fermi-liquid-theory) values. As an example of high fundamental
as well practical relevance, it has been suggested that the ‘strange metal’ phase of
cuprate high-temperature superconductors may in fact be such a quantum critical
fan (cf., e.g., Sachdev 2010b).

3.) Scale-invariant phases of matter. Finally, a stable phase of matter may itself be scale
invariant — i.e., governed by a stable RG fixed point. As a matter of principle, this is
not extraordinary per se: a Gauflian fixed point is often stable and, if all ‘masses’
vanish, corresponds to the symmetric phase. A perfectly ordinary semimetallic phase,
such as the one in graphene, is described by a Gauflian fixed point; the free action
Sx @) is manifestly scale invariant due to the absence of dimensionful parameters
(and there are no quantum corrections due to the absence of interactions). Truly
novel phases arise, however, if a non-Gaufian fixed point turns out to be IR stable.
In this case, one has a bona fide phase of matter with no quasiparticle excitations and
non-trivial power laws for observables throughout an extended region of the phase
diagram. Though we shall not encounter such scenarios directly in our studies, there
are some notable examples in the literature worth mentioning here for completeness.
A first example is QED3, whose vacuum has been established to be in a conformal
phase for sufficiently large flavour numbers!®). QEDs3 has been proposed to be
an effective description for many exotic phases of matter from high-temperature
superconductors'?) to various avatars of spin liquids!'?). A beautiful non-abelian
gauge-theory example in D = 4 spacetime dimensions is given by the Caswell-Banks—
Zaks fixed point, which arises in SU(N,) gauge theory with N fermion flavours,
for suitable combination of Ny and N..'3) An interesting non-relativistic realization,
also in D = 4 spacetime dimensions'?, is the Luttinger—Abrikosov—Beneslavskii
non-Fermi liquid phase (Abrikosov & Beneslavskii 1971; Abrikosov 1974; Moon et al.
2013) which arises in 3D Luttinger semimetals (Luttinger 1956). These are materials
where two (or more) bands touch quadratically at isolated points of the Brioullin zone,
examples of which include grey tin, mercury telluride and some of the pyrochlore
iridates (cf., e.g., Witczak-Krempa et al. 2014).

19¢f., e.g., Appelquist, Nash & Wijewardhana (1988); Hands et al. (2004); Braun et al. (2014); Raviv,
Shamir & Svetitsky (2014); di Pietro et al. (2016); Herbut (2016); Janssen (2016). Some authors even
suggest that the conformal phase may persist at all flavour numbers (Karthik & Narayanan 2016;
Chester & Pufu 2016).

Wef., e.g., Franz (Tesanovié & Vafek); Herbut (2002); Hermele, Senthil & Fisher (2005)

12)¢f., e.g., Hermele, Fisher & Balents (2004); Ran et al. (2007); He et al. (2015); Wang & Senthil (2016)

13)Named after the contributions of Caswell (1974) as well as Banks & Zaks (1982). For a review, see the
book of Hollowood (2013).

14)Throughout this work, we shall always understand D to be the topological spacetime dimension of the
quantum field theory. There is a somewhat different notion of effective dimension when the dynamical
critical exponent z is different from unity, which is the scaling dimension of the D-dimensional spacetime
volume element d”z, see Chap. 2 for a more detailed discussion. We shall always refer to this by some
other symbol such as Deg, but never D.
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1.2 Outline of this thesis

The present thesis is concerned, in a nutshell, with the low-energy physics of quantum
scale symmetry. The first four projects are devoted to the study of scenarios where
quantum scale symmetry itself emerges at very long length scales, viz. the correlation
length near a quantum phase transition, and characterizing the critical properties of
said transitions. The last project takes the opposite point of view: assuming quantum
scale symmetry to be restored in the deep UV, it asks to what extent the observable
phenomenology in the infrared is constrained as a consequence. In some more detail, the
roadmap below is the one we shall follow:

In Chapter 2, we shall review the formalism of the renormalization group. In modern
language, the scale-dependence of physics is expressed in terms of renormalization group
flow; finding quantum scale symmetry is then tantamount to finding the fixed point of
this flow. The discussion in this Chapter will inter alia provide us the opportunity to
recapitulate the infrared and ultraviolet perspectives on quantum scale symmetry in a
simplified and abstract way, and serve as a conceptual framework for the discussion of
the concrete physics in subsequent parts of the thesis.

In Chapter 3, we shall encounter our first concrete instance of quantum criticality:
the Gross—Neveu SO(3) transition. Unlike its more well-known Ising or Heisenberg
counterparts (studied more extensively due to their relevance in the graphene context),
the SO(3) universality class has been proposed to describe the quantum phase transition
from a certain type of spin-orbital liquid to an antiferromagnet. Spin liquids, as mentioned
previously, are notoriously difficult to diagnose experimentally, since they are by definition
phases of matter with long-ranged topological order; in particular, the chiral fermions
arise microscopically in this realization due to a fractionalization of the underlying
localized spin-orbital degrees of freedom, and cannot be ‘seen’ using usual experimental
techniques. Nevertheless, like any gapless degrees of freedom, they leave their ‘fingerprints’
in the critical exponents. On the other hand, looking past the complicated microscopic
connotations, the pertinent quantum field theory is a perfectly conventional Yukawa
theory in D = 3 spacetime dimensions, and as such amenable to the machinery developed
previously for related systems. The aim of this project is to use (several instances of)
said machinery to obtain reliable predictions for critical exponents of such transitions, as
a first step towards the grander long-term goal of exploiting critical exponents as part of
the ‘diagnostic toolkit’ for quantum spin liquids.

In Chapter 4, we shall turn our attention to the quantum criticality of Luttinger
fermions in D = 3. Unlike Dirac fermions, Luttinger fermions have a quadratic low-energy
dispersion; it is unlikely they will ever appear as elementary particles (for instance in
a hypothetical extension of the Standard Model), but they do emerge as quasiparticles
in so-called quadratic band touching materials. From a field-theoretic perspective, this
changes the canonical power counting, and makes the 4-Fermi theory of Luttinger fermions
perturbatively renormalizable in D = 3. In low-energy language, the ground state of
Luttinger fermions thus changes depending on the sign of the 4-Fermi interaction: for
one sign, the semimetallic state wins, whilst for the opposite sign, a gap in the fermionic
spectrum is generated dynamically. The critical value of the interaction strength is
hence zero. Nevertheless, we shall see that certain exponents obtain quantum corrections
(essentially because the order parameter is a local composite operator); however, the
essentially Gauflian nature of the pertinent fixed point kills higher-order corrections and
renders these quantities one-loop exact. In view of the general difficulty of calculating
critical exponents of fermionic universality classes to high precision (cf.: Chap. 3), such
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predictions can serve as benchmarks for other methods that are not manifestly exact in
this setting but become useful when the loop expansion does not converge, or does so
only very slowly.

In Chapters 5 and 6, we shall revisit the issue of quantum criticality in Dirac
semimetals being difficult to observe experimentally due to their effective interaction
strength being too far from the critical point. The main ingredient will be the fact that
Luttinger fermions have a weak-coupling instability, but can split into two or four Dirac
fermions if the rotational symmetry is broken (the precise number of Dirac fermions per
Luttinger fermion depends on the residual rotational symmetry). Chapter 5 concerns
the explicit breaking of rotational symmetry down to C3, whilst Chapter 6 considers the
case where the symmetry breaking occurs spontaneously due to the onset of nematic
order. Both mechanisms may be realized in Bernal-stacked bilayer graphene, and we
shall argue that this material — unlike its decidedly semimetallic monolayer counterpart —
may be proximate to both kinds of quantum criticality, which is promising. We shall also
compile the critical exponents for the corresponding universality classes; since the flavour
number is considerably larger than monolayer graphene, the final estimates come with a
somewhat lower uncertainty.

In Chapter 7, we shall switch from the IR to the UV. There are reasons to believe
that extensions to the Standard Model that tend to lower the Higgs mass are phenomeno-
logically attractive. (For one thing, it would allow one to accommodate a more stable
electroweak vacuum.) Such extensions, however, usually come with a significantly enlarged
number of free parameters, and a concomitant reduction of predictivity. We therefore
investigate to what extent imposing quantum scale symmetry at high energies can restrict
the Higgs mass measured at low energies (such as the top scale). We shall perform the
concrete calculations in a toy version of the Standard Model (more precisely, a Yukawa
system representing the top quark and the radial mode of the Higgs) coupled to Yukawa
dark matter via a so-called ‘portal’. It turns out that within reasonable approximations,
there is only one free parameter in the asymptotically safe dark sector, as a function of
which the predicted (toy model) Higgs mass can be lowered due to mixing effects if the
dark sector undergoes spontaneous symmetry breaking.

In Chapter 8, we shall close with a summary and an outlook.



Chapter 2

Renormalization Group: A Brief
Review

The renormalization group (RG) was originally introduced purely as a computational trick;
as a necessary evil to absorb infinities appearing in perturbative quantum field theory,
and as a means to resum so-called ‘large logarithms’ arising thence. Over time, beginning
with the Migdal-Kadanoff ‘mode decimation’ picture (Migdal 1976; Kadanoff 1966),
via the works of Wilson and Polchinski (Wilson 1971; Polchinski 1984) and subsequent
refinements (as well as reformulations) due to Wetterich-Morris-Ellwanger (Wetterich
1991; Morris 1994; Ellwanger 1994), a new, more conceptual picture of renormalization
emerged. In this picture, renormalization is an expression of ‘locality of scale’; the physics
of a given system — provided certain ‘niceness’ properties are satisfied — at a certain scale
k should be expressible as an equally ‘nice’ quantum field theory in terms of degrees of
freedom that live at energies at or below the scale k; the effect of those that live above
this scale are said to have been ‘integrated out’. Thus, renormalization can be understood
as a means of organizing physics by the scale at which it takes place. The purpose of the
present chapter is to introduce in a (somewhat) pedagogical manner the technique of
renormalization, as pertaining to the calculations of the subsequent portions of this thesis.
For efficency of exposition, we shall recapitulate the development of the renormalization
group in an almost anti-chronological manner, beginning with the modern Wetterich—
Morris-Ellwanger formulation, and only briefly remark on the perturbative UV divergence
picture (mainly by ‘deriving’ it within the Wetterich-Morris—Ellwanger framework). This
formulation is also useful for the actual calculations done in the remaining parts of the
thesis. Remarks on how quantum scale symmetry is realized at RG fixed points and how
their properties relate to the theory of quantum phase transitions on one hand as well
as predictivity of (UV completions of) quantum field theories on the other close this
chapter.

2.1 Quantum fluctuations and generating functionals

In classical field theory, the dynamics of fields are determined by the principle of extremal
action (also called the classical equations of motion),

oS
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Here, S is the action that defines the field theory, and ¢, contains all fields pertain-
ing to the theory. Once the field theory is quantized and quantum fluctuations are
taken into account, Eq. (2.1) will surely cease to be valid exactly — but what should
stand in its stead? Quantum field theory is defined by expectation values of the form
(e (1) - - e, (x2)) (called n-point correlation functions, n-point Green’s functions, or
simply n-point functions).l) Note that we take special care in this section to notationally
distinguish the quantum mechanical operator é from its classical counterpart ¢ (in other
words, gfg is the quantized version of ¢). The correlation functions are defined by a path
integral over all classical field configurations weighted by the exponential of the classical
action, to wit:

<¢§a1 ('731) e @ZA)Otn (xn)> = qub ¢a1 (1:1) e ¢a1 (xn) e_S[(b] (2'2)

Since we work in imaginary time (i.e., in Euclidean quantum field theory), there is a
minus sign in the exponent rather than a factor of i, the imaginary unit?. It is often
useful to have an object that stores all correlation functions at once rather than having to
compute them one-by-one every time. An efficient way to achieve this is using generating
functionals, which motivates the construction of the partition function Z as

Z[J] = f D¢ exp [— <5[¢] + fd% J(x) ¢a(x))] , (2.3)

where the integral measure is assumed to be normalized such that Z[J = 0] = 1. The J¢
are called sources conjugate to the fields ¢,. Note that the above construction is perfectly
analogous to that of the generating function of the moments of a probability distribution
in stochastics. Thus, n-point functions are obtained by differentiating Z n-times with
respect to the sources and subsequently setting them to zero, to wit:

B (=)ronz
6Jay (21) - 0Ja, (Tn) | ;0

<¢;a1 (:El) e ?Ean (xn)> (2'4)

Taking the analogy with probability theory further, recall that the nth moment typically
obtains ‘trivial’ contributions from lower moments if these have a finite value. For
instance, given a random variable X, the second moment (X?) does not quantify the
spread of a probability distribution if (X) is finite; rather, the latter is given by the

variance Var(X) and is obtained by subtracting the contribution (X)? from (X?), to wit
Var(X) = (X?) —(X)?. Correlation functions stripped of finite lower-point contributions,

1) Depending on the theory, one might need to consider more general operators {O(da(z))}o constructed
out of the elementary fields. For instance, when studying spontaneous symmetry breaking in a purely
fermionic theory — i.e., when ¢, consists solely of fermionic fields and their Grassmann conjugates
1,1 — the simplest possible local order parameter is a composite operator of the form (1)(z). The
construction in that case, while more tedious, is conceptually analogous.

For the purposes of most applications pertinent to the present thesis, this choice is mainly one of
convenience. The integral with a minus sign is admittedly slightly better defined in non-interacting
theories (in much the same way exponentially suppressed integrands are better than oscillatory ones),
but the crucial ill-definedness persists, since the path integral remains in essence an integral with
integration domain of (possibly uncountably) infinite dimension. (This is ultimately what makes the
twin procedure of regularization and renormalization unavoidable.) Results obtained in a Euclidean
framework can be translated to Minkowski spacetime by analytically continuing the time variable to
imaginary values, and is called Wick rotation. A possible exception is quantum gravity (see Chap. 7),
where different metric signatures may lead to inequivalent configuration spaces of metric fluctuations.
The question of analytic continuation in this context is non-trivial, and open at the time of writing.

2)
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3)

usually simply called connected correlation functions,”’ are generated by the so-called

Schwinger functional W[J] := —In Z[J]:

o"w

<§£a1 (:El) T (Zgan ($n)>conn. B 5Ja1 (161) te 5‘]0471 ('7;") J—0 ‘

(2.5)

The appearance of the particular term ‘connected’ in the nomenclature above has a
diagrammatic origin, in that only connected vacuum diagrams contribute to the Schwinger
functional (cf., e.g., Schwartz 2014).

Our original goal was to find a quantum version of Eq. (2.1). To do so, we need
to trade the source-dependence for a field-dependence, which may be achieved using a
Legendre transform. This yields a further functional I" defined as

ow

T[o) = W = [ % J@)dula). 60(e) = 7acs (26)
with the inverse transform given by
W[J] =T[¢] + J APz J*(2) pa(z),  J*(z) = 523(;)‘ (2.7)

It turns out that I' is precisely the quantum version of S we are looking for, in the sense
that the equation of motion governing the quantum vacuum field configuration reads as

or
0o ()

In analogy with Eq. (2.1), the above is called the quantum equation of motion, and T'
the quantum effective action. The field configuration ¢ = ¢ya that solves the quantum
equation of motion satisfies ¢pyac = <¢A5>, and is called the vacuum expectation value of gﬁ
The quantum effective action has a rather intuitively appealing path integral prescription
(cf., e.g., Avramidi 2002):

Tl _ f Do exp{— <5[¢> + 3] - f Py 5(;2[3) qj)a(x))} . (2.9)

This means (roughly speaking) that the effective action for a given field configuration
is found by integrating over fluctuations on top of it. The effect of the second term in
the exponential on the right-hand side is such that when the path integral is evaluated
perturbatively, only Feynman diagrams that do not fall into disconnected subgraphs after
cutting one internal line survive. Such diagrams are often called one-particle irreducible
(1PI) in the field-theory literature, with the quantum effective action often referred to as
the 1PI effective action for this reason.

= 0. (2.8)

2.2 Renormalization group flow

We thus know now which functionals to compute in order to go from classical to quantum.
Nevertheless, this leaves a potentially ill-defined (in a mathematical sense) path integral
to be tackled. The main idea behind ‘mode decimation’ versions of RG is to perform
this integration step-by-step. Conceptually speaking, this entails performing the path

3 In probability theory, these would be called cumulants.
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integral only over fields that fluctuate ‘faster’ than k, with a path integral over modes
that fluctuate ‘slower’ than k left to be performed. To this end, one adds to the classical
action S a regulator

ASy == f P2 AP’ Gu(z) R (2, 2) o (). (2.10)

A useful physical picture for the kernel Ry(z,y) is that of a bilocal generalization of a
mass term. Following the same routine of stripping connected components and Legendre
transformation as above, this construction leads to a ‘running’ version of the generating
functionals, denoted Zi, Wy, and after Legendre transformation, to the running effective
action I'y; for k& — 0, we have to require AS; — 0, such that the full quantum generating
functional is recovered in this limit (this is often referred to as interpolating between
the classical and the quantum action). The major ‘selling point’ of the mode decimation
picture is that one can replace the path integral prescription for the full quantum
generating functionals by an evolution equation for the running effective action I'y, of the
form

1 -1
koW, = 5 STr [(r}? + Rk) k&kRk] : (2.11)

The factor k is there so that k0, the so-called scale derivative, is a dimensionless operator
(i.e., invariant under scale transformations), which will prove to be the natural language
when discussing quantum scale symmetry and its emergence (or breakdown) later. In the

above, F,(f) is the Hesse matrix of I'y, to wit:

5 5
= Sonto)  HOlS

(2.12)

The trace Tr is generalized to the so-called ‘supertrace’ STr, which includes a minus sign
for fermionic degrees of freedom:

B =«
STr()}< F)zTrB—TrF. (2.13)

(Note the capitalization of Tr and STr: it is there to remind us that the trace is to be
performed not just over internal indices of ¢, but also over coordinates.) Eq. (2.11) is
called the Wetterich—-Morris—Ellwanger equation, referring to the pioneering contributions
of Wetterich (1991), Morris (1994), and Ellwanger (1994). Since said equation tracks the
scale evolution of the full functional, as opposed to only the flow of a restricted set of
coupling constants, which is more common in perturbative implementations of RG such
as that of Gell-Mann-Low (cf., e.g., Schwartz 2014), the Wetterich-Morris—Ellwanger
equation is also referred to as the Functional Renormalization Group (FRG) equation.
We shall use the two terms in a synonymous way subsequently.

Let us now sketch the ‘derivation’ of the flow equation for I'y.. As is common practice
in these disciplines, by derivation we shall mean formal manipulation of path integrals to
arrive at the flow equation. Since a mathematically rigorous non-perturbative definition
of path integrals is outstanding, this is at best a heuristic; the endeavour to turn them
into mathematically rigorous proofs is ongoing, see Ziebell (2021b) for the most recent
progress in this direction. Having said that, let us begin our ‘derivation’ by noting the
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path integral for 'y, which may be obtained by replacing S — S+ AS; and I' — 'y, + ASy
in Eq. (2.9), to wit:

N exp<_rA[¢ + 31— Asilo+ 4]+ [avp L2 }(w)) ,

dda(T)
(2.14)

where the arguments of functionals default to ¢ if unspecified. In the equation above, the
classical action S has been automatically implemented as the initial data for the flow,
i.e.,

Ty =25, (2.15)

where A is the appropriate UV scale for the problem at hand (e.g., the Planck scale in
quantum gravity or the inverse band width in semimetals). (In a ‘fundamental’ theory,
one would ultimately like to set A — o0 at least in principle, if not in practice.) Eq. (2.14)
expresses the evolution from A to k. The main ‘trick’ towards deriving the Wetterich—
Morris-Ellwanger equation is to consider instead the evolution from k to k — dk. Mutatis
mutandis, Eq. (2.14) then reads as

e ThoonT BBkt JD¢~> eXp<—Fk[¢ + ¢] — ASk_sk[¢ + ¢]

+ f dDmé(Fk_‘Z‘ ; (ﬁ)s"f—‘”“) nga(x)> (2.16)

Let us evaluate the path integral to one-loop order, and expand to this end the exponent
on the right-hand side to quadratic order in fluctuations to obtain (upon recalling that
Ry, is the Hesse matrix of ASy):

T[] = ASp-si[0] - f a2 P’ o (@) (TP 617 (0,0) + R0 (2,2')) ().

We have dropped the term coming from the Jacobi matrix of I'y — I'y_sk, since its
contribution to the (logarithm of the) path integral would be of order (6k)2. Performing
the Gauflian integration and taking the logarithm of the determinant using the ‘trace-log’
formula, we thus arrive at

1
Dy-st = T + 5 STr1n (F,(f) + Rk_5k> LN (2.17)
Like in any infinite-dimensional Gauflian integral, there is an arbitrary normalization
constant, denoted here as V. In this instance, N' may be fixed, e.g., by imposing continuity
of Eq. (2.16) at dk — 0, yielding®
1 (2)
N = =5 STrin (rk + Rk> . (2.18)
Inserting Ri_si ~ R — 0k0p Ry, we may now expand the logarithm as
In (Fl(f) + Rk—ék) ~ In (F,(f) + Ry — (5ka]€Rk)

~ In (r,@ + Rk) ok (r,(? + Rk)_l Ok Ry,. (2.19)

) This is conceptually similar to fixing Z[J = 0] = 1.
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The contribution of the first term cancels against N. Dividing by (dk)/k and sending
0k — 0 yields

1 -1
Koy = 5 STr [(r,(f) + Rk) k@kRk] , (2.20)

thereby verifying Eq. (2.11). Let us conclude with miscellaneous technical remarks:

1.) The flow equation for a generating functional is equivalent to its path integral. Whilst
the latter is only a formal object, the flow equation is a mathematically well-defined
problem (cf., e.g., Ziebell 2021a). Hence, the flow equation may just as well be seen
as a rigorous non-perturbative definition of the path integral.

2.) The Wetterich-Morris-Ellwanger equation in particular, and all RG procedures
derived from (continuous) ‘mode decimation’ in general, have a so-called one-loop
exact form, in that they entail only a single functional trace. However, information
about the full loop expansion is contained in the flow equation, because the Hesse
matrix appearing in the functional trace is computed self-consistently from I'y, (rather
than S, as one would in perturbative approaches). In this context, note that the
loop expansion performed in going from Eq. (2.16) to Eq. (2.17) is controlled by
0k (which is ultimately sent to zero), rather than the presumed smallness of any
interaction vertices.

3.) We have thus far not been very precise about how ASj distinguishes ‘fast’ from
‘slow” modes. To give this a well-defined meaning, one needs to declare a quadratic
(in fields) positive-definite term in the action as the kinetic operator. Let

Okin = JdD$ dPa’ Pa (l‘) Koo ($a -r/) o (wl) cS (2'21)
be this operator, {e)}, a list of the spectral values of the linear operator
¢ — de:c/ Koo (,2") s (z")

induced by Oy, and {u*}y the corresponding eigenvectors. Assuming the kinetic
operator is ‘nice enough’ such that {u*}, fulfils the necessary completeness relations,

one may then split ¢ into its slow and fast components as®
Pal@) = ¢5(x) + D4 () (2.22)
320 () = Pruy () (2.23)
d,

easS(R)kde

The summation sign is symbolic; in many cases, the spectrum will have continuous
parts and the sum will then be replaced by an integral. The spectrum of K is assumed
to have units of (length)?® (e.g., d. = 2 for the Laplacian, d. = 4 for the bi-Laplacian,
etc.), such that k always has units of (length)~!. In many practically relevant cases,
K is translationally invariant. Then, one may write

K(z,2') = K(—id) §(z — 2'); (2.24)

5 The ‘< (%) below is there to remind us that a smooth transition from the slow to fast regime —
rather than a sharp cut — is desirable. The precise form is immaterial for the further discussion, since
ultimately, the separation of modes is achieved by a suitable choice of ASj.
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often, in fact, K (—id) = —0? is (the negative of) the D-dimensional Laplacian.?) In
this case, A = p € RP is called momentum, and the expansion in plane waves up(z) =
eP® is simply the definition of the Fourier decomposition. Since the eigenvalues of
the kinetic operator &, = p? has units of (length) =2, it is conventional to use p? < k?
to characterize the ‘slow’ modes; the RG scale k is thus seen to correspond to a
momentum scale. A suitable choice of Ry, the integration kernel of ASy, is then
given by”)

Ri(z,2") = =% r(=0?/k*) §(x — o) (2.25)
with a dimensionless ‘shape factor’ r satisfying
z?r(z) - C >0 (z — 0) r(z) — 0 (x — ). (2.26)

The former ensures IR modes are suppressed at fixed k, whilst the latter ensures
that for k — 0, the full effective action is recovered. A slight modification is useful
in non-relativistic theories. There, spacetime is split as (z,) = (7,«), and the
regulator is then defined to leave the 7-axis untouched. Due to a residual O(D — 1)
symmetry (spatial rotations), it is sufficient to consider r as a function of (—8?/k?),
the (D — 1)-dimensional Laplacian.

Momentum-space regulators are by far the most ubiquitous in FRG calculations (cf.,
e.g., Dupuis et al. 2021); this will also be the case in the present thesis. However, the
flexibility of the regulator formalism is best illustrated by cases where momentum
is mot a good basis. Apart from the afore-mentioned spacetimes with curvature,
examples include ¢* theory on non-commutative spacetime, where one needs to set
up the mode decimation in a so-called matriz basis (Grosse & Wulkenhaar 2005),
although the derivative terms one might naively consider to constitute the kinetic
operator is diagonal in momentum space.®) Certain matrix models (e.g., for two-
dimensional gravity) have a trivial ‘kinetic’ term, and the notion of mode decimation
has to be defined in a more abstract sense (cf., e.g., Eichhorn & Koslowski 2013). We
shall encounter a — by comparison somewhat humble — example of non-momentum-
space regularization in Chap. 5 as well as Sec. 4.6.3, where the regularization will be
defined via cut-offs in coordinate space.

2.3 Basic notions

The Wetterich—-Morris—Ellwanger equation contains all the information about the effective
action in a non-perturbative, mathematically rigorous way. Nevertheless, it is a non-linear
evolution equation for a functional whose domain and co-domain are infinite-dimensional
(and often uncountably so), which is hardly convenient. It is therefore more expedient to
carry out the discussion of quantum scale symmetry in terms of simpler, derived objects.
Assume to this end that the running effective action I'j, can be written as

Tlg] = Zgi,koz’[Qﬂv (2.27)

% In theories with fermionic degrees of freedom, one may instead have K(—id) = —if. In this case, one
usually uses the square of the kinetic operator to define fast and slow modes, which reduces again
to the Laplacian case. In curved spacetime, the Laplacian construction is still valid, but has to be
interpreted more abstractly, since the Laplacian is no longer diagonal in the momentum basis.

) Again, in the spinorial case, a corresponding choice is Ry (z,2') = —idr(—02/k?)d(x — z').

8 Roughly speaking, the matrix basis is to the momentum basis, what coherent states are to plane waves
in single-particle quantum mechanics.
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where {O;}; is a complete set of operators containing the entire field- and spacetime-
dependence, but have no dependence on the RG scale k; dependence on the RG scale
is instead carried by the g; ., which themselves have no field- or spacetime dependence.
(At its heart, this is therefore just another separation ansatz, familiar from the finite-
dimensional partial differential equations.) The g; ; are precisely what we shall refer to
henceforth as running couplings; the space spanned by all couplings g; is referred to as
‘theory space’. Furthermore, we shall refer to the scale derivative of go 1 as beta functions,

By = Bi == —kdkgi k- (2.28)

(The minus sign is merely a matter of convention. In statistical mechanics and condensed
matter theory, it is common to define the RG ‘time’ ¢ := In(A/k) such that ¢ — o0
corresponds to the deep IR, in which case 0y = —kdJj. In anticipation of the discussion
of the stability of RG fixed points later, let us note that in this convention, a positive
B; > 0 thus corresponds to an IR-relevant coupling g;.) Let us take this opportunity to
also review the concept of ‘complete’ basis of operators. This notion can be somewhat
subtle to formalize, since completeness can be meant either in the sense of a Taylor
expansion (with a finite radius of convergence), in the sense of an asymptotic expansion
(i.e., in the sense of Poincaré) or in the sense of an expansion in an orthonormal basis of
function space with respect to a suitably chosen inner product. Instead of an exhaustive
mathematical theory on the possible choices of basis, let us discuss the one which is most
pertinent to the theories we shall encounter, viz. the basis consisting of the following
operatorsg) :

Ilmn m
OU™) e = | 000y w00 (DB g G (220)

If the classical action S — in other words, the initial data for I'y, — is local (which will
turn out to be the case for all theories we shall consider in this thesis), then I'y itself
can be written as a linear combination of @™ provided the regulator Ry is smooth
enough. Note, however, that the full quantum effective action I' may be neither analytic
in fields, nor local; roughly speaking, this is because the quantum effective action emerges
only after infinite ‘flow time’ In(A/k) — o0. Keeping track of all elements of a complete
basis is only possible in theory (for instance, when proving ‘all-order’ statements, as we
shall do later in this chapter). In practice, only a subset of the OUmn) can be taken into
account; the choice of this subset defines the so-called truncation scheme. For instance,
in the derivative expansion (which will feature prominently in Chap. 3), one includes
to order Myeriv all terms with m < Mgy, and works with generalized ‘couplings’ that
depend on fields, such as the effective potential U(¢) which corresponds to m = 0,

Ui(9) =, gion s OU. (2.30)

In

Once a flow equation for Uy (¢) has been derived — which is then a (finite-dimensional)
partial differential equation in (k, ¢) — one can re-expand Uy (¢) in a different basis, with
more favourable convergence properties than a simple Taylor expansion. Another widely
used truncation scheme (albeit with no further presence in this thesis) is the vertex
expansion, wherein one keeps, to order Nyertex, all terms with [ + n < Nyertex. The name

9 Tt is understood, that the range of Imn are restricted such that every operator appears only once in
the list.
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refers to the fact that the sum of all terms [ + n = ng corresponds to the ng-th functional
derivative of I'y, often referred to as the ng-point proper vertex function.

Let us close this section by drawing the connection to the perturbative theory of
renormalization, since we shall use the loop expansion in several instances later, most
notably to higher order in Chap. 3. The loop expansion can be shown to correspond
precisely to an iterative solution of the Wetterich—Morris—Ellwanger equation, with
the bare action as initial point. Let us briefly sketch how this idea may be formalized
[see Codello, Demmel & Zanusso (2014) for details]. To set up the loop expansion,
we need to reinstate the reduced Planck quantum by rescaling all actions by h, i.e.,
hl'y — Iy, hRy — Ry, and make the ansatz

o0

Ti[¢] = Z KT L (6] (2.31)

The idea is that I'y; is the L-loop contribution to the effective action, and can be
determined by plugging in the above ansatz into the (suitably rescaled) Wetterich—
Morris-Ellwanger equation and comparing coefficients of i#”. This leads to the recursive
prescription

koRSe[¢] = 0 (2.32)
1 2) -1

kOiT1al9] = 5 STr [(sB [6] + Rk) k@kRk] (2.33)

korTok[0] = % STr [Ff;l[dﬂ kor (S]gm (6] + Rk> —1] (2.34)

where the superscript ‘(2)’ refers to the Hesse matrix as usual. One can then show

order-by-order that the right-hand-side is a total scale-derivative. To do so, however, one
needs to commute the supertrace with the scale derivative. Since this may spoil the UV
finiteness!?), one needs to additionally regularize the trace,

STr k0, = kO STryeg, (2.35)

The UV regularization introduces an additional scale kyy. The arguably most ubiquitous
prescription for such a UV regularization is dimensional regularization (DREG), where

J APz = (kyy)PresP f dPresy;, (2.36)
reg

i.e., the integral is evaluated in Dye; < D spacetime dimensions,'V) and the prefactor is
such that the integral measure still has units of (length)”. UV divergences show up as

10)Proving the fact that the insertion of k0, Ri guarantees UV finiteness is somewhat technically involved
in general. To get a qualitative idea of the argument, however, one may study the integral S;O dyy”
as a ‘cartoon’ of a generic (possibly divergent) loop integral. If we cut the integral off at an IR
scale k — i.e., SSO dy — S;O dy©O(y — k) — and perform the scale derivative before integration, then
kdk®(y — k) = —kd(y — k) automatically UV regularizes the result. On the other hand, if we wish to
perform the y-integral before the k-derivative, then we need to additionally UV regularize for r > —1.

W Defining the integral in non-integer dimensions in a mathematically rigorous as well as consistent way
is subtle (Bollini & Gambiagi 1972; ’t Hooft & Veltman 1972; Breitenlohner & Maison 1997; Stockinger
2005); cf. also Siegel (2005) for a more pedagogical account.
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poles of the form 1/(D — Dyeg)? with £ < L at the L-loop level ('t Hooft & Veltman 1972;
Breitenlohner & Maison 1997). In perturbative renormalization, these divergences are
cancelled by so-called counterterms, whereby the bare action is split into

e 6}
SB[¢] = Sren,k,kUV [¢] + SCT,k:,kUV [¢] = Sren,k,kuv [¢] + Z hL(SSL,k,kUV [¢]7 (237)
L=1
where the dependence on the UV regularization scale kyy has been reintroduced for
clarity. How much of the finite part of I'z ;, is included in Scr g i, ultimately defines
the renormalization scheme; in the most commonly used one, called modified minimal
subtraction or simply MS (Siegel 2005), the counterterms contain precisely the divergent
part,

0SL kkuv @] = 0SL kuv [@] = TLk=0[B]|1/(D=Dyreg)-poles = T'L.k=0[@]11/(D=Dreg)-poles-
(2.38)

alongwith a rescaling of the renormalization scale ,ulz\/[—s = k%ve_'YE /47 with Euler-
Mascheroni constant vg.'2) The assertion that the leading divergence is undressed by
the FRG scale k is non-trivial to prove in general, but has been checked to two-loop
by Codello, Demmel & Zanusso (2014) for single-component scalar ¢* theory at D = 4.
Demanding that ‘physics’ (more precisely, the bare action Sg) be independent of the
renormalization scale ugg, to wit:

0

implicitly defines the MS /3 functions. The definition of renormalized couplings via UV
divergences is useful if one is primarily interested in studying the UV finiteness of the
theory, since it is completely oblivious to IR effects. However, when searching for scale
invariance, the pertinent quantity is the full effective action; if scale symmetry is broken
or restored by the effective action (which contains UV as well as IR physics), it may
not be reflected by the UV J functions.'® For this reason, even when employing a
(quasi-)perturbative approach, we shall always assume the running of couplings to be
with respect to the IR cut-off scale k, as defined at the beginning of this section. This
is not only a conceptual point, but also of technical importance: were we to compute
the full effective action I' by evaluating the (UV regularized if necessary) supertraces
directly at k = 0 (i.e., by ‘switching off’ the IR regularization, ASy — 0), we would not
be justified in Taylor expanding the result at all (neither in powers of fields, nor external
momenta) which would make the practical implementation of the computation much
more involved.

2.4 Scale transformations, scale symmetry and RG fixed
points

With the basic definitions at hand, we are now in a position to ask how (quantum) scale
symmetry manifests itself in the running of couplings (or lack thereof). Let us begin by

12)This is purely a matter of convention, as is calling the RG scale p rather than kuv; the version without
rescaling is trivially equivalent and called minimal subtraction.

13) A notable exception is if the interaction vertices are classically dimensionless. In this case, the most
significant scale-dependence is of the form In(p?/u?), where p? is a placeholder for a suitable combination
of momenta involved in the process. Since this diverges both in the UV as well as the IR, there is a
one-to-one correspondence between UV and IR running. This is exploited in Sec. 3.2.1.
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recapitulating the concept of a scale transformation (also called dilatation, see Chap. 3 of
Coleman (1985)). By definition, it acts by multiplying coordinates by a global constant,
to wit

z, — Cx,. (2.40)

With C' = 1 — ¢, we may express this infinitesimally as!4)15)

Oy, = —€xy. (2.41)

The fields themselves, being z-dependent, need to be allowed to transform under scale
transformations as

bepa(z) = e(~2,0p + dg)pal2), (2.42)

where dg is the canonical dimension of ¢, to be fixed later; likewise, for a general
(integrated) operator O obeying 6.0 = edp O, one refers to dp as the canonical dimension
of 0.1 The canonical dimension of the field is fixed by demanding that the kinetic
operator has canonical dimension zero, dp,,, = 0. For instance, in the usual Laplacian
case

Oy = J AP buo(w) (— %) (2), (2.43)
one finds
dy = (D —2)2. (2.44)

Of course, just like the very notion of fast and slow modes, the canonical dimension of a
field is tied to what constitutes the kinetic operator; in particular, different components
(‘species’) may have different kinetic operators and thus different canonical dimensions.
For instance, if the (‘super’-)field (¢o) = (0,1, %) consists of a scalar ¢ as well as a Dirac
fermion 1 (and its conjugate), then usually they will have different kinetic operators, to
wit:

O = [Pz p(a) (-pl@), OLP = [P0T@) (B, (245)

which would lead to dy, = (D — 2)/2 whilst dy = diy = (D — 1)/2. Again, to avoid
clutter, we shall assume all components transform the same way in intermediate steps
and reinstate the more general scaling behaviour in the final discussion later.
Intuitively, the canonical dimension is directly related to dimensional analysis. This is
essentially because the coefficient in front of the kinetic term is fixed to be a dimensionless

) 1n non-relativistic systems, it is useful to consider a slight generalization 0.z, = —ez,,x, with
zu = diag(z,1,...,1). To avoid clutter, we shall restrict ourselves to theories with (Euclidized)
Lorentz invariance, and reinstate z only when working out consequences of quantum scale symmetry
in Sec. 2.5.

15 A different view of dilatations is a rescaling of the metric tensor d. Juv = 2€g,, while leaving coordinates
x,, unchanged, see Morris & Percacci (2019). The power counting is the same if one assumes that two
derivatives can be contracted only using an inverse metric tensor.

16) An often used notation, which we shall use synonymously in subsequent portions of this thesis is
do = [O]. This is mainly for typographic convenience and legibility.
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number, and the action itself (in natural units) is dimensionless; since the volume element
and Laplacian have units

dPz ~ (length)” — 0% ~ (length) 2 (2.46)
this implies the field ¢ needs to have units
¢ ~ (length) =% (2.47)

to ensure the kinetic piece of the action is indeed dimensionless. Once the canonical
dimension of ¢ is fixed, every local operator has a well-defined canonical dimension;
for the lmn-basis of local operators from the previous section, for instance, dyimn) =
D —m — (Il + n)dg. In general, given an operator O with canonical dimension dp, the
corresponding coupling must then have units

go ~ (length)do (2.48)

to be compatible with the requirement that the action be dimensionless. Note, however,
that since couplings are ‘constants’ (i.e., independent of coordinates or fields), they do
not transform under global scale transformations.

To make the connection between RG running and dilatations, we need the so-called
Ward—Takahashi identity of global scale transformations, which we state here without
proof:17)

0 = 0.1y, — ekorI'y. (2.49)

The left-hand side, d.I', is the variation of the quantum effective action under global scale
transformations, and measures the breaking of scale invariance of the field theory at the
quantum level. As mentioned previously, I' can have both non-local and non-analytic
field-dependencies. However, we can use the above identity to express d.' in terms of
I, which can be expanded (at least formally) in powers of derivatives and fields, see
Eq. (2.29). Importantly, all such operators have a well-defined behaviour under scale
transformation (i.e., they are ‘eigenoperators’ of J.¢), which we denote for brevity as
0¢0; = edop,0;, and we may write

Iy = Zgi,koi (2.50)

as shorthand for the expansion of I'y. Acting with J., we then find

6Ly = EZdoigi7kOi. (2.51)

On the other hand, acting with —kdy, we find upon recalling the definition (2.28) of
functions,

~k& Tk = > BiO;. (2.52)

) The interested reader is referred instead to Morris & Percacci (2019) for a derivation within the path
integral framework, as well as a more careful consideration of the k& — 0 limit of the identity.
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Plugging the two relations into the Ward—Takahashi identity of scale transformations, we
find

6T =€) (do,gi + Bi) Oi. (2.53)

(2

For quantum scale symmetry, we must therefore have dp,g; + 8; = 0 for all . This may
be cast into a somewhat more intuitive form by recalling that g; has units of (length)©:
which implies that g; 1. := g; 1 /k~9: is dimensionless. Acting on Gi.), with —k0y, using the
product rule, we arrive at the condition

Vi: B; =0, (2.54)

which may be expressed in words as: Quantum scale symmetry is realized at a fized point
of the renormalization group flow of the dimensionless couplings. Since the dimensionless
versions of the couplings, g; x, are in some sense more fundamental than the dimensionful
i, With respect to quantum scale symmetry, we shall henceforth drop the ‘tildes’ and
work exclusively with dimensionless couplings.

Remark (quantum vs classical scale symmetry). The scale symmetry considered
here is the invariance of the full quantum effective action including all fluctuation effects,
as evinced by the condition §.I' = 0: it is quantum scale symmetry. Likewise, one may ask
under what conditions scale symmetry holds at the classical level, §.S = 0. Going through
the same arguments as above, one finds that all dimensionful couplings have to vanish —
the ‘dilatation formalism’ above thus recovers the (intuitively obvious) classical limit. It
is worth noting, however, that classical scale symmetry is not a necessary condition for
quantum scale symmetry. In many cases — as we shall also see later in several examples in
this thesis — it is the balance between the (classical) dimensional scaling and the running
due to quantum fluctuations that generates quantum scale symmetry.

2.5 Characterization and interpretation of RG fixed
points

2.5.1 Formal aspects

RG fixed points thus furnish a realization of field theories with quantum scale symmetry.
Given such a fixed point gi’*,lg) it is then natural to ask how small perturbations away
from this fixed point flow under RG. For small deviations dg; := g; — ¢; «, we may linearize
the flow to obtain

—kOr0gir = M;jog; i, (2.55)

where according to standard Taylor expansion practice, we have introduced the fixed-point
Jacobi matrix

B

M,. = .
Y0941y,

(2.56)

18)Note that these are the dimensionless couplings in the sense of the previous section, even though we
have dispensed with the explicit ‘tilde’ notation.
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Following the nomenclature of dynamical systems theory, the matrix M is usually referred
to as the stability matriz of the fixed point. Let us assume this matrix has an eigenbasis
e! (more precisely, a right-eigenbasis)

Mze!; = 0Dl . (2.57)

The eigenvalues 01 of the stability matrix are called critical exponents. (We shall
make the connection to the physical critical exponents governing the non-analyticity of
thermodynamic observables near phase transitions later.) Clearly, they are independent
of the specific choice of basis of operators {O;} so long as the matrix (ef;) is invertible,
which is the case if the basis is truly complete. They are furthermore independent of the
specific regulator Ry used to compute the S functions, unlike the fixed-point values of
the couplings themselves.!9) In this sense, critical exponents are called universal. This
technical use of the term universal should not be confused with the ‘physical’ sense of
the word, which is more stringent and used to mean ‘independent of UV data’. The
completeness of the basis is an important conceptual point here: computing the §()
within a finite subset of the O; (in any basis), as done in the course of any practical
truncation, will yield results that are generically dependent on the choice of basis as well as
regulator. Only if the chosen subset is large enough (or the neglected operators irrelevant
enough) will the leading eigenvalues be scheme-independent. Conversely, estimates for the
deviation between two generic regulators may be used as measure of the truncation error.
This statement itself is dependent upon specifics of the approximation used to derive
the 8 functions: To first order in loop expansion, for instance, the regulator-dependence
of dimensionless quantities tend to drop out if the regulator is sufficiently well-behaved
(see, for instance, Chap. 3). Scheme-independence then obviously does not mean that the
one-loop result is exact — if it is, this has to be demonstrated by other means than mere
scheme-independence (see Chap. 4).

Concerning the physical content of the stability matrix eigenvalues 6\/), there is one
further important caveat. The parametrization of the effective action in general contains
many redundancies, since there exist field re-definitions — called frame transformations
— which leave correlation functions invariant. Just like ordinary gauge redundancy, this
separates perturbations at an RG fixed point into essential and inessential (or redundant)
perturbations. Redundant perturbations contain no physical information, and hence
their critical exponents are non-universal a fortiori. A frame-covariant formulation of
RG accounting for general frame transformations is highly non-trivial, and has been
worked out only recently by Baldazzi, Zinati & Falls (2021). Fortunately, at the level of
approximations we shall be working with subsequently in this thesis, it is sufficient to
consider the comparatively straightforward transformation of rescaling fields by constants,
o — «/Z¢7k¢.20) In the literature, this is commonly referred to as a wavefunction
renormalization. (As usual, we assume for simplicity that all components of ¢ obtain the
same rescaling; the generalization to multiple ‘species’ with their individual wavefunction

19 The dependence on the choice of regulator is conceptually similar to the dependence on renormalization
scheme in perturbative quantum field theory (such as MS, on-shell, Coleman-Weinberg, etc.).

20)1n non-relativistic theories, the kinetic term is usually defined to contain only the spatial derivative
terms; in any case, the renormalization of time-derivative and spatial-derivative terms are not related
by symmetry. For this reason, to maintain the normalization of the time-derivative term, it is necessary
to in addition rescale the time coordinate 7 — Z;jgr along with ¢ — /Zy x Z., k¢, which corrects the
dynamical critical exponent, see Chap. 4. In Chap. 6, we shall in fact encounter an even less symmetric
setting, where different spatial directions will be equipped with a priori distinct (inverse) dynamical
critical exponents.
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renormalization is straightforward.) The value of Z is fixed by demanding that the
coefficient of the kinetic term remain RG-invariant. Thus, the contribution of the kinetic
operator Oy, to the action is normalized for a real scalar as

Sunlie] = 5 [ 4Pz p(@)(-p() (25%)

where the factor 1/2 is conventional. Likewise, for Dirac fermions, one sets the normaliza-
tion as

Skin[1, Y] = de:z:l/J(x)(?w(x) (2.59)

Absorbing the renormalization of the kinetic operator into wavefunction renormalizations
leads to the anomalous dimension

k:&quj,k

2.60
Zon (2.60)

Nk = —

(At a fixed point, it is conventional to drop the index k, i.e., 1y = ¢ x.)

The coupling corresponding to the kinetic operator does not flow in this choice of
frame. The wavefunction renormalization furthermore modifies the flow of the remaining
couplings, to wit (no summation over i):

n7i

R P
Bi — Bi 9

where ny ; is the number of fields contained in the operator O;. Henceforth, when referring
to B;, we shall assume the normalization of the kinetic operator has been absorbed into
the anomalous dimension of the field(s). It is this system of § functions whose stability
matrix has universal eigenvalues (to avoid cluttering of notation, we shall refer to the
RG data in this improved frame by the same letters, i.e., 0 el etc.).

The eigenbasis of the stability matrix also allows one to define the operators corre-
sponding to eigenperturbations of the fixed point,

Or:= )¢/ '0;, (2.62)
i
in the sense that a perturbation oc O! flows as

o)
') = () e, (263

One may likewise refer to Ay = —0) as the quantum scaling dimension of Oy at the
given fixed point. The exception is the kinetic operator: being a redundant operator,
its quantum scaling dimension is not well-defined. Instead, it fixes the quantum scaling
dimension of ¢ as Ay = dy+14/2 (thus explaining why 7, is called ‘anomalous’ dimension
of ¢, where the factor 1/2 is conventional). The connection to a quantum version of

dimensional analysis can be made by considering correlation functions. For the correlator
of ¢, one finds

1
|x _ $/|2d¢+n¢ ’

(o(2) p(z')) ~ (2.64)
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Figure 2.1: Schematic representation of a phase transition tuned by control parameter 7.
The symmetry-broken phase is characterized by a non-vanishing vacuum expectation value
of order parameter ®. Without loss of generality, it is assumed that the order is destabilized
for large enough r > r.. If the phase transition takes place at finite temperature it is called a
thermal phase transition. In this case, the control parameter r can be the temperature itself.
If the phase transition takes place at zero temperature, it is called a quantum phase transition.
In this case, r corresponds to some non-thermal control parameter, such as pressure, doping,
or magnetic field.

and similarly, since the O; are a superposition of local operators, we may define the
corresponding position-resolved operator O}b(x) as its ‘density’ via O = { (’)‘f(m), with
correlation function

R . 1
¢ b (0t
(O9(@) Of(a)) ~ TR (2.65)

Note that in general, eiI # 5}, such that operators with a well-defined quantum scal-
ing dimension may be a (possibly infinite) superposition of terms — albeit still local —
with different number of fields and derivatives. This is often referred to as operator mixing.

2.5.2 Scaling at (quantum) phase transitions

We saw above that perturbations at a fixed point with critical exponent () > 0 grow
over the course of RG flow towards the IR; they — or the respective couplings — are called
relevant. On the other hand, those with #) < 0 tend to zero in the deep IR, and are
called irrelevant. At certain fixed points and/or in the presence of special symmetries,
there may be 00 = 0. The corresponding perturbations are called marginal. In this case,
if the Hessian of the 8 function of the marginal coupling is negative (positive) definite,
the coupling is called marginally irrelevant (relevant). The precise physical interpretation
depends on the specific setting. This will be the topic for the remainder of this chapter.

We begin with the arguably more readily accessible realization of quantum scale
symmetry in physical systems, viz., in the vicinity of continuous phase transitions.
Physically, a phase transition is tuned by some control parameter r, as illustrated in
Fig. 2.1. Let us take this opportunity to recall that if this parameter is temperature, the
transition is called a thermal phase transition (since the ordered state is destabilized by
thermal fluctuations). On the other hand, if the tuning parameter is not temperature,
the transition may just as well take place at zero temperature. Then, the ordered state
can be destroyed only by quantum (‘zero-point’) fluctuations. Phase transitions at zero
temperature are called quantum phase transitions. As explained in Sec. 1.1.2, our main
focus later shall be primarily on quantum phase transitions, due to their ability to
host fermionic degrees of freedom. Nevertheless, it will be useful to warm up by first
discussing phenomenological aspects that are common to both thermal and quantum
phase transitions, and discuss the additional features of quantum phase transitions
afterwards.

Regardless of the precise physical connotation of r, what is important at the moment
is that tuning this parameter to its critical value r. allows the system to display scale-
invariant behaviour. Likewise, in RG language, relevant perturbations away from the
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fixed-point values of couplings need to be tuned to zero, since they would otherwise drive
the system away from scale symmetry. Control parameters tuning a transition in a given
system hence map to RG-relevant directions in theory space. Typically, different control
parameters tune a system into distinct ordered phases. Since direct and continuous order-
to-order transitions are usually not allowed, 2! continuous phase transitions correspond
to RG fixed points with a unique relevant direction; we shall on occasion refer to such
fixed points as critical fixed points. The symmetry properties of the order parameter
(and if applicable additional gapless degrees of freedom) determine the field content
of the pertinent field theory. As a very simple example, many thermal ferromagnet-to-
paramagnet transitions are captured by a three-component scalar field (¢,) with O(3) in
D = 3 ‘spacetime’ dimensions (the so-called ‘Heisenberg model’). (See the discussion in
Chap. 1, footnote 6) for the counting of dimensions.) Two different ferromagnets, like the
metal iron (Fe) or the carbide halide GdyBrC, correspond to different values for couplings
to operators such as §_{p?, ¢*, %, (0p)*}, ete. at the UV scale (the index structure of ¢ is
neglected for simplicity)22)’23). Among these operators, most are irrelevant. Though one
could, in principle, determine their values from first principles, it is not necessary (and
likely not feasible in any case): rather, over the course of RG flow, they will automatically
asymptote to their fixed-point values. The coupling to Sz ©?, conventionally denoted %fnz
(‘half the squared scalar mass’), corresponds — modulo operator mixing — to the unique
relevant RG direction in theory space. By tuning the temperature to its critical value,
the (dimensionless version of) the squared mass is tuned to m2 by hand. As a result, all
thermal paramagnet-to-ferromagnet (without isotropies, etc.) transitions in the same
number of dimensions show the same critical exponents; this is called universality, as
illustrated for Fe vs GdeBrC in Fig. 2.2 (the comment applies mutatis mutandis for other
universality classes). Both the notion of ‘critical exponents’ and ‘universality’ require
further comment.

First, universality in the above ‘physical’ sense of universal scaling behaviour refers
to the fact that certain observables are independent of UV data. This needs to be distin-
guished from the ‘technical’ notion of universality in the sense of scheme-independence
(or more specifically in the FRG context, regulator-independence). The latter concern any
physical measurable quantity, including those which are very much sensitive to UV data.
For instance, in scalar ¢* theory, the mass parameter m? is a scheme-dependent quantity
(both in its dimensionful as well as dimensionless avatars). This is not problematic, since
m? is only a theory parameter, and not something that can be measured in experiment.
What is measurable, on the other hand, is the so-called pole mass, i.e., the pole of
the real-time connected 2-point function. (It is possible to relate the pole mass to the
correlation length, but we shall not use this relation to calculate the correlation length
from first principles; the scaling behaviour of the correlation length will turn out to be
more readily calculable in terms of stability matrix eigenvalues.) Using m? as a proxy
for the pole mass is merely an approximation (though one we shall use later, e.g., in
Chap. 7), and it is this approximation — more precisely, the neglect of dependence of
'@ on higher orders of p? — that incurs the scheme-dependence; expressed somewhat

2D Strictly speaking, this argument holds only within Landau theory (cf., e.g., Landau & Lifshitz 2013),
and it is possible to violate this principle if soft modes beyond order-parameter fluctuations are present
at the critical point. We shall, however, not encounter such scenarios in this thesis.

22)We write these local monomial (in fields) operators as placeholders for the quantum scaling eigenoper-
ators with the largest matrix elements with said operators.

23)1n fact, the natural UV scale itself, being the inverse lattice spacing, also depends on material-specific
details of quantum chemistry.
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Figure 2.2: Experimentally measured temperature dependence of magnetization (= vacuum
expectation value of ferromagnetic order parameter) in Fe (left panel, adapted from Stiisser,
Rekveldt & Spruijt 1985) vs GdeBrC (right panel, adapted from Reisser, Kremer & Simon
1995) near their respective critical points. Although non-universal data such as T, depend
on the specific material, the exponent 3 (see Tab. 2.1 for definitions) does not, and agrees
within uncertainties with theoretical estimates of Guida & Zinn-Justin (1998) for the D = 3
Heisenberg universality class.

differently, it is a truncation artefact, and the sensitivity of the approximated pole mass
to choice of regulator would be a rough measure of the truncation error. Whilst universal
in the sense of scheme-independent therefore does not imply universal in the sense of
insensitive to UV data, the converse is definitely true: observables that are independent
of UV data are also independent of choice of regulator (modulo artefacts introduced by
approximation). Henceforth, we shall reserve ‘universal’ for the more restrictive notion of
insensitivity to UV data.

Concerning the universal data characterizing a phase transition, the most expedient
way to access them experimentally is through the non-analytic part of observables, which
show scaling behaviour as a function of the input parameter, of which there are — broadly
speaking — three categories. First, there are thermodynamic variables such as free energy,
specific heat, etc., which exhibit scaling behaviour as a function of the tuning parameter,

Y oc |07 (Jo7] « 1) (2.66)

with 67 := (r — r)/rc the dimensionless distance to criticality.?) The scaling exponent
of different thermodynamic quantities are usually denoted by different symbols, with
definitions summarized in Tab. 2.1. In addition, one may measure (using the usual
spectroscopic techniques) the correlation function of the order parameter?®) & which

2 We are assuming here that the exponent for 67 — 0% and 0~ (in other words, approaching the critical
point from the symmetric and symmetry-broken sides of the transition) are the same. While not true
in general — see, e.g., Léonard & Delamotte (2015) and references therein — it is generic, and will
certainly be the case in all transitions we shall have occasion to study hereinafter. This remark of
course does not apply to the trivial case of observables that vanish on side of the transition, such as
the order-parameter expectation value.

25)We denote the order-parameter field as @, to distinguish from the (super-)field ¢ containing all
low-energy degrees of freedom.
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exponent definition
v o |oF| 7Y
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(D(2)P(2')) oc o — a'|7PF270
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Table 2.1: (Adapted from Herbut 2007) Upper part: Definition of critical exponents asymp-
totically close to but away from criticality, as appearing in Eq. (2.66), expressed in terms of
the asymptotic behaviour of the non-analytic part of observables. Here, ¢ is the specific heat,
® the order parameter, and y the static order-parameter susceptibility (usually just abbre-
viated to ‘the’ susceptibility). The correlation length £ is defined by the exponential decay
of the order-parameter correlator, (®(z)®(z')) ~ e~1#=%'l/¢_ Lower part: Critical exponents
defined at criticality (i.e., §7 = 0), with J the current conjugate to the order parameter ®.

shows critical scaling at criticality (i.e., r = rc)

(@(@) () ~ o (267)

which introduces the order-parameter anomalous dimension 7. If the kinetic operator
contains two derivatives, then 7 corresponds precisely to the field anomalous dimension
ne introduced in the previous section [see Eq. (2.60)]. The above equation assumes full
rotational symmetry SO(D). [If D = 2, then one actually has O(2) instead of SO(2),
since inversion at the origin is a rotation by m in two dimensions. We shall tacitly
assume this henceforth, and not mention this explicitly again.] In the case of thermal
phase transitions, the usual Matsubara—Kaluza—Klein argument shows that the (formal)
spacetime dimension D of the quantum field theory is simply the number of spatial
dimensions of the physical system. The above equation is simply a static correlation
function, and SO(D) means spatial rotational symmetry, which often does emerge in the
low-energy limit. For quantum phase transitions, however, the above equation would
make a dynamical statement, with D the physical spacetime dimension of the system
and SO(D) would be spacetime rotational invariance, the Euclidized avatar of Lorentz
symmetry SO(1, D — 1). We shall come back to this point later when discussing the
phenomenological features of quantum phase transitions which go beyond those of the
thermal ones.

A final kind of critical exponent is one which measures the order-parameter expectation
value at criticality, but in the presence of a (small) explicit-symmetry-breaking current
J (ie, S — S+ Sx J - ®, for instance an external magnetic field for a ferromagnetic
transition), and is defined by

Yy ~ [T (J—0,6F =0). (2.68)

The exponents v, «, 8,7,d,n are the ones that are accessible in experiments. The
critical exponents 8() and the field anomalous dimensions n¢ are the ones that directly
come from an RG calculation. As noted above, the anomalous dimension 1 of both
approaches coincide if the kinetic operator is defined suitably. It turns out that the



30 2. Renormalization Group: A Brief Review

remaining exponents can be expressed in terms of 7 and the unique positive (RG) critical
exponent 0y := max; ) > 0. Intuitively speaking, this is because in a scale-invariant
setting, the characteristic length scale is set by the size of the relevant perturbation(s) —
of which there is only one. Once this length scale is set, the behaviour of observables
is fixed by dimensional analysis, with the canonical scaling dimensions replaced by the
quantum corrected versions at the pertinent critical RG fixed point. A more formal
manipulation invoking scaling functions allows one to derive the explicit relations (cf.,
e.g., Herbut 2007; Sachdev 2010a):

a+2B+v=2, (2.69)
a+pB(6+1) =2, (2.70)
a=2—vD. (2.72)

Thus, computing the leading RG critical exponent and the anomalous dimensions of the
fields allows one to derive predictions for the scaling behaviour observables measured
in experiments. The final equality above assumes that the free energy density scales as
foc &P, called hyperscaling (note that it is the only place where the dimensionality
enters explicitly). Though it may be violated on occasion, we shall not encounter any such
pathologies in our own investigations. Let us also note in passing that beyond critical
exponents, there are further universal quantities, called ‘amplitude ratios’ (Herbut 2007),
given schematically by

~ +
Yior - 07) (2.73)
Y (61 — 07)

These may in principle be sensitive to ratios of fixed-point couplings corresponding to
operators of the same canonical dimension, but beyond the scope of the present thesis.

To complete our discussion of universal scaling behaviour, we need to elaborate
on the additional features of a quantum phase transition. The discussion here is, upto
adjustment of notation, a simplified and somewhat informal version of Vojta (2003), and
is meant to recapitulate concepts and relations that will play some role subsequently
in this thesis; for a more exhaustive review, see the aforementioned reference. One of
the main peculiarities of quantum phase transitions, as compared to thermal ones, is
the (topological) spacetime dimension D of the underlying quantum field theory, which
now equals the physical spacetime dimension of the system. Thus, for graphene one
has D = 3 with 2 of them coming from the spatial dimension (since graphene has a
quasi-planar structure, cf. Castro Neto et al. 2009); a putative quantum phase transition
in a 3D Weyl semimetal like (bulk) tantalum arsenide (Witczak-Krempa et al. 2014)
would be described by a quantum field theory living in D = 4. Intuitively, this may be
understood by recalling that S1(1/T) x RP~t — RP for T'— 0. A first consequence is
that the order-parameter correlator (®(z)®(z’)) thus automatically contains dynamical
information. In other words, equilibrium and dynamical phenomenology are connected to
each other, which is not the case in thermal phase transitions (cf., e.g., Sachdev 2010a).
Let us first consider the case that spacetime rotational invariance SO(D) [recall that
it is the Euclidized version of Lorentz invariance SO(1, D — 1), and that SO is tacitly
replaced by O if the argument becomes 2] is actually emergent. This is quite a large
symmetry, but will indeed turn out to be emergent in four out of five cases in this thesis.
A consequence of spacetime symmetry is that there is only the SO(D) invariant (x — )2
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Figure 2.3: Spectral function as a function of frequency. Left: Close to but away from
criticality, there is a conventional quasiparticle delta peak separated from a many-particle
continuum by a gap, assuming low-energy degrees of freedom can scatter only by exchanging
quanta of order-parameter fluctuations ®. Here, M denotes the actual pole mass of @, as
opposed to the (renormalized) mass parameter m appearing in the action. Right: At criticality
07 — 0, the pole mass vanishes and the continuum merges with the delta peak to produce a
branch cut.

on which the correlation function can depend. To obtain real-time data, we have to
Wick rotate it — ¢ + 10", where the D-dimensional vector z is split into 1 + (D — 1)
components as (z#) = (7, ), and the i0" picks out the retarded Green’s function (cf.,
e.g., Mahan 2000). (The usual caveats concerning Wick rotation discussed in Sec. 2.1
apply.) With this knowledge, we can write the retarded Green’s function of the order
parameter at criticality as

1
[2 — (¢t + io+)2](D—2+77)/2’
1
[p?— (E + io+)2](2*77)/2’

Gg(t, @) ~

(2.74)

GS(E,p) ~ (2.75)
where we have eliminated the second spacetime argument (z'*) = (7/, ') using transla-
tional invariance and denoted the Fourier transform of of the retarded Green’s function
by @g(E,p). Scattering experiments measure the spectral function (called dynamical
structure factor in case of magnets), which is proportional to the imaginary part of
the retarded Green’s function, S(E,p) = (—1/7) Im GR(E,p). Eq. (2.75) allows us to
read off, that if (2 —7)/2 is non-integer (which would be generic at a non-Gaufian fixed
point), the usual quasiparticle pole at E? = p? is replaced by a branch cut for E? > p2.
This is illustrated in Fig. 2.3. A physical cartoon of the equations above is as follows: If
we assume that low-energy degrees of freedom can only scatter by exchanging quanta
of order-parameter fluctuations, then close to but away from criticality, there is still a
distinct quasiparticle pole. The many-particle continuum is separated from it by the pole
mass M of the ® field. At criticality 67 — 0, M — 0 (this is not to be confused with the
fixed-point value of the mass parameter m,, which is scheme-dependent and can be zero,
positive or even negative). Then, the continuum merges with the delta peak, leaving
behind only the branch cut singularity.

Let us now come to the case where SO(D) does not emerge. This has two consequences:
First, even if we assume a residual Zs x SO(D — 1) symmetry (i.e., time-reversal plus
spatial rotations), the spacetime separation vector 2 — 2’ now contains two independent
scales |7 — 7’| and |x — 2’| (in Euclidean notation). To get rigorous scaling forms for
correlators, we need to consider correlators with either time or space fixed, (®(7, z)®(7,0))
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or (®(7,x)®(0,x)). An additional issue that arises is that time coordinates and spatial
coordinates are not constrained to transform in the same way under dilatations. The
suitable generalization of Eq. (2.41) in this setting reads as

0cx = ex, 0T = €2T. (2.76)

The weight z is called the dynamical critical exponent; its deviation from unity expresses
to what extent (Euclidean) time scales differently from space?®). The kinetic operator
which fixes the wavefunction renormalization is usually defined now to be the leading
spatial derivative term. Corrections to the leading time derivative term in the action
cannot be compensated completely by wavefunction renormalization due to the lack of
Lorentz symmetry; the residual corrections are then absorbed into z, see, e.g., Chap. 4
for a worked example. [It is conventional to denote the canonical value, the ‘quantum’
value (viz., the non-Gauflian fixed-point value), and the running values of z by the same
symbol, and rely on context to clarify the precise meaning (for example, see Herbut 2007).
We shall do the same in subsequent parts of this thesis.] One way to express z in terms
of measurable correlators is by considering the suitable generalization of Eq. (2.67),

1
\a: _ w/‘(D—1)+z—2+n’
1
‘T _ T/‘[(D—1)+z—2+77]/z'

(B(1,2)®(1,2')) ~ (2.77)

(B(1,2)P(1",2)) ~ (2.78)
It is also possible to measure z away from criticality in terms of the correlation time 7.
via 7. ~ &%, cf., e.g., Sachdev (2010a), but the above will be sufficient for our purposes.
The combination (D — 1) + z is the scaling dimension of the spacetime volume element,
6.dPz = §.(drdP1z) = €[z + (D — 1)]dPz. For this reason, Deg = (D — 1) + z is
often referred to as the ‘effective dimension’ of the system near the quantum critical
point. Note that this does not in any way imply a change in the topological spacetime
dimension of the system, which remains at D. (In our notation, D will always refer to
the topological dimension of spacetime.) It is, however, precisely the ‘dimension’ which
enters the zero-T version of the hyperscaling assumption, to wit

focgDan

Consequently, the identities relating thermodynamic critical exponents to their RG
counterparts above [Egs. (2.69)—(2.72)] go through, except that D is replaced by Deg in
Eq. (2.72).

Since the tuning parameter r is not the temperature, one can consider in addition the
behaviour of the system at non-vanishing temperature (in other words, ‘add an axis T' to
Fig. 2.1°). This leads to the richer phase diagram shown in Fig. 2.4. Obviously, if the
temperature is large enough, the system will ‘forget’ all details about the zero-temperature
fixed point; the physics is non-universal, at least from the point of view of said fixed point.
We shall assume we find ourselves below this temperature. Even then, scaling behaviour
is not expected to arise generically, because the temperature 1" introduces an extra scale,
in addition to the correlation length £&. More precisely, since the inverse temperature
has the same dimensions as Euclidean time 7, the ratio of € and T~Y/% constitutes an
independent dimensionless parameter. For observables to show scaling behaviour governed

2001t is worth pointing out that whilst SO(D) invariance implies z = 1, the converse is not true, see
Schwab et al. (2021) for an example.
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Figure 2.4: (From Vojta 2003) Extension of Fig. 2.1 to include temperature in the quantum
phase transition (r # T') case. The shaded region with dashed boundaries is the quantum
critical ‘fan’, within which the system exhibits scaling behaviour of observables with respect to
T, with exponents determined by the critical fixed point. The boundaries of the ‘fan’ scale as
Ttan o€ |07]7%. At high enough temperatures, marked by a dashed line labeled ‘non-universal’,
the physics is no longer described by the zero-temperature universality class. For r < r¢, there
are two distinct scenarios depending on specifics of the ordered state. (a) Order exists only
at zero temperature (for instance due to obstructions such as the Coleman—Mermin—Wagner
theorem). (b) Order exists at finite temperature. In this case, above the solid line, order is
destroyed by thermal fluctuations. Close to the solid line, the critical exponents are given by
a thermal universality class.

by the quantum critical point, we must have & » T~/%. Since & o |07 7%, in the regime

bounded by T = Tt., ~ |07|V%, £ is infinite for all practical purposes, and the system
only has one independent scale T', as a function of which it then shows universal scaling
behaviour. Since v and z are (in most cases) positive, this region ‘fans’ out for larger T,
which may be deemed counter-intuitive (Sachdev 2010a). The bound on 7" above which
quantum critical is replaced by (non-universal) thermally dominated behaviour is itself
non-universal, but can be quite large in practically relevant systems (cf., e.g., Vojta 2003,
and references therein). Thus, there is an extended region in the phase diagram where
the system exhibits unconventional power laws as a function of temperature, effectively
has no conventional quasiparticle excitations, exhibits non-Fermi-liquid behaviour??, etc..
Even though the behaviour in the quantum critical fan is strictly speaking not governed
by an IR-stable fixed point2®), for all practical purposes, it behaves like a novel ‘phase of
matter’. One example for such T-dependent scaling behaviour we shall have occasion to
use later (Chaps. 5 and 6) is the specific heat ¢(T"). It is given by the T-derivative of the
internal energy density u, whereby the latter has the same dimensions as the free energy
density f. From the quantum scaling hypothesis (but with & replaced by T ?), we may
hence derive

o(T) ~ opTPest/z ~ pDes/>=1 _ pd/z (2.79)

where d := D —1 is an often-used shorthand for the number of spatial dimensions. Another
scaling relation involving temperature we shall need later arises if order survives at small

27) A nice review of Fermi liquid theory has been given by Polchinski (1992).

28) An example of a non-GaufBian IR-stable fixed point would be the Banks—Zaks fixed point in SU(N.)
gauge theory (cf., e.g., Hollowood 2013). By contrast, a quantum critical point has a unique IR-relevant
direction.
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but finite 7', see Fig. 2.4(b). Close to the critical point, we can estimate the excitation
gap of order-parameter fluctuations on the ordered side as A ~ (—67)"?, where we have
used the fact that energy, like temperature 7', has length dimension (—z), and the only
pertinent length scale in the system is £ ~ |67|7". For temperature to destroy order, T’
has to be of the order of the excitation gap. Hence, one has the relation

T, ~ (—0F)" (2.80)

for 67 small enough, which we shall use later, for instance, to estimate the effective
interaction strength in bilayer graphene from its ordering temperature (Chap. 6).

2.5.3 Predictivity in fundamental physics

From an effective field theory (EFT) perspective, which we have assumed tacitly thus far,
one starts at some UV scale A and wishes to make predictions at £ < A. To achieve this,
one only needs to keep track of perturbations from the fixed point at £ = A which are
not too irrelevant; due to Eq. (2.63), these deviations will be small at the scale k if the
operator is irrelevant enough. (In the study of universal scaling at phase transitions above,
one can in fact make k as small as one wishes, such that all irrelevant perturbations can
be neglected entirely.) From the point of view of fundamental physics, however, one would
like to predict physics at all scales. The matching scale A = k¢t is then not so much
the upper boundary of validity of the theory (since a fundamental theory or ‘theory of
everything’ should have no such thing), but a reference scale at which free parameters of
the theory are to be fixed by comparison (‘matching’) with experiment. From this point
of view, an operator having negative ) provides scant relief: for k > kyef deviations
from the fixed point will become increasingly large. All operators, no matter relevant or
irrelevant, are potentially important; whether they are relevant or not determines whether
they become important at k < ket or k > kyof. There are hence a priori infinitely many
free parameters, and the theory is not predictive above the reference scale kyr. Some
further set of constraints, for instance in the form of an additional symmetry principle, is
needed to narrow down the space of admissible parameters to a finite-dimensional one.
Quantum scale symmetry, or more precisely, the assumption that quantum scale symmetry
is restored in the deep ultraviolet (kK — o), is one such way. The basic mechanism for
this is based on the consideration that if one measures a violation of quantum scale
symmetry 5@1 (kref) # 0 at some reference scale kyef, then at higher scales? k > kref,
5g' (k) = 5gl(kref)(k/kref)_0(1). If quantum scale symmetry is to be restored in the UV,
697 (k) — 0 (k — o) for all I, one therefore needs

Vk: 6% (k) = 0 if ) < 0.

In other words, quantum scale symmetry in the UV is tantamount to fixing all irrelevant
couplings to their fixed-point value at all scales; the relevant couplings are the only free
parameters of the theory and need to be fixed by measurement at some reference scale
kref, as illustrated in Fig. 2.5. The assertion that this leads to predictivity is equivalent
to saying that the number of relevant couplings at the pertinent RG fixed point is finite.

29)This procedure of continuing RG flow ‘backwards’ towards the UV is a purely formal exercise.
Physically, it is only the flow towards the IR, i.e., integrating out high-energy modes, that is well-
defined; ‘integrating in’ high-energy modes is per se unphysical. A more rigorous discussion would
require one to consider instead the momentum- and mass-dependence of the set of all proper n-point
functions '™ In this sense, the RG scale k may be seen as a crude representative for the typical
momenta and masses in a scattering process, which will be sufficient for our purposes.
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Figure 2.5: Relevant vs irrelevant couplings with respect to quantum scale symmetry in the
UV [g+ = 0 (3 0): coupling is asymptotically free (safe)]. Left: If the coupling g is relevant,
there are several trajectories compatible with quantum scale symmetry in the UV. The
correct one (red, fat) needs to be fixed by measuring the value of g at some experimentally
accessible scale k.f. Right: If ¢ is irrelevant, then only one trajectory is compatible with
quantum scale symmetry: the coupling is predicted at all scales. For simplicity, the trajectory
emanating from the fixed point is drawn flat. In general, threshold effects may lead to certain
degrees of freedom decoupling dynamically at some scale, in which case even the critical
trajectory will be curved, at least below that scale. Notably, this occurs in asymptotically
safe quantum gravity, whereby metric fluctuations decouple dynamically from matter around
the Planck scale, see Eichhorn & Held (2018a).

The simplest fixed points are of course the Gauflian ones, where an operator’s scaling
dimension is equal to its canonical dimension. In particular, it is then straightforward to
show using dimensional analysis that the scaling dimension of an operator O containing
ng powers of fields and ny derivatives is

dp = n¢(D — na7kin)/2 +np—D (2.81)

where ng kin is the number of derivatives in the kinetic operator [in other words, (D —
Nokin)/2 = dg is the canonical dimension of the field ¢]. Since there are no quantum
corrections, this is equal to minus the stability matrix eigenvalue, 0©) = —dy. Since
generically®?) dg > 0, there are only finitely many relevant couplings. The fact that
the GauBian fixed point must be approached upon (formally) continuing the flow back
to k — oo implies that all irrelevant interactions have to vanish in the classical action.
Such theories are called perturbatively renormalizable, because UV divergences arising
in the perturbative evaluation of the effective action can be absorbed into a finite
number of counterterms. On the other hand, canonically irrelevant interactions require
the introduction of new counterterms at every order of perturbation theory, and are
hence called perturbatively non-renormalizable. In the perturbative approach to quantum
field theory, predictivity is hence synonymous with perturbative renormalizability. The
only admissible interactions compatible with a UV Gaufian fixed point hence correspond
to relevant or, possibly, marginal couplings. Of the former, no fundamental examples are
known in Nature. Examples of the latter in D = 4 include scalar self-couplings, Yukawa
couplings, and gauge couplings. Among marginal interactions, marginally irrelevant
ones cannot be continued backwards to arbitrarily large k, and hence the only theory
compatible with quantum scale symmetry is the non-interacting theory. This is often

30 e., excluding degenerate cases such as scalar field theory in D = 2, where dy = 0, and there are

infinitely many operators with canonical dimension zero.
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Figure 2.6: (From Particle Data Group 2016) Measurements of the running QCD gauge
coupling (ay = 9%U(3) /4m) using various processes. The parantheses denote the level of

perturbative QCD used to extract the coupling from experimental cross-sections (NLO =
next-to-leading order, NNLO = next-to-next-to-leading order, etc.). The coupling decreases
for increasing values of the RG scale, and is expected to vanish in the deep UV.

referred to as triviality. On the other hand, non-zero values of marginally relevant
interactions are compatible with a Gauflian fixed point in the deep UV. This is more
commonly referred to as asymptotic freedom. Much like canonically irrelevant interactions
can be excluded within perturbation theory using the proliferation of UV divergences,
marginally irrelevant interactions can be argued to be incompatible with a fundamental
theory valid at all scales without referencing quantum scale symmetry. Rather, the flow
of marginally relevant couplings is such that they diverge at a finite UV scale. This is
called a Landau pole, and the location of the pole is an upper bound for the validity of
the theory.

An example of asymptotic freedom within the Standard Model is the theory of the
strong interaction, quantum chromodynamics (QCD), see Fig. 2.6. On the other hand, the
abelian gauge coupling, the Yukawa couplings and the quartic Higgs self-coupling have
Landau poles. The fact that their low-energy values have been measured to be nonzero is,
at least in principle, incompatible with a theory of everything valid at all scales. However,
these poles occur at extremely high energies [for the U(1) hypercharge in the electroweak
Standard Model, the Landau pole is at 1053 GeV (Andrianov et al. 2013)]. Already below
such utopic scales, there is a more pressing issue, namely the gravitational constant Gy
(also called Newton constant). In the low-energy limit, it describes the mutual gravitational
attraction of two masses mq 2 as Fglfav = —Gnmima /r%z, where 119 is the separation of
the respective centres of mass. As a canonically irrelevant coupling, its nonzero infrared
value of Gy ~ 6.7 x 10739 (GeV)~2 translates into a breakdown of predictivity (in a
perturbative or EFT sense) at the Planck scale, Mp; = 1/4/GN ~ 1.2 x 10* GeV (values

taken from Tiesinga et al. 2021).

Whilst the proliferation of UV divergences does not have a straightforward non-
perturbative generalization, quantum scale symmetry does: asymptotic safety (AS), as
introduced by Weinberg (1979), is simply the generalization of asymptotic freedom to
interacting fixed points. Whilst irrelevant couplings are still predicted by the fixed-point
values, these can now be nonzero. The fact that an asymptotically safe theory remains
predictive is equivalent to the assumption that (negative) quantum corrections to scaling
dimensions are bounded (and do not, for instance, scale with the number of fields or
derivatives). It turns out that this is usually the case in non-pathological theories. In
practical examples, in fact, one gets more: The correction to scaling dimensions of
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Figure 2.7: Tllustration of effective asymptotic safety. Assume that the universe (red) lives on
an RG trajectory where an irrelevant coupling deviates from its fixed-point value significantly
(‘~ 1) at a very large scale Agas. At this point, the asymptotically safe description will
break down and physics ‘beyond asymptotic safety’ will be observable. However, around the
Planck scale (and at even lower scales such as those pertaining to particle colliders), these
deviations will not be measurable. In condensed-matter realizations near a continuous phase
transition, the role of Agags is played by the inverse lattice spacing 1/a, whilst the IR scale is
given by the inverse correlation length 1/€.

operators is often positive (or equivalently, the corrections to RG critical exponents
is negative). Though this has no significant effect on dimension 2 operators (i.e., they
remain relevant), marginal operators often become (weakly) irrelevant, rendering the
asymptotically safe fixed point more predictive than the GauBiian one. (This will feature
prominently in Chap. 7.)

2.5.4 Effective asymptotic safety in particle physics and condensed
matter

From a top-down approach, invoking UV quantum scale symmetry is a way to fix infinitely
many undetermined parameters to non-trivial values. On the other hand, from a bottom-
up perspective, realizing quantum scale symmetry in the UV requires one to tune infinitely
many parameters to arbitrary precision. This is, however, not necessarily a serious
obstruction to observing phenomenology derived from AS in experimentally relevant
scales (such as those probed in contemporary colliders or astrophysical obervations). Let
us assume to the contrary that there is a finite deviation dy along an irrelevant direction I
from the fixed-point values at some ‘beyond-AS’ scale Agag. The corresponding deviation
translated to the Planck scale Mp; will be

63" (Mp1) = o (Mp1/Apas) ™" . (2.82)

If there is a large enough separation of scales, Agas » Mpi, then the asymptotic safety
prediction of the corresponding fixed-point value will be indistinguishable from a putative
theory that will ultimately supersede the AS theory of quantum gravity at even larger
scales (Fig. 2.7). In the literature, scenarios of this kind are collectively referred to as
effective asymptotic safety (cf., eg., Held 2020, and references therein).

This mechanism parallels the situation in continuous phase transition in a very
appealing way. There, the equivalent of the ‘beyond-AS’ scale has a different physical
origin; in solids, for instance, a rough estimate is the inverse lattice spacing (though a more
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refined estimate would need to account for hopping amplitudes, and will ultimately boil
down to something of the order of the bandwidth). At this scale, irrelevant perturbations
are of order one. However, upon flowing down to the IR scale kg ~ 1/¢, i.e., to scales
of the order of the inverse correlation length, these deviations decay according to their
quantum scaling dimensions. Since by tuning the system close to the transition one can
make 1/¢ arbitrarily small, the ratio Apas/kir can be made arbitrarily large. The situation
that emerges in the deep IR is hence no different from one where all irrelevant couplings
have been set to their fixed-point values at k = oo from the outset. Thus, although a given
condensed-matter system is decidedly not asymptotically safe, and there is a clear upper
bound to the scales at which the effective field theory describing the order parameter
fluctuations and their coupling to other gapless modes must inevitably break down3!), its
(ultra) long-range behaviour is the same as a (hypothetical) asymptotically safe universe
— albeit with possibly non-Standard Model matter and fundamental interactions.

3D For instance, for energy scales larger than the bandwidth, inter-band scattering will become important.
At scales beyond the inverse lattice spacing, the solid will simply melt, and thereby go into a very
different universality class altogether.



Chapter 3

Gross—Neveu SO(3) Quantum
Criticality in 2 + 1 Dimensions

In this chapter, we shall study the SO(3) incarnation of the Gross-Neveu (= chiral)
universality class in three spacetime dimensions. Already from a purely theoretical stand-
point, this is of interest. Gross—Neveu universality classes in three spacetime dimensions
host at least one interacting fixed point with one (or at most very few) IR-relevant
directions. As discussed in the previous chapter, such fixed points also correspond to
highly predictive asymptotically safe quantum field theories, similar to the kind one — at
least as far as adherents of the asymptotic safety paradigm are concerned — would wish to
see realized in the Standard Model (plus quantum gravity). The analogy goes deeper due
to the field content of theories pertaining to these chiral universality classes. In Yukawa
systems, one may roughly understand the effect of metric fluctuations as lowering the
effective spacetime dimension. More precisely, the total beta function (to a decent level
of approximation) splits into the usual Standard Model part and a metric fluctuations
contribution,

By = BM + BRC (3.1)

for the least irrelevant couplings g € {y, A\} near D = 4, viz., the Yukawa coupling y and
the quartic scalar self-coupling A. The gravitational contribution to leading order has the
form

B = —f, (G Ay B = — (G AN, (3.2)

where f, \ are numbers that depend on the fixed-point values of the Newton coupling G'x
and the cosmological constant A, but not directly on y and A (see Chap. 7 for details).
Thus, the radiative corrections from gravitons act as though the couplings live in a lower
dimension.!) Tt is precisely this dimensional reduction what converts a potentially trivial
theory into one supporting an interacting fixed point. The major difference in this regard

Y Defining the spacetime dimension rigorously is itself a subtle issue, especially if the metric itself is a
fluctuating object to be averaged over in the path integral. The topological dimension of spacetime,
for instance, remains fixed at 4. A more ‘covariant’ notion is that of spectral dimension Dspec, which
essentially relates the average return probability of a test particle walking randomly for time duration
T without backreaction in a given spacetime manifold as P(T) ~ T~ Pspec/2 This has a nontrivial
value in quantum theories of gravity, see Lauscher & Reuter (2005) for details on the asymptotic-safety
perspective, as well as a brief review of other quantum gravity approaches. For our purposes, it will be
sufficient to consider the analogy at the level of the effective power-counting dimension of couplings.

39
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between the asymptotically safe completion of the Higgs-Yukawa sector of the Standard
Model and Gross—Neveu quantum criticality in D = 3 spacetime dimensions is that in the
latter, the reduction is performed ‘by hand’ (or more precisely by engineering), whereas in
the former it occurs dynamically. The fact that one needs to handle bona fide interacting
fixed points in a theory containing more than just scalar? fields makes obtaining high-
accuracy predictions difficult. Whilst this aspect is common to both asymptotically safe
Standard Model plus quantum gravity as well as the D = 3 Gross—Neveu universality
classes, there is a significant difference in the additional structure that needs to be tackled
in the two cases. In the case of quantum gravity, the precise dimension the couplings
‘sense’ depends on the particle species whose interaction it describes [D = 4 — f,(Gy, Ay)
for the Yukawa coupling, D = 4 — f\(Gx, Ax) for the scalar self-coupling] and the precise
value of the f’s depend on the fixed-point values of gravitational couplings, which requires
one to also obtain a good handle on, at the very least, an interaction theory of spin-2
massless bosons (at the most naive level, it entails adding one more spacetime index to
the gauge field compared to Yang-Mills; more tellingly, the gauge group now entails the
group of diffeomorphisms of four-dimensional spacetime, and is infinite-dimensional). By
contrast, the Gross—Neveu universality classes only feature massless fermions beyond the
usual scalar fields. It is hence a logical ‘training ground’ in which to refine the methods
needed to solve (strongly) interacting quantum field theories before tackling the full
quantum gravity plus Standard Model problem.

The above feature is generic to all D = 3 Gross—Neveu universality classes, and
falls roughly within the aformentioned Polyakov vision of ‘learning about elementary
particles by boiling water’. The SO(3) incarnation, however, has features unique to
itself, which make it interesting also from a condensed-matter perspective. Although
the SO(3) group is a simple Lie group (meaning it has no generator which commutes
with all others), spontaneous symmetry breaking (SSB) thereof does not gap out the
fermions completely. This is in contrast to the Gross-Neveu Zs (= Ising)?) or SU(2)
(= Heisenberg)4) universality classes, which have been studied more extensively already
in the graphene context, where they describe the quantum phase transition from the
semimetallic ground state to charge density wave or antiferromagnetic order respectively;
in such cases, SSB leaves no gapless fermionic modes behind®. Thus, the Gross—Neveu
SO(3) universality class may be understood as describing a semimetal-to-semimetal
quantum phase transition, which is interesting in its own right.

However, the major condensed-matter motivation to study Gross—Neveu SO(3) quan-
tum criticality arguably comes from a concrete microscopic realization proposed by
Seifert et al. (2020). There — unlike, say, in graphene — the semimetallic state is not
formed by physical electrons. The microscopic system in question is in fact a priori an

2) Under the term ‘scalar’, we shall understand bosonic fields that transform as scalars under spacetime
transformations. There may be additional (internal) symmetries under which these fields are allowed
to transform non-trivially.

3) ¢f., e.g., Hands, Koci¢ & Kogut (1993); Vasil’ev, Derkachev & Stepanenko (1993); Gracey (1994b);
Vojta, Zhang & Sachdev (2000a,b); Braun, Gies & Scherer (2011); Gracey, Luthe & Schroder (2016);
Mihaila et al. (2017); Zerf et al. (2017); Iliesiu et al. (2018); Ihrig et al. (2018)

) ¢f., e.g., Janssen & Herbut (2014); Parisen Toldin et al. (2015); Otsuka, Yunoki & Sorella (2016); Zerf
et al. (2017); Knorr (2018); Gracey (2018)

%) Let us note in passing that at the level of order parameter (i.e., upon artificially switching off the
Yukawa coupling to the fermions ‘by hand’), both the SU(2) and SO(3) transitions are described by
0(3) ¢* theories; it is hence a nice illustration of how the presence of chiral fermions (and the internal
symmetry properties thereof) change the critical properties qualitatively, in addition to the (sizeable)
quantitative corrections to, e.g., critical exponents.
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Figure 3.1: (Adapted from Seifert et al. 2020) Left: Tllustration of the ‘semimetallic’ ground
state of a Kitaev spin-orbital liquid, where the fractionalization of the local moment sitting
at each lattice site gives rise, among others, to itinerant Majorana fermions [the three-fold

degeneracy is specific to the present SO(3) setup]. Right: Antiferromagnet which wins over the
spin-orbital liquid in the presence of strong enough antiferromagnetic Heisenberg exchange.

insulator consisting only of local spin-orbital moments on a honeycomb lattice, and has no
(quasi-)free fermions to form a Fermi surface. The fermions instead arise if the exchange
interactions of the local moments have a certain bond-dependent structure, viz., XX, YY
or Z7 depending on bond direction, which was considered originally by Kitaev (2006)
for SU(2) spins and generalized since to include orbital degrees of freedom by various
authors®) . This kind of exchange leads to frustration, in that the moment vector cannot
point in a specific direction (including spatial modulation) to minimize the exchange
energy. The resulting ground state is instead a highly non-trivial long-range entangled
state called a quantum spin liquid, where each spin(-orbital) moment fractionalizes into
a family of Majorana fermions called spinons. It is these fermions (more precisely, the
itinerant ones among them) that form the semimetallic ground state, as illustrated in
the left panel of Fig. 3.1. Probing such states experimentally is very difficult in practice,
since their main defining characteristic is their lack of conventional magnetic order. In
particular, it is impossible to excite a single spinon in an experiment, since they are not
gauge invariant and thus cannot couple individually to physical perturbations”. On the
other hand, switching on a sufficiently strong conventional exchange interaction, such as
an antiferromagnetic Heisenberg interaction, leads to a conventional symmetry-broken
state: in the SO(3) version we are interested in here, it results in an antiferromagnet
(right panel of Fig. 3.1). Such an order is characterized by a local order parameter and
can be detected experimentally using the usual techniques. Critical exponents of quantum
phase transitions to such symmetry-broken states can hence serve as a diagnostic tool
in the study of quantum spin liquids. From the universal point of view, however, if we
look past the complicated microscopic connotations, the theory we need to deal with is
a perfectly conventional Yukawa theory, and hence amenable to field theory techniques
established before for calculations in particle physics. In some sense, we can thus ‘learn
about’ frustrated magnets by (theoretically) colliding elementary particles — the Polyakov
paradigm in reverse.

The remainder of this chapter is organized as follows: Sec. 3.1 describes the pertinent
low-energy effective field theory. We shall then determine its critical exponents using a
4 — ¢ expansion at O(e3), a large-N expansion to O(1/N?) and the FRG in improved local
potential approximation (LPA’) in Sec. 3.2. The main focus of the present exposition will
be on the technical aspects of the LPA’ applied to the Gross—Neveu SO(3) universality
class; the application of the 4 — ¢ and large-N expansions to this problem have been

%) ¢f. Yao, Zhang & Kivelson (2009); Wu, Arovas & Hung (2009); Nakai, Ryu & Furusaki (2012); de
Carvalho et al. (2018); Natori & Knolle (2020); Chulliparambil et al. (2020)

™) The excitations of the gauge field in question, however, are gapped near the quantum critical point,
and hence do not have any effect on the critical exponent (Seifert et al. 2020).
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described in detail elsewhere®). We discuss our numerical results in Sec. 3.3, including in
particular the practical extraction of best-guess estimates in physically relevant cases
from combining the complementary field-theoretical approaches. The chapter closes with
a summary and outlook in Sec. 3.4.

3.1 Effective field theory

The continuum field theory describing the Gross—Neveu SO(3) universality class is given
by the action S = {dPzL with (Seifert et al. 2020)

_ 1 _
L =9y"0u0 + 56a (0% +m?) ¢a + A ($ada)” — ybat (Lan/s ® La) ¥ (3.3)

in D Euclidean spacetime dimensions. Here and henceforth, implicit summation over
repeated indices 4 =0,...,D — 1 and a = 1,2, 3 is assumed. The above expression uses
conventions wherein the Dirac matrices v* form a 2/N-dimensional representation of the
Clifford algebra, {y*,~"} = 20" 1op; in other words, N corresponds to the number of
two-component fermion flavours. The spinor 1 and its Dirac conjugate 1) = 11~? thus
have 2N components each. The interaction Lagrangian comprises the SO(3)-counterpart
of the Heisenberg—Yukawa interaction (Herbut, Juri¢i¢ & Roy 2009; Janssen & Herbut
2014), parameterized by its Yukawa coupling y, and a quartic boson self-interaction with
coupling \.9)

As in standard Yukawa models (Hands, Koci¢ & Kogut 1993), the Dirac matrices
commute with the Yukawa vertex operator, [y, 1on/3 ® Lq] = 0. The 3 x 3 matrices L,
are generators of SO(3) in the fundamental representation, corresponding to isospin 1.
The order-parameter field ¢, is a scalar under space-time rotations, but transforms as a
vector under SO(3). In D = 2 and D = 3 space-time dimensions, this requires that N
be a multiple of three, whereas in D = 4, N would need to be a multiple of six in any
physical realization. However, in what follows, it will be useful to compute the critical
behaviour for general 2 < D < 4 and arbitrary 0 < N < o0, allowing one to analytically
continue also to non-integer values of both D and N. Since Aslamazov—Larkin diagrams
vanish for ungauged Yukawa theories (Boyack, Rayyan & Maciejko 2019), the critical
exponents v, 14, and 7, do not depend on whether the theory is defined in terms of
reducible or suitable copies of irreducible fermion flavours.’® The physical case realized
in the spin-orbital models (Seifert et al. 2020) corresponds to N = 3 and D = 3.

The zero-temperature phase diagram of the Gross—Neveu SO(3) model as a function
of the tuning parameter m? can be understood on the level of mean-field theory, see
Fig. 3.2. In this case, the fluctuations of the order parameter ¢, are neglected. Formally,
this corresponds to the strict limit N — oo. For m? > 0, the ground state is symmetric
and the spectrum consists of N gapless Dirac cones. For m? < 0, the order parameter
field acquires a finite vacuum expectation value {(¢,) # 0 and the SO(3) flavor symmetry
is spontaneously broken. However, since L, has a zero eigenvalue, only 2N /3 of the Dirac
cones acquire a mass gap, while the remaining N /3 Dirac cones remain gapless throughout
the long-range-ordered phase. That the mean-field picture remains qualitatively correct for

8) See in particular Thrig (2021) and Gracey (2021).

9 Tt is common to sometimes define the quartic self-coupling by A/4!, as we ourselves shall do, e.g., in
Chap. 7.

19 Note, however, that sub-leading exponents, such as the so-called w, corresponding to the corrections
to scaling, may depend on whether the theory is defined in terms of N flavours of two-component
fermions or N /2 flavours of four-component fermions, see Gehring, Gies & Janssen (2015).
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finite values of N has been established previously to leading order in quantum corrections
by Seifert et al. (2020). The main aim of this work is to produce quantitative estimates
by incorporating higher-order corrections.

3.2 Renormalization and critical exponents

3.2.1 4 — ¢ expansion

The field theory defined in Eq. (3.3) has an upper critical space-time dimension D, = 4,
where both, the Yukawa coupling ¢ and the quartic bosonic self-interaction X\, become
simultaneously marginal. In D = 4 — ¢ dimensions, interactions are of order ¢ at the
critical fixed point. This allows for a controlled loop expansion of critical exponents. In
particular, since the interaction vertices are dimensionless at Dy, = 4 (or equivalently,
have dimension € in D = 4 — ¢€), there is a one-to-one correspondence between the formal
1/e poles from UV divergences and the IR running of the effective action in the sense
of Sec. 2.3, which allows one to use the computationally very convenient dimensional
regularization (DREG) and modified minimal subtraction scheme (MS). This section
briefly presents the calculation of the renormalization group functions at three-loop order,
and the extraction of the correlation-length exponent v, the boson anomalous dimension
N6, and the fermion anomalous dimension 7, at order O(e?); a more detailed account of
the technical machinery has been given by Ihrig (2021).

3.2.1.1 Method

The bare Lagrangian is defined by replacing fields and couplings in Eq. (3.3) by their
bare counterparts, ¥ — g, ¢pgq — ¢q,0, g — go and A — Xg. The renormalized Lagrangian
reads as

L = Zypy" 0, — Z55,yn* bath (a3 ® La) ¥

+ 22 m2haa + Zy M (batba)? (3.4)

Z¢> 2
+ ?(é’uqba) 9

with the renormalization constants Zy, Zy, Ly L2, and Zgs. The kinetic terms in
the renormalized and bare Lagrangian can be related to each other upon identifying

= \/ZTZW and ¢g = m¢. The energy scale u parametrizes the renormalization
group flow. It is introduced upon shifting the couplings g2 — ucg? and A — uc\ after

<4’a>:0 4’a 750

1/v = 1.03(15)
np = 0.42(7 @ Q

My = 0180 10

>

—m

Figure 3.2: Quantum phase diagram of the (2 + 1)-dimensional Gross—Neveu SO(3) model
as function of tuning parameter m?2. The theory exhibits a quantum critical point between a
Dirac semimetal and a long-range-ordered phase in which two Dirac cones acquire a mass gap,
while one remains gapless, as depicted in the insets. The goal of this chapter is to provide
improved estimates for the universal critical exponents 1/v, 14, and 7, characterizing this
universality class.
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the integration over (4 — €)-dimensional spacetime. The renormalized mass and the
renormalized couplings are then related to the corresponding bare quantities as

m? = mgz(pzd;l : (3.5)
2 2 — 2 -2

Y =Yk EZwZ¢Z¢J,¢> (3.6)
A\ = Aou—ezgzq;l . (3.7)

The renormalization constants were computed to three-loop order using DREG and MS.
This requires the evaluation 1,815 Feynman diagrams. This was done by employing a
sophisticated chain of computer algebra tools originally developed for loop calculations in
high-energy physics: First, the Feynman diagrams are generated by the programme QGRAF
(Nogueira 1991, 2006). These are further processed by the programs g2e and exp (Haar-
lander, Seidensticker & Steinhauser 1998; Seidensticker 1999), which allow one to reduce
the diagrammatic expressions to single-scale Feynman integrals. Algebraic structures from
the Clifford algebra and the SO(3) generators are contracted in FORM (Vermaseren 2000;
Kuipers et al. 2013; Ruijl, Ueda & Vermaseren 2017). Finally, the Feynman integrals are
rewritten in terms of known master integrals via integration-by-parts identities (Czakon
2005). Herein, the vertex functions are computed by setting one or two external momenta
to zero and subsequently mapping to massless two-point functions, which are implemented
in MINCER (Gorishnii et al. 1989; Larin, Tkachov & Vermaseren 1991).

3.2.1.2 Flow equations

The beta functions for the squared Yukawa coupling »? and the quartic scalar coupling A
are defined as
dy? dA
= ’ ﬁ)\ = .
dlnp dlnp

By2 (3.8)

It is convenient to further rescale the couplings as y2/(87%) — y? and \/(872) — A, such
that the 8 functions at three-loop order read as'!

By2 = —ey? + g(N +6)yt

— %gﬁ [(7+6N)y* + 80y* A — 80A?]

+ 1055 A (5N + 24) + 10y \2(48 — 5N) — 440y°\®

+63y° (N + 3) + éy8(6N2 + 37N —118), (3.9)
By = —e\ + 44)\% — %yQN(yQ —4))

+ éyQN(5y4 + 492\ — 88)2) — 1104X3

+ %{f?)ySN(GGN +19) + 2y AN (562N — 4761)

—48y" \2N (22N — 521) + 49632y° A3 N + 3469248\

—36G3[y N (7y" + 120y°X — 7920%) — 56832>\4]} . (3.10)

) These multiloop expansion results have been obtained by B. Thrig and M. M. Scherer, and have been
published in our joint paper (Ray et al. 2021).
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Here, (s := ((s) is the Riemann zeta function. The terms in Egs. (3.9) and (3.10) have
been sorted such that the first lines show the tree level and one-loop contributions, the
second lines show the two-loop contributions, and the remaining lines show the three-loop
contributions. The wave function renormalization functions ~4 and 7, are defined as
Yo/ = dIn Zy/(dIn 1). At three-loop order they read

2 4 4195 N2
= ZNy? +40\% — Ny
Yo = 3NYE R TS
2
+ 32/—41\7(213/4 + 40052\ — 1200A2) — 4403 , (3.11)
ON +1
Yo =y - ="
2
- ZT; [y (AN? — 84N — 9) — 960y>A + 2640X°] . (3.12)

Finally, let us consider the mass renormalization function as 42 = dlnZy/(dIn u),
which at three-loop order reads

2 40 61
Vg2 = —20\ — gNy4 + §Ny2>\ + 240\% + gNy(j

1 4
— %Ngf/\ — 160Ny — §N2y4(7y2 —15))
— 23Nyt (y? + 50A) — 1292003 . (3.13)

The corresponding S function for the bosonic mass is then computed from the dimen-

sionless mass m? = u2m? as

Bz = (2 — g + vg2)m? . (3.14)

Note that in the limit y? — 0, one recovers the three-loop results for the O(3)-symmetric
real scalar ¢t theory (Kompaniets & Panzer 2017).

3.2.1.3 Critical exponents

The above § functions feature several renormalization group fixed points, i.e., coupling
values g7 and A, at which the flow vanishes, 8,2(y2, A\x) = Bx(y2, A+) = 0. At the fixed
points, the system becomes scale invariant, giving rise to quantum critical behaviour.
The GauBian fixed point at (y2, \x) = (0,0) and the purely bosonic Wilson-Fisher fixed
point (y2, \s) = (0, \4) are characterized by two and one relevant directions within the
critical plane m? = 0, respectively. They are thus unstable and cannot be accessed in a
system with a single control parameter without fine tuning. A further pair of interacting
fixed points at finite y2 # 0 is found, one of which is fully infrared stable. To the leading
order, the corresponding critical couplings are

W2 2) = (e RN R e+ O(), (3.15)

in agreement with previous calculation of Seifert et al. (2020). The corresponding higher-
order contributions up to O(e?) are lengthy but straightforward expressions that can be
obtained from Egs. (3.9) and (3.10) analytically, and will be used in the following.

The critical behaviour is determined by the renormalization group flow at and
near the stable fixed point. The anomalous dimensions are given by the wave function
renormalization functions 7, and 74 at the fixed point,

My =YW M)y T = VoY Ae) - (3.16)
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The inverse of the correlation-length exponent is extracted from the flow of the bosonic
mass, which acts as tuning parameter,

1 - d/BﬁLQ

v dm? e 5,

=2 — g + 742 (Y2, As) - (3.17)

Electronic versions of the exponents for general N are available for download.!?)
For N = 3, which corresponds to the situation relevant for the spin-orbital mod-
els (Seifert et al. 2020), the exponents read

1
Z_9_ 5f+96+937f 3182 2

v 31944
264(576665 306864/5 )c3+5132520f 113996279 3 4
T 834888384+/5 +0(€)
~ 2 —0.917¢ — 0.0340€% — 0.0735€¢% + O ('), (3.18)
351384 66393+/5—357226 4
Ny = 36 + 803&)289 - C3+6324912 ¢ +0(")
~ 0.333€ + 0.0922¢2 — 0.0338¢3 + O(e?), (3.19)
T = % €+ 1058\;%79 2 _ 23425643+812:))z§52a31\{ 187711 3 | o( 64)
~ 0.167¢ + 0.0360€2 — 0.0303€> + O(e?). (3.20)

Note that the above expansions are asymptotic series with vanishing radius of convergence.
It is reassuring, however, that the coefficients of the two- and three-loop corrections are
still small compared to the one-loop values. For comparison with the large- N expansion,
we also state the expressions that we have obtained upon further expanding the general

(4 — €)-expansion results in 1/N. We obtain
1
o= 2—€— [96 34962 + 19663

1L 1
N
+ [459e — 8% ¢% + 27(153 — 184(3)€’| iz

O(e*,1/N3), (3.21)

Ng = €+ [—66+ 145€2+ %(13 3] N

+ [36e — 2Le? — 2 (72¢5 + 95)€’] joe]

O(e*,1/N3), (3.22)
1 1
3 9 2 9 3 369 2 513 3
771#_[6*56*326]]\; [—9¢ + Tge” — 64€]ﬁ
1
+ [5de = e + 57 (33— 4G)€’] 15
O(e*, 1/N4) . (3.23)

For any fixed N, we extract estimates for the physical dimension € = 1 by employing
standard Padé approximants

[m/n] =

12)https: //journals.aps.org/prb/supplemental/10.1103/PhysRevB.103.155160

ag + ar€ + - + ame™
1+bre+ -+ bye™

, (3.24)




3.2. Renormalization and critical exponents 47

with m,n € {0,1,2,3} and m + n = 3. The coefficients ay,...,a,, and by,...,b, are
obtained from matching the Taylor series of [m/n] order by order with the e expansions.
The discussion of the resulting estimates for 1/v, n4, and ny, for different values of IV is
deferred to Sec. 3.3.

3.2.2 Large-N expansion

In the limit of a large number of fermion flavours N — oo, the fluctuations of the
order-parameter field ¢, freeze out, which allows one to compute the critical exponents
in arbitrary 2 < D < 4 in a systematic expansion in powers of 1/N; this is the topic of
the present section.

3.2.2.1 Method

This was achieved by employing the large-N critical point method developed originally
for the scalar O(/V) model (Vasil’ev, Pis'mak & Honkonen 1981a; Vasil’ev, Pis'mark
& Honkonen 1981b; Vasil’ev, Pis’'mak & Honkonen 1982), and later extended to the
Gross—Neveu Ising universality class by Gracey (1991), Derkachov et al. (1993), Vasil'ev,
Derkachev & Stepanenko (1993), Vasil’ev & Stepanenko (1993), Gracey (1994a) and
Gracey (1994b). As the latter formalism has already been applied to variations of the
Gross—Neveu Ising universality class, we shall only briefly review the key differences here.
Indeed, given the strong overlap with the chiral SU(2) (= chiral Heisenberg) model that
the present SO(3) study is similar to, the reader is referred to the account of Gracey
(2018) for the finer details of the technique. In addition, a more detailed treatise for
arbitrary non-abelian flavour groups has been given by Gracey (2021).

One of the first steps is to recognize that the Lagrangian which serves as the basis for
the method of Vasil’ev, Pis’'mak & Honkonen is that of the universal theory that resides
at the stable fixed point in all dimensions 2 < D < 4. It is a simpler version of Eq. (3.3)
in that only the fermion kinetic term and the three-point vertex are the essential ones
needed to define the canonical dimensions of the fields at the fixed point, together with a
quadratic term in the boson field. Specifically,

Luniv = &aw - (ba@ (]12N/3 ® La) ¢ + %(ﬁa(ﬁa ’ (325)

where ¢ = 440, with v* again being (2N) x (2N) Dirac matrices, such that the spinors
1) and v have 2N components, as in the original Lagrangian [Eq. (3.3)]. The scalar ¢,
has been rescaled since at criticality the perturbative coupling constant is fixed and does
not run. The quartic interaction present in Eq. (3.3) is required in four dimensions to
ensure renormalizability. Its contribution in Lyn;y is automatically accounted for through
closed fermion loop diagrams with four external boson fields (Hasenfratz & Hasenfratz
1992). The other main aspect of the setup concerns the algebra of the SO(3) generators
L., which satisfy the relation

(La)ij(La)ki = Sudjk; — Giriji - (3.26)

This has been employed to determine the group-theory factors associated with the
Feynman diagrams that contribute to the large-N formalism.

In general, the method of Vasil’ev, Pis’'mak & Honkonen entails analyzing the be-
haviour of various Schwinger—Dyson equations in the approach to criticality. At the
stable fixed point, the propagators of the fields have a simple scaling behaviour where
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Figure 3.3: Skeleton Schwinger-Dyson two-point functions used to determine 7, at O(1/N?).
Dashed inner lines correspond to critical fermion propagators [Eq. (3.27)] and wiggly inner
lines correspond to critical boson propagators [Eq. (3.28)].

the exponent of the propagator corresponds to the full scaling dimension. Specifically, in
coordinate space the propagators take the asymptotic forms

Ag :
V@) ~ |1+ 42, (3.27)
bz) ~ (95)5 1+ 8@, (3.28)

where the name of the field has been used as a shorthand for the propagator at criticality,
with the scaling exponents

a=3(D+ny), B=1—ny—x. (3.29)

Here, 7, is the fermion anomalous dimension, which has been computed to three loops at
criticality in Sec. 3.2.1. The anomalous dimension of the boson-fermion vertex is denoted
by x so that

neg =4—D —2ny —2x. (3.30)

In addition to these leading exponents, each propagator includes a correction term
involving the exponent \.13) At criticality, this exponent corresponds to the correlation-
length exponent as 1/v = 2A. The canonical dimension of A is (D — 2)/2. The quantities
A, B, as well as A’ and B’ are z-independent amplitudes. The first two always appear in
the combination A?B, but this plays an intermediate role in deriving exponents. The
first terms of the respective equations in Fig. 3.3 represent the asymptotic scaling forms
of the two-point functions and have been given by Gracey (1991). They are derived from
Egs. (3.27) and (3.28) and have a similar scaling form to these, although A and B occur
in the denominator.

Skeleton Schwinger-Dyson equations. To determine the anomalous dimensions
of the two fields, one focuses on the two-point Schwinger—-Dyson equations shown in
Fig. 3.3, as well the three-point vertex function, for which the first correction is depicted
in Fig. 3.4. For both the two- and three-point functions the contributing diagrams are
computed with the asymptotic propagators, Egs. (3.27) and (3.28). Since the power
of the leading term of each propagator includes the nonzero anomalous dimensions of
Eq. (3.29), there are no self-energy corrections on the contributing diagrams in order to

13 We are abusing notation somewhat by denoting this exponent appearing in the asymptotic form of the
propagator by the symbol which is conventional in the large-N formalism. There should be no scope
for confusion, since the scalar self-coupling (usually also denoted by the same symbol) is accounted for
automatically and does not appear explicitly in the large-N setup.
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Figure 3.4: Leading-order skeleton Schwinger-Dyson three-point function used to determine
x at O(1/N).
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Figure 3.5: Diagrams contributing to large- IV conformal bootstrap formalism to deduce 7
at O(1/N3). Black dots refer to Polyakov conformal triangles, see Gracey (2018) for details.

avoid double counting. By evaluating the diagrams and solving the equations of Fig. 3.3
self-consistently (eliminating the product A%B in the process), one obtains an expression
for n, at O(1/N?%). The value of x at O(1/N) is required for this to ensure that no
In(z?) terms remain after renormalization. This value for y is deduced from the scaling
behavior of the diagram of Fig. 3.4. Moreover, this produces 74 at O(1/N) as a corollary
from Eq. (3.30). For the next order of x, one extends the critical-point evaluation of the
higher-order diagrams to the three-point function, which are given by the decorations of
the leading-order diagram of Fig. 3.4 with vertex corrections, as well as the non-planar
and three-loop diagrams shown in Fig. 3.5. This produces x and hence 7, at O(1/N?).

Once the anomalous dimensions of the fields have been established at O(1/N?), the
correction to scaling terms in Egs. (3.27) and (3.28) can be included in order to determine
1/v via the determination of A. Since the correction terms involve (x2)*, the two-point
Schwinger-Dyson consistency equation contains terms of different dimensions. These
split into terms which are independent of the correction to scaling amplitudes, A" and
B’, and those that are not. It is the latter ones that determine A\ to O(1/N?) (Vasil’ev,
Pis'mark & Honkonen 1981b), since a consistency equation can be formed from the 2 x 2
matrix defined by the coefficients of A" and B’ in each equation of Fig. 3.3. Finding
the solution to the equation formed by setting the determinant of this matrix to zero
defines the consistency equation. For the Gross—Neveu universality classes there is a
known complication in that while all the propagators of the diagrams of Fig. 3.3 include
the correction terms, extra diagrams are needed due to the same reordering that arises
in the original Gross—Neveu Ising model (Gracey 1991; Derkachov et al. 1993; Vasil’ev
& Stepanenko 1993; Gracey 1994a). This necessitates the inclusion of the higher-order
Feynman diagram as given in Fig. 4 of Gracey (2018), but with the appropriate group
factor for the present model.



50 3. Gross—Neveu SO(3) Quantum Criticality in 2 + 1 Dimensions

Large-N conformal bootstrap technique. The final step is to apply what is termed
the large-N conformal bootstrap technique to compute the O(1/N?3) contribution to M-
This method was originally developed for the O(N) scalar model by Vasil’ev, Pis'mak &
Honkonen (1982) using the early work of Polyakov (1970), Parisi (1972), and d’Eramo,
Peliti & Parisi (1972). It was subsequently extended to the Gross—Neveu Ising universality
class (Derkachov et al. 1993; Vasil’ev, Derkachev & Stepanenko 1993; Gracey 1994b), and
more recently to the Gross—Neveu Heisenberg model by Gracey (2018) and the Gross—
Neveu U(1) (= XY) model by Gracey (2021). The reader is referred to that later article
for more details of the large-N conformal bootstrap technique for the present context.
However, it is worth noting some of the key aspects of the approach. Rather than focusing
on the skeleton Schwinger—Dyson two-point functions, the underlying self-consistency
equations that ultimately produce 7, at O(1/N?) are derived from the vertex functions.
By contrast to the two-point function approach, one is in effect performing perturbation
theory in the vertex anomalous dimension y. The relevant diagrams are given in Fig. 3.5.
Again, while there is no dressing on the propagators, there are no vertex corrections unlike
the diagrams in Fig. 3.3. Instead, the contributions that underlie the vertex structure
are subsumed into the black dots, which denote Polyakov conformal triangles. These
are designed in such a way that the sum of the critical exponents of the propagators
connected to the vertex is (D + 1). This value means that all the scalar-fermion vertices
are unique in the sense of conformal integration (Gracey 1991; Derkachov et al. 1993;
Vasil’ev & Stepanenko 1993; Gracey 1994a). It is hence possible to evaluate all the
diagrams to the necessary order to determine 7, at O(1/N3).

3.2.2.2 Critical exponents

Having summarized the large-N critical point formalism, we are now in a position to
discuss the results. Expressions in general space-time dimensions 2 < D < 4 for all the
exponents we have determined are available electronically [see footnote '2)]. However, the
€ expansion of the large-IN expressions must agree with the explicit three-loop exponents
derived from the renormalization group functions at the stable fixed point. Expanding
each of 1y, 14, and 1/v around D = 4 — ¢, one finds

% =2—€e+[-9e+ 34962 — e — Z(1+16¢3)e + 525(208¢s — 144¢4 — 3)| %
+ [459¢ — 895¢* + 2T(153 — 184(3)€® + 21 (320¢5 — 276(4 + 13763 + 203)¢*
+ 1555 (4795 — 904965 + 6720¢5 — 123984¢3 + 336005 + 86688(4 )€’ | i
O(e°, 1/N?), (3.31)
g =€+ [—66+ 22 + 2e? + Z(11 — 32¢3)e” + 525(80Cs — 96¢4 + 19)€” %
+[36e — ZLe? — 2(72¢3 + 95)€ + Z(472¢5 — 108, + 45)€*
+52: (97 — 288¢5 + 1416¢4 — 1248(3)€" | %
O(e°, 1/N?), (3.32)
mo = [~ 86— B+ (166 — 3)c* + 551664 — 166 — 1]
+[—9e + 38 — 2863 — 9 (128¢3 + 69)e” + £35(1008¢3 — 384¢s — 89)€’]
+ [5de — 20232 + 23(33 — 4(3)€® + 2L (2184¢; — 216(4 + 493)¢*

1
N2
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1
+ 137 (6552C4 — 5765 — 200245 — 2375)€’]

+O(8,1/NY . (3.33)

All terms to O(e) agree exactly with Eqs. (3.21)—(3.23), which is a highly non-trivial
check on the D-dimensional expressions computed above. In the above equations, included
additional terms to O(€®) have been included to provide checks for future higher-loop
computations.

With this check of the D-dimensional exponents satisfied, one can now deduce their
values in the 1/N expansion in fixed D = 2 + 1 space-time dimensions. One arrives att®)

1 16 32472 + 2624 3
—=1- 1/N
v 2N + 3rd N2 +O(1/N7)
1.62114  19.92200
~1— 1/N3 .34
Nt OW/NY), (3:34)
20 2(817% —1028) 5
=1- 1
ne =1 7r2N+ 3N + O(1/N”)
2.02642  1.56428
~1-— O(1/N3 3.35
_4 o, 304
= N  37piNZ
97272 In(2) + 25572 — 10206¢3 — 3796 4
1/N
* 976 N3 +O(1/N7)
0.40528  1.04029 0.79721
~ — O(1/N*Y). 3.36

In effect, three terms in the expansion of each exponent are available, but involve different
powers of 1/N. Let us note that the leading two terms of 1/v and the leading terms of 7,
and 7, are the same as those of the Gross-Neveu SU(2) model (Gracey 2018). However,
the O(1/N?) term of 1/v is nearly twice that of its SU(2) counterpart and the coefficients
of the subsequent terms of 7y and 7, are also significantly larger here, with the exception
of the O(1/N?) term in ny.

For extrapolating the large- N series to finite IV, one again needs to use Padé approxi-
mants

ap+a N1+ +a,N ™

[m/n] = T BN b N (3.37)

where now m,n € {0,1,2} (m,n € {0,1,2,3}) and m+n =2 (m +n = 3) for 1/v and n4
(7). The numerical estimates for different values of N are discussed in Sec. 3.3.

3.2.3 Non-perturbative FRG

The starting point of the FRG calculation is the Wetterich—Morris—Ellwanger equation
(cf., e.g., Dupuis et al. 2021), which we already encountered in Sec. 2.2. To recapitulate,
it reads as

kok Ry,

. (3.38)
I‘g) + Ry,

1
k@kl“k = 5 STr

) These 1/N expansion results have been obtained by J. A. Gracey and have been published in our joint
paper (Ray et al. 2021).
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Here, I'; is the scale-dependent quantum effective action. It is defined as the usual
1PT effective action, but where quantum contributions from ‘slow’ modes (i.e., virtual
particles at momenta ¢ < k) have been suppressed. This suppression is achieved by
adding a momentum-dependent mass (the so-called ‘regulator’) Ry to the propagator.
The function Ry (q) needs to satisfy Ri(q¢ « k) = Ck, Cx > 0; this ensures that slow
modes are indeed suppressed as advertised. In order to ensure that the full 1PI effective
action is recovered for k — 0, one needs to impose Rj_,o(¢) = 0 for all virtual momenta
g. The final ingredient appearing in the Wetterich—-Morris—Ellwanger equation is the
Hessian
— =

r® - %de%, (3.39)
where the field ® = (¢4, %, 1)) contains all pertinent fields of the theory. The supertrace
STr represents the usual extension of the trace to include anticommuting (i.e., Grassmann)
fields, schematically:

B x * r
STr [+ F  « —TrB—Tr<1 *) (3.40)
* F2
= % By

The Wetterich—Morris—Ellwanger equation itself is exact, but generically not exactly
soluble.

The crucial ingredient in the FRG recipe is the ansatz for the running effective action
I'y, we choose to feed in to the Wetterich—Morris—Ellwanger equation; the choice of terms
to keep or neglect defines the approximation scheme. Here, we pursue an ansatz in the
spirit of a derivative expansion,

_ 1 _
Iy = diﬂﬂ {Zw,wvu%d) + §Z¢,k(5u¢a)2 — YoV (Lon /3 @ La)y) + Uk(@)} , (3.41)

with g the SO(3)-scalar given by ¢ = %gbagba. General field-dependence of renormalization
group functions is allowed only in Uy, the so-called average boson effective potentiall®).
Pure fermionic interactions, such as four-fermion terms, that may be generated in the
nonperturbative regime, are neglected. The next-to-leading order contributions come
from the kinetic terms, whose scale-dependences are approximated by field-independent
renormalization constants Zg j; all higher-order terms in the gradient expansion are
neglected. This truncation of the effective average action is commonly referred to as
‘improved local potential approximation’ (LPA’). As such, this truncation represents
the leading terms of the so-called derivative expansion. Its convergence does not rely
on proximity to special values of the flavour number N or the spacetime dimension
D. Whether the derivative expansion converges at all (and at what speed) is a subtle
question, see Dupuis et al. (2021) and references therein. More pragmatically, we may
take encouragement from the fact that the derivative expansion, already at the order
to which we are working (i.e., LPA’), has proven to yield reliable results in a number of
similar Yukawa models'6).

%) Recall that by definition, the effective potential is the effective action evaluated for constant field
configurations.

)¢f., e.g., Rosa, Vitale & Wetterich (2001); Hofling, Nowak & Wetterich (2002); Gies et al. (2010);
Braun, Gies & Scherer (2011); Scherer, Braun & Gies (2013); Janssen & Herbut (2014); Classen et al.
(2016); Classen, Herbut & Scherer (2017); Janssen & Herbut (2017); Torres et al. (2018, 2020).
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3.2.3.1 Flow equations

Before computing the flow of the individual scale-dependent quantities appearing in
our LPA’ ansatz, we need to first evaluate the Hessian. Its independent non-vanishing
components are

TP (@1,22) = (Zprd® + Up(o(21)) dap + Upt(0(21)da(21)dp(21)) (21 — x2), (3.42)

FS%JC(!TI; l‘2) = (Zw,k’)/'uau - yk¢a($1)12N/3 &® La) (S(.’L‘l - IL'Q), (343)
Do (1 22) = =g (21)3(1 = 22) a3 ® Lo (3.44)

The remaining non-vanishing components (corresponding to the field index constellations
Vi, ¢, Yo, o) can be recovered from the ones quoted above by Hermitian and/or
Dirac conjugation. In the course of our calculation, we shall also need the third derivatives
of Fk:

F((;%w’k(xh T, 03) = —yrd(x1 — 22)0(v2 — x3) Lo /3 ® L (3.45)
F§(b3u)¢b¢c (ZEl, 1'2’ 1'3) = [U],C,(Q(:Bl)) (5ab¢)0(:€1) + 5bc¢a(l’1) + 5ac¢5b(:p1))

+ Ui (e(w1))da(21)d(w1)de(1)] O(ar — 22)0(zz — 25)  (346)

Let us now proceed to the flow of Ug(p). By definition, it is simply the effective action
evaluated at vanishing fermion fields and constant boson fields. For this configuration
of fields, the Hessian becomes diagonal in momentum space; we shall refer to it as the
‘propagator’.1”) At this stage, we need to also specify a suitable form for the regulator.

Following Janssen & Herbut (2014), we make the ansatz

Rk(xla .ZUQ) _ Jde e—ip~(a:1—l‘2)Rk(p) (347)
R, k(D) = Zo 10" 0ab 7 (p°/K°) (3.48)
Ry55,(p) = 12y 7"y (0°/K7) (3.49)

with g/, the so-called dimensionless shape functions parameterizing the choice of regula-
tor. It is useful to demand

L+ rg(x) = [1+ry(2)])* = Plz)/z (3.50)

for reasons of power counting (recall that in the classical action, the bosonic kinetic term
contains two derivatives whilst the fermionic kinetic term contains only one).

Note that upto the shape function factors, the regulator has the same form as the
unregularized propagator. This has both conceptual and practical significance: Concep-
tually, it allows one to maintain as many symmetries of the classical Lagrangian £ as
possible, also at the level of the regularized theory. (This is the only choice that does so,
at least in a manifest manner.) On the practical side, this choice of regulator means we
do not need any techniques beyond what we would have to use any way to compute the
propagator. In the present setting, the theory is translationally invariant, which makes the

) Note that this is somewhat different from usual perturbation theory, where the propagator only
contains ‘bare’ quantities. However, since the derivative expansion in general and the LPA’ treatment
in particular is a self-consistent, the fact that all quantities appearing on the right-hand side are
‘dressed’ is left implicit.
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(a) (b)
’ T \
! ®
\ Y
Figure 3.6: Diagrammatic representation of contributions to the flow of the boson average

effective potential Uy (g). A dashed line stands for G, [Eq. (3.51)] and a solid line stands for
Gy [Eq. (3.52)]. A circled cross represents the insertion of kdyRy.

regularized propagator diagonal in momentum space. Choosing without loss of generality
o(x) = (0,0,4/20) and working explicitly in the basis where L3 = diag(1,0,—1), we find

1
Gll — Gll _ ,
6 ()= Go ) = g ) P + UL
1
G3(p) = , 3.51
s @) Zyr (1 +14(p?/k2)) p* + Ui (0) + 20U} (0) (3:51)
B —iZyx (1 +r(p°/k%)) ¥pu — yrn/20
Gy(p) = Tny(3d,) ® 2 2 /1.2Y\2 1.2 2
Z7, (L+7(p?/k?)" p? + 20y
o —i9Hp,, —iZyx (14 7(0%/k?)) 3'pp + yrv/20 (3.52)
Zyx (1 +7(p?/k?)) p? 73, (L+r(p?/k2)* p? + 203 ’

whereby all omitted components of G4 vanish and we have assumed blockdiagonal -
matrices 7, = Ly/(34,) ® Ju With d,-dimensional ‘building blocks’ 7,,. If we now evaluate
the right-hand side of the Wetterich—-Morris—Ellwanger equation for the afore-mentioned
field configuration

(z) =¥() =0  ¢a(z) = (0,0,+/20), (3.53)

the resulting expression can be expressed diagrammatically as'®)

koRUs(0) = Fig. 3.6(a) + Fig. 3.6(b). (3.54)

Satisfyingly, it is given by one-loop 1PI vacuum graphs, but with the propagators
computed self-consistently from 'y (rather than from the classical action as one usually
does in perturbation theory). For this reason, RG schemes such as that of Wetterich—
Morris-Ellwanger are called ‘one-loop exact’ schemes. The diagrammatic consideration
goes through for higher-point functions as well: The right-hand side of the Wetterich—
Morris-Ellwanger equation is then given by 1-loop 1PI graphs with a single insertion of
kor Ry, and a suitable constellation of external legs.
Upon evaluating the matrix algebra, one arrives at

koyu(o) = —Dug(0) + (D — 2 + ng) 0u/(0)
+ QUDE(()B)’D (u'(0) + 20u"(0);mg)
+ 4op PP (! (0);5)

IN N
~dop [34&“”3(2@@/2; o) + 3£(§F)’D(0;n¢)] . (3.55)

%) Here and throughout the remainder of the thesis, symmetry factors and signs are considered part of the
diagram and not written explicitly. In the present case, for instance, diagram (a) has symmetry factor
1/2, whilst (b) has a negative sign due to the closed fermion loop (cf. the definition of ‘supertrace’).
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In the above and in what follows, the couplings have been rescaled as
ZZ2KP e Z P00 KPU (Z(;,lckD*2Q> — up(0),  (3.56)

and the index k has been dropped (and will be dropped henceforth) for legibility. The
powers of k are given by the mass dimensions and simply amount to making the couplings
canonically dimensionless, whilst the Z factors in the definition of the dimensionless
couplings account for the fact that the kinetic terms are redundant operators (recalling
our discussion in Sec. 2.5). The wavefunction renormalization in turn also gives rise to
the anomalous dimensions

(3.57)
2/ k

N/l = —

with the index k again suppressed in equations for brevity.
In Eq. (3.55), the factor vp = [2P*17P/2T(D/2)] ! arises from integration over the

surface of the sphere in D-dimensional Fourier space. The threshold functions E(()B) |

K[()F)’D contain the remaining radial integration and encode the dependence on the shape
function, see Berges, Tetradis & Wetterich (2002) for formal definitions. The first line of
Eq. (3.55) represents the tree-level flow and arises due to the rescaling in Eq. (3.56). The
second and third line represent scalar contributions, two of which have squared mass
u/(p) and the other one has mass u/(0) + 20u”(p). If the vacuum is located at ¢ = 0 (i.e.,
in the symmetric phase), all scalar modes have the same mass. That the squared mass is
indeed u/(0) can be seen from a Taylor expansion of the effective potential,

M@:wmm+0@%z%ﬁ%%+owﬁ (3.58)

In the spontaneously symmetry-broken (SSB) phase, on the other hand, the minimum of
u(p) lies at some gg # 0. It is governed by (Gies et al. 2010)

dug (o)
0da

Note that the location of the minimum g j — the so-called vacuum expectation value (vev)
— is scale-dependent, just like the effective potential u; it minimizes per constructionem. In
the SSB phase, the two modes with mass u/(p) are in fact massless and hence correspond
to Goldstone modes. On the other hand, 2p9u”(0¢) is precisely the curvature of the
effective potential at gg; it is the mass of the Higgs mode. (We shall henceforth drop
the index k£ on the vev gy in equations, like we have decided to do for all other running
quantities.) The scalar contribution to the flow of the effective potential is hence in full
agreement with the chiral SU(2) case (Janssen & Herbut 2014). This is not surprising,
since both theories become O(3) ¢* theories if the coupling to fermions is ‘switched off’.
Finally, let us note that in the fermion bubble contribution (last line), the first term
corresponds to the 2N /3 gapped modes with mass 20y?, and the second term to the N/3
modes that remain gapless in the presence of a constant background p.

To close the flow equation, we need to find the flow of ¥ and the anomalous dimen-
sions 7,/ Unlike the effective potential u(o) which is defined for all field values, the
remaining quantities encode fluctuations on top of the vacuum. Therefore, in Feynman
diagrams, henceforth (inverse) propagators and vertices are evaluated at the vacuum
field configuration v (z) = ¥(x) = 0, ¢a(z) = (0,0, +/200) With gg = 0 (symmetric phase)

= dauy(0) = 0 = uj(0or) = 0. (3.59)
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Figure 3.7: Diagrams contributing to Yukawa vertex correction. The propagators are given
by Eq. (3.51) and (3.52), while the three-point vertices are Eq. (3.45)—(3.46), all evaluated

at the vacuum field configuration ¢ (x) = ¥ (x) = 0, ¢q(x) = (0,0,+/200). The regulator
insertion may sit on any of the other internal lines; these permutations give the same value,
and are not displayed explicitly.

or oo # 0 A u'(g9) = 0 (SSB phase). Let us begin with the flow of gi. The resulting flow
of the Yukawa coupling is shown in Fig. 3.7; since F,(f) is point-like per ansatz, we only
need to compute it for vanishing external momenta.

In the symmetric phase, the above prescription goes through without any difficulty,
since all scalar modes are equivalent. In the SSB phase, on the other hand, an unambiguity
arises, since the Yukawa coupling of fermions to Goldstone and Higgs modes may be
different. When studying quantum criticality, an often-used approximation is to define
the Yukawa vertex as the coupling to the Goldstone modes; it is assumed to be the
one primarily important for critical behaviour (Janssen & Gies 2012; Janssen & Herbut
2014), since the Goldstone bosons are the massless ones in the SSB phase. The flow of
the Yukawa coupling thus works out to

FB),D
kky? = (D — 4+ g + 205)y% + Suplyy 7 (20002, uty; ng 1)y
FBB),D
— 16vp oouy 511 ) (2002, ul, uf + 2ggu8;n¢,n¢)y4. (3.60)
Here, the shorthand uén) = u(")(go) has been introduced, along with further threshold
functions EﬁB)’D and £§11“113B),D_

For the wave function renormalization, the contributing diagrams are Fig. 3.8(a) for
Zy and (b) + (c) for Z4.'9) In both cases, it is sufficient to expand in powers of external
0 The zeroth order in external momentum contains no new information: for
the fermion self-energy, it vanishes in the symmetric phase due to chiral symmetry.
In the SSB phase, it renormalizes the squared fermion mass 20oy?. However, the flow
thereof is already uniquely determined by the flow of u(p) and y? computed above. The
bosonic self-energy diagrams are likewise simply the second derivative of the flow of the
effective potential with respect to ¢. To first non-trivial order, the fermion self-energy is
proportional to v#p,, and is precisely what needs to be absorbed into Z, (reassuringly
enough, no other matrix structure is generated at this order). One thus arrives at

momenta.?

_ 16vp [ (FB),D (FB),D
s (

Ny = 57 | (0, u(; Mgy M) + my 200y, U0 Ny M)

9Note that diagram 3.8(c) is the same as in scalar O(3) ¢* theory; it is thus known from literature (cf.,
e.g., Litim & Vergara 2004) and hence requires no original computation on our part.

20)This is a somewhat non-trivial fact, given that the theory contains massless degrees of freedom. The
fact that this nevertheless creates no non-analytic dependence of diagrams on external momenta has
its origin in the way the RG scale k is implemented. In general, any scheme where the RG scale is used
to suppress IR modes (sufficiently quickly) will only feature analytic dependence on external momenta.
This in particular means any scheme that implements a ‘mode decimation’ version of RG, such as the
present one, permits an expansion of diagrams in external momenta; we shall, however, also encounter
field-theoretic versions of this argument in Chaps. 4 and 6.
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(a) (b) ()

Figure 3.8: Diagrams contributing to anomalous dimensions. Conventions for lines and
vertices same as in Fig. 3.7. As usual, graphs with the regulator insertion sitting on the other
internal line exist, but are not displayed.

B),D
—i—mg)

(2007, uf + 200u8; My, 77¢)] Y2 (3.61)
Similarly, the momentum-dependent part of the boson self-energy begins at O(p?) and
leads to

32Nvp (F),D
m

16vp m(B)’D
3p 4

D 22

Mo = (2004 mw)y* + (ufy ufy + 200uf: mg)00uf’.  (3.62)
Like the /-functions we encountered previously, the m-functions are further threshold
integrals (cf., e.g., Janssen & Gies 2012).

A fixed point is defined as a solution of kdxy? = 0 and kdyu(p) = 0. Whilst the former
is — for appropriate choice of regulator — an algebraic equation, the second amounts, even
for conveniently chosen regulators, to a nonlinear ordinary differential equation. This

necessitates the choice of a suitable representation of u(p).

3.2.3.2 Representation of the effective potential

In the present project, u(o) was expanded in two different ways: (i) a Taylor expansion
and (ii) a pseudospectral decomposition using Chebyshev polynomials. We have verified
that our numerical results from the two approaches converge to the same values within
error bars.

Taylor expansion. The first (and arguably simpler) ansatz is a truncated Taylor
expansion

n/2

Z Az o, (3.63)

where the fixed point is assumed to be located in the symmetric regime, such that the
minimum of the potential is at o = 0. In the SSB regime, an alternative expansion

1,& (0— o) (3.64)

M\

u(o) =
2

-
I

is more expedient, where gy minimizes u(p). (Recall that it is related to the vev of the
order parameter by 209 = {¢,)>2.) Note that the linear term in the Taylor expansion is
absent due to Eq. (3.59).

For practical computations, the ansatz (3.63) is truncated at some finite order n € 2IN.
This defines the so-called LPAn’. The validity of this polynomial truncation can be checked
a posteriori by verifying convergence of the results upon increasing n. The expansion of
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the effective potential introduces a plethora of coupling constants, of which A\; = m? > 0
is the squared boson mass and Ay = 4!\ is the quartic boson self-coupling. Inclusion of the
higher-order couplings A;~s is a minimal way to incorporate nonperturbative corrections
in space-time dimensions D < 4, in addition to the effects from the nonperturbative
propagator.

The flow of the bosonic self-couplings are determined from the flow of u(p) by differ-
entiating successively with respect to ¢. In the symmetric regime, this is straightforward
to implement:

kRN = [(ag)i k@ku(g)]g . el (3.65)
The corresponding system of equations in the SSB regime is given by
k&kj\z = [(%)Z k‘@kU(Q)]g i + ;\i+1k6k90 (Z € IN;Q), (3.66)
—00

and has to be supplemented by a flow equation for the vev:

(3.67)

0—00 °

1
kOpog = —— [agkaku(g)]
A2

The latter follows from u/(gp) = 0 in the SSB regime (Gies et al. 2010).

Pseudospectral decomposition. In the context of the present work, we aim at
systematically comparing the results from different quantum-field-theoretical methods
between two and four dimensions. Near two dimensions, a breakdown of the convergence
of a local expansion in the effective potential is possible. This is because the canonical
dimension [-] of the bosonic field ¢ is given by [¢] = (D — 2)/2; the dimension of the
operator g’ is thus (D — 2)i. The canonical dimension of the corresponding coupling
[Ai] = D — (D — 2)i. Potentially, for D — 2, more and more couplings with higher i
become canonically relevant until they all have the same canonical dimension of two in
D=2

In lieu of a local Taylor expansion for the effective potential, non-local expansion
schemes can be advantageous in terms of tractability, accuracy, and fast convergence. An
approximation scheme that has been explored in the context of FRG fixed-point and
flow equations is based on pseudospectral methods [see, for instance, the book by Boyd
(2001) for an introduction]. Importantly, these methods facilitate, e.g., an efficient and
high-precision resolution of global aspects of the effective potential including the correct
description of a model’s asymptotic behaviour?.

In the present case, the fixed-point equation for the effective potential requires us
to find an approximate solution to an ordinary differential equation in one variable
defined on the domain domu = R™ := [0,00). To that end, one expands the effective
potential u(p) into a series of Chebyshev polynomials, where dom u is decomposed into
two subdomains according to R4 = [0, om] U [0m, ). The expansion then reads as

nr 9
u(o) ~ <=0 ., (3.68)

ue(0) Y riRi(0 — 0m), €= Om-
=0

Hef., e.g, Litim & Vergara (2004); Fischer & Gies (2004); Borchardt & Knorr (2015); Borchardt, Gies &
Sondenheimer (2016); Borchardt & Knorr (2016); Borchardt & Eichhorn (2016); Knorr (2016, 2018)
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Here, the T;(x) are the Chebyshev polynomials of the first kind, and the R;(x) = T; (ﬁ;—i)
are rational Chebyshev polynomials with a free parameter L which parameterizes the
compactification in the argument z.

Further, uqy (o) is the leading asymptotic behaviour of the effective potential for
large field arguments ¢ — oo, which is fixed by the dimensional scaling terms in the
flow equation. The matching point g, separates the subdomains and is another free
parameter that has to be chosen large enough such that the minimum of the effective
potential appears for ¢ = gg < om. The parameters L and g, can be used to further
optimize numerical convergence. The values of the effective potential and its derivatives
for all field arguments ¢ are straightforwardly obtained by employing efficient recursive
algorithms (Boyd 2001). In fact, in the present setting, only a relatively small number of
expansion coefficients ¢; and r; turn out to be necessary due to a fast convergence of the
series.

For the determination of the coeflicients ¢; and r; in the Chebyshev expansion, we
use the collocation method, i.e., the ansatz in Eq. (3.68) into the flow Eq. (3.38) and
evaluate it on a given set of collocation points. The collocation points are chosen to be
the nodes of the highest Chebyshev polynomials in the respective domain, and we add
the origin ¢ = 0. Finally, to accomplish smoothness, we implement matching conditions
for the values of the effective potential and its derivatives at on. The resulting set of
algebraic equations is then solved with the Newton-Raphson method. In practice, we
actually expand the derivative u'(¢) along these lines, and optimize L and o, as well as
the number of collocation points until convergence in numerical results is reached. For
the present model, we observe numerical convergence of the first four significant digits
already starting at n = nr = 9; as a sanity check, we have also increased the number
of collocation points up to 18 in each subdomain for selected cases, without significant
difference in the final results.

The anomalous dimensions of the quantum critical point are then obtained directly
from the fixed-point solution of u’(p) using the FRG flow equations specified in the next
section. To obtain the inverse correlation-length exponent, we use the pseudospectral
expansion from the first subdomain, i.e., o < gn,, rewriting it as a local expansion around
its minimum. With the latter expansion, we then calculate the stability matrix and
extract the eigenvalues at the fixed-point potential. The largest positive eigenvalue is the
inverse correlation-length exponent.

3.2.3.3 Choice of regulator

For concrete calculations, specific choices for the regulator need to be made. In this
chapter, we shall use two schemes: the linear regulator and the sharp regulator. The
shape functions for these are given by

ry’ () = (¢ = 1)O(1 — z)

r(z) = (Vo —1) O(1 — ) (3.69)
i) = (z —1)O(1 — z) a — o0

rh(m):[ (:L'—l)—i—l—l]@(l—x) @ — o0 (3.70)

with the a — oo-limit understood to be taken after the loop integration has been
performed (Reuter & Saueressig 2002). The linear regulator has been shown by Litim
(2001) to fulfil certain optimality criteria; in the literature, the linear regulator is hence
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also referred to as ‘the optimal regulator’. Universal quantities such as critical exponents
are supposed to be scheme-independent. As such, the residual regulator-dependence,
as measured by the difference between the results computed with the linear and sharp
regulators, is used to provide a (very rough) estimate of the truncation error in FRG.
Both regulators have the very convenient feature that threshold functions can be
expressed in closed form, and have been tabulated, e.g., by Janssen & Gies (2012).

3.2.3.4 Limiting behaviour

Before discussing the numerical results for general but fixed spacetime dimension and
flavour number, let us discuss some limiting cases, where some approximate analytical
progress may be made.

Near upper critical dimension. Near D = 4, we may take inspiration from the loop
expansion, and the fact that the interactions y., Ax = O(e) where € = 4 — D. In this
case, we may expect quantum corrections to be small, and thus 7,7 = O(€). This
means that operators that are strongly irrelevant canonically will remain so even after
quantum corrections have been incorporated. Standard power counting then shows that
all operators O ¢ LPA4’ have [O] < e — 1 and may be safely neglected. Let us further
assume that the fixed point is in the symmetric regime, and identify the coefficients of
the Taylor expanded boson effective potential with parameters appearing in the classical
action as A\ = m?, Ao = 4!\. Making the ansatz y2, Ay, m2 = O(e) for the fixed-point
values and expanding the flow equations to leading order in €, one arrives at the fixed-point
equations

0= —NU2 rog — U2 rog + 12707 (3.71)
0 = 16NYy rog — 8NYZ roghureg — 33A3 rog + 48T As reg (3.72)
0 = =8NYZ rog + 15Asreg + 96CiegT™ M5 1o (3.73)

for reg € {lin,sh} with Cy, = 2Cg, = 2. The fixed point pertinent to the present
universality class needs to fulfil y2 > 0, \x > 0 and m2 > 0.2%) This leads to

1272
yi,sh = yi,lin = mﬁ +O(e?), (3.74)
872 (=N + v/ N(N +120) + 36 + 6)
Assh = Aslin = (N +6) e+ O(e?), (3.75)
19N 5 (/N(N +120) + 36 + 6) )
Mreg = 44(N + G)Creg °r 0(6 ) (3'76)

Rather satisfyingly, to O(e), the regulator-dependence drops out in quantities which
are canonically dimensionless in D = 4. The only residual dependence is in the fixed-
point value of the dimensionless squared mass, whose underlying coupling has canonical
dimension 2 (for all D). This is a manifestation of the stronger principle that dimensionless
fixed-point quantities are one-loop universal for almost all RG schemes. It is then

22)The first two are needed for unitarity, whilst the last constraint ensures a vanishing fixed-point vev.
We may disregard the fixed points featuring y2 = 0, because they are unstable with respect to
perturbations of the Yukawa coupling, in addition to the usual instability to perturbations with a large
component in operator space along the direction of the mass term (Janssen & Herbut 2014).
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straightforward to check that the critical exponents calculated using the above fixed-point
values are in agreement with the 4 — ¢ expansion presented in Sec. 3.2.1, regardless of
choice of regulator.

Near lower critical dimension. As D deviates further from D, = 4, the loop
expansion in the Yukawa theory becomes increasingly badly controlled. However, for
D — Dyyw = 2, anew control parameter arises: the ratio Gg = y? /m2, the so-called Fermi
coupling. That this is likely to be so may be anticipated simply by dimensional analysis:
whilst the canonical dimension of the squared mass [m?] = 2 is fixed, the canonical
dimension of the squared Yukawa coupling grows for decreasing D as [y?] = 4 — D. At
D = Doy, the two coincide; D,y is called the lower critical dimension?). Physically,
GF is the amplitude for the leading-order meson exchange process. The fact that Gp
becomes dimensionless suggests that one should trade the Yukawa vertex for an effective
four-fermion vertex

}:—%GRM(awa (3.77)
M

to get a perturbatively renormalizable description, for suitably chosen matrices M .29
Even without knowing these matrices M, and without performing explicit calculations,
it is possible to derive the relations (Gehring, Gies & Janssen 2015)

/v =e+ O((D —2)?), (3.78)
ne = O((D = 2)2). (3.79)
The fact that the one-loop corrections in the above are valid independently of the precise
flavour content of the theory is referred to as super-universality. Let us check in the

following to what extent our LPA’ approximation respects these relations. In the sharp
regularization scheme, one finds the critical fixed point is characterized by the couplings

3

Yisn = 3y +O(D = 2), (3.80)
m2 g, = ! 2 +0O(D —2) (3.81)
D =21 =g + In(47) ’

where g is the Euler-Mascheroni constant. Using these relations, it is straightforward to
check that the super-universality relations are fulfilled. An important conceptual point is
the large fixed-point value of the mass: it is necessary to ensure that at the lower critical
dimension, the four-fermion process is indeed point-like. Indeed, if one considers the
tree-level ‘meson-exchange’ amplitude y?/(p? + m?) and rewrites it as an expansion in
an effective field theory sense, one finds

— 1
y* [ (Lanys ® La) ¥] {w (2n/3 ® La) Mw]

23)Not to be confused with the lower critical dimension in the Colemna—Mermin—Wagner sense.

24)To recover the Yukawa description, one needs to perform a so-called Hubbard—Stratonovich transfor-
mation (cf., e.g., the textbook of Altland and Simons 2010). Each bilinear 1M1 maps to a scalar field
¢nm which couples to the fermion bilinear with assorted Yukawa coupling yas; for M = Ton/3 @ La
(which we assume hereinafter if unspecified), one recovers the ¢-field we have been working with thus
far in our calculations.
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Y oy — 5
=3 [¢ (Lonjs ® La) ¥]” + vy [ (Lon/s ® La) dutp]™ + -+ (3.82)

Only the first term on the right-hand side is momentum-independent, for which the
one-loop fermion self-energy is a tadpole and leads to a vanishing 7,, at one-loop. Higher-
order diagrams are suppressed by powers of the mass, which scale with D — 2. On the
other hand, in the linear scheme,

Vi = 3 (D= 2) +O((D~ 2)%). (359

37hn turns out to be intractable analytically, but one

may argue that since Gg = y?/m? is dimensionless, m2 . = O(1). Hence, in the linear
regularization scheme, the one-loop self-energy is not a tédpole graph, and yields a finite
contribution to 7, thereby violating super-universality, as demonstrated previously by
Janssen & Herbut (2014) using numerical means. A similar violation exists also for 1/v,
but requires more involved algebraic techniques, and is hence left for future work.

The fixed-point equation for m

3.3 Discussion

The quantum critical point is characterized by a set of universal exponents. Our focus
in the following will be on the leading exponents v and 74, as well as the fermion
anomalous dimension n¢.25) When applying the computations to fractionalized criticality
in spin-orbital models, one needs to keep in mind that the fermionic correlator is not
gauge invariant in the spin-orbital models; 1, does not strictly speaking correspond to
an observable quantity in that setting. However, as the Gross—Neveu SO(3) universality
may in principle also be realized in a model of interacting fermions, in which case 7
is measurable, it is worth discussing this quantity regardless2®). Subleading quantities
that control the corrections to scaling upon approaching the quantum critical point, such
as w, can in principle also be computed within the present approaches, but are left for
future work.

3.3.1 General behaviour and qualitative aspects

Figure 3.9 shows the results for 1/v, 14, and 7, as a function of space-time dimension
2< D <4and0 < N < o flavours of two-component Dirac fermions. The case pertaining
to the afore-mentioned fractionalized fermions in spin-orbital models studied by Seifert
et al. (2020) corresponds to D = 3 and N = 3. For the results from the 4 — ¢ and
large-N expansions, we have employed different Padé approximants, marked as ‘[m/n]’
with integer m and n in the plots. The difference between the different approximants
provides a simple estimate for the systematic error of the extrapolation to finite ¢ and
1/N, respectively. For the same purpose, in the FRG calculation, we have applied two
different regularization schemes, marked as ‘lin’ for the linear cut-off and ‘sh’ for the
sharp cut-off.

In the FRG calculation using the sharp cut-off scheme, there is no stable fixed point
for 2.104 < D < 2.366 as a consequence of fixed-point collisions at the lower and upper

25)Recall that the exponent v determines the divergence of the correlation length ¢ upon approaching
the quantum critical point, while the boson and fermion anomalous dimensions 74 and 7y govern the
scaling forms of the respective correlators.

26)See Liu et al. (2021) for one such realization where 7, is in fact a measurable quantity.
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bound of this interval. In this scheme, the fixed point in D = 2 + ¢ dimensions for small
€ is therefore not adiabatically connected to the fixed point in D = 4 — ¢ dimensions.
This annihilation goes away for large enough flavour numbers N 2 7. In the linear
cut-off, the fixed points at D = 4 — € and 2 + ¢ are connected adiabatically. However,
as demonstrated analytically above — and also checked numerically, cf., e.g., Janssen
& Herbut (2014) — the fixed point that does emerge in the linear cut-off at D = 2 + ¢
violates the super-universality relations of Gehring, Gies & Janssen (2015). This violation
becomes milder for increasing N though, and vanishes in the strict mean-field limit. As
for the (quasi-)perturbative approaches employed in this work, the fixed-point collision in
question cannot be excluded conclusively. The 4 — € expansion is by design not suited to
access the behaviour for D — 2. The large-N approach expands asymptotically around
the mean-field limit, such that the partner fixed point (which is likely non-perturbative
in 1/N in addition to 4 — D) may easily evade detection. Hence, the precise nature of
the present universality class at small dimension D « 3 and small N < 7 remains an
open question. Nevertheless, all three methods agree (to the order of approximation
employed herein) that the fixed point in D > 3 and N > 3 is adiabatically connected
to the (D,N) = (4 — ¢,3) and the (D,N) = (3,0) theories. Indeed, in Fig. 3.9, all
curves approach each other for D — 4 (left panels) and N — oo (right panels), which
is reassuring. As an aside, let us also note that in the FRG calculation in both cut-off
schemes, the fixed point for N = 3 is located in the symmetric regime for D = 2 4+ ¢ and
D = 4 — ¢ for small ¢, ¢, but in the symmetry-broken regime for D = 3. Hence, the FRG
critical exponents become non-analytic as a function of D. Likewise, as a function of
N at fixed D, the FRG fixed point at large N is located in the symmetric regime, but
shifts to the SSB regime at small N. Non-analyticity of critical exponents per se is not
an exceptionally exotic phenomenon. For instance, the coefficients of critical exponents in
the 4 — e expansion are generically non-analytic as a function of N (essentially because
one has to find the roots of polynomials to arrive at the fixed-point values of couplings).
The interesting feature in the present scenario is that the non-analyticity ‘percolates’
into jump discontinuities of 1/v at the corresponding critical values of D and N.

3.3.2 Quantitative estimates for D = 3

The numerical estimates for the physical dimension D = 2+1 from the different techniques
are displayed in Tab. 3.1 for N = 3 and in Tabs. 3.2-3.3 for larger values of N. Overall,
the three different approaches exhibit a fair agreement in their estimates. In order to
obtain final estimates for the three exponents from the combination of the three different
approaches, first the values of the different Padé approximant and regularization schemes
are averaged over, respectively, within a given approach, followed by an average over
the mean values of the three approaches. The spread of the three mean values yield a
rough estimate for the accuracy of our final result. This way, one arrives at the critical
exponents for the physically relevant case of N = 3 flavours of two-component Dirac
fermions in D = 2 + 1 space-time dimensions as

N=3: 1/v = 1.03(15), e = 0.42(7), ny = 0.180(10). (3.84)

Equation (3.84) represents the main quantitative result of this chapter. As there appears
to be no dangerously irrelevant coupling in the theory, we expect hyperscaling to be
satisfied. The critical exponents «, 3, v, and ¢ can then be obtained from v and 7, with
the help of the usual hyperscaling relations (Herbut 2007). For completeness, let us also
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Figure 3.9: Critical exponents of the Gross—Neveu SO(3) universality class as a function
of space-time dimension and flavour number from three-loop 4 — € expansion, second-order
1/N expansion (third-order for 7,), and FRG in LPA16’ using linear (lin) and sharp (sh)
regulators. [m/n] correspond to different Padé approximants. Left: Fixed flavour number
N = 3 of two-component fermions, variable spacetime dimension 2 < D < 4. Right: Fixed
spacetime dimension D = 3, varying flavour number.
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Table 3.1: Critical exponents for the Gross-Neveu-SO(3) universality class for N = 3 flavors
of two-component fermions in D = 2 + 1 space-time dimensions as relevant for the spin-
orbital model on the honeycomb lattice Seifert et al. (2020) from three-loop 4 — € expansion,
second-order 1/N expansion (third-order for 7,), and functional renormalization group.
[m/n] correspond to different Padé approximants. For the (4 — €)-expansion results (1/N-
expansion results), we have refrained from showing approximants that exhibit a singularity
in D€ (2,4) [in N € (0,0)], marked with “sing.”; those that do not exist are marked “n.-e.”.
A dash (—) signifies that the approximant either entails the computation of terms which
go beyond the scope of this work, or conversely does not exhaust all the terms computed
in the preceding sections. To obtain the FRG results in LPA’, we have treated the bosonic
effective potential using a Taylor expansion [i.e., LPAn/, with n < 16 (28) for the linear
(sharp) regulator; the error bars correspond to the uncertainty in extrapolating to n — oo
as well as a pseudospectral decomposition in terms of Chebyshev polynomials.

N=3 1/v g U

4 — € expansion naive 0.97516 0.39181 0.17234
[1/2] 0.94472 0.40086 0.16458
[2/1] sing. 0.36989 0.18622
[0/3] 1.09000 n.-e. n.-e.

1/N expansion naive 2.67318 0.49833 —
[1/1] 0.89397 0.46276 —
[0/2] sing. 0.51074 n.-e.
naive — — 0.22116
[1/2] — — 0.12337
[2/1] — — 0.22716
[0/3] — — n.-e.

FRG Taylor linear 1.1901(10) 0.38781(6) 0.15068(8)
sharp 1.209(4) 0.3434(5) 0.1966(6)

pseudospectral linear 1.18974 0.38781 0.15072

sharp 1.20465 0.34340 0.19649

work out the estimates for larger values of N, which may be relevant for models with
microscopic fermionic degrees of freedom,

N=6: 1/v =1.00(13), ng = 0.66(5), ny = 0.091(15), (3.85)
and

N=12: 1/v = 0.93(4), g = 0.83(4), np = 0.039(9). (3.86)

3.4 Summary and outlook

This chapter was devoted to investigating the critical behaviour of the (2 + 1)-dimensional
Gross—Neveu SO(3) universality class in terms of the universal critical exponents v, 74,
and 7, by means of different sophisticated field-theoretical techniques.

The chiral SO(3) theory is different from the previously studied Gross—Neveu-type
models, as it features a symmetry-breaking transition between two semimetallic phases,
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Table 3.2: Same as Table 3.1, but for NV = 6.

N=6 /v Mg g

4 — € expansion naive 0.86069 0.61414 0.09720
[1/2] 0.81514 0.60023 0.10216
[2/1] 0.96700 0.61484 0.12551
[0/3] 1.01291 n.-e. n.-e.

1/N expansion naive 1.28320 0.70572 —
[1/1] 0.91136 0.70076 —
[0/2] 1.26614 0.71005 n.-e.
naive — — 0.09275
[1/2] — — 0.08341
[2/1] — — 0.09317
[0/3] — — n.-e.

FRG Taylor linear 0.9294(6) 0.66947(6) 0.073170(17)
sharp 0.926(3) 0.6598(4) 0.08257(16)

pseudospectral linear 0.92961 0.66948 0.073165

sharp 0.93245 0.65980 0.082570

Table 3.3: Same as Table 3.1, but for V = 12. For the FRG results, we have omitted the
error bars corresponding to the uncertainty in the extrapolation of the Taylor expansion of
the effective potential, as they are smaller than 2 x 1075.

N =12 1/v Mo My
4 — € expansion naive 0.84820 0.80614 0.04095
[1/2] 0.82616 0.80659 0.05391
[2/1] 0.91427 0.80775 sing.
[0/3] 0.99001 n.-e. n.-e.
1/N expansion naive 1.00325 0.84199 —
[1/1] 0.93326 0.84134 —
[0/2] 0.98522 0.84280 n.-e.
naive — — 0.04054
[1/2] — — 0.03995
[2/1] — — 0.04056
[0/3] — — n.-e.
FRG Taylor linear 0.93660 0.85180 0.02992
sharp 0.93282 0.85700 0.02941
pseudospectral linear 0.93660 0.85180 0.02992
sharp 0.93282 0.85700 0.02941
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SR E

Figure 3.10: Box diagrams that can generate other 4-Fermi channels not transformable in
the Hubbard—Stratonovich sense into the Yukawa interaction considered in the present work.
Such contributions become important for D Y\ 2.

with only a partial gap opening in the ordered phase. This leads to values for the critical
exponents that strongly differ from those of the semimetal-to-insulator Gross—Neveu
Ising and Heisenberg transitions (Zerf et al. 2017). In particular, the order-parameter
anomalous dimension 7, in the Gross—Neveu SO(3) model is significantly smaller than
Ny in any of the other Yukawa models for the same number of fermion flavours. These
differences may be readily observable in numerical simulations of suitable lattice models.

An important aspect of the three-pronged approach employed in the present study
is that the spread between different methods surpasses by far the internal notion of
uncertainty, i.e., the regulator-dependence in FRG or the spread of different Padé
approximants in the series expansions. A major reason behind this is the fact that
the number of well-behaved Padé approximants can turn out to be small to the level
of approximation employed herein; the knowledge of higher-order terms may furnish
access to a ‘statistically significant’ number of well-behaved approximants and thereby
allow one to derive more confident ‘internal’ error estimates. Furthermore, experience
from other problems teaches that the regulator dependence of FRG results actually first
increases as a function of the truncation order of derivative expansion, before settling
down at sufficiently large orders. In this case, derivative expansion beyond LPA’ may
be indispensable to obtain reliable FRG estimates — both in terms of the precision of
final results as well as more realistic internal estimates for the uncertainty. Overall, the
findings presented here may thus also serve as a cautionary tale against relying solely
on ‘internal’ error estimates in regimes where the approximation cannot be proven to
converge rigorously, or is not guaranteed to be controlled in an asymptotic sense.

A very intriguing aspect of the present universality class is the fate of the critical
fixed point at low dimensions. At the present level of approximation, viz. LPA’, the FRG
fixed point was found to be unstable for D € (D, 1, Dc2) with D (N = 3) ~ 2.104 and
D1 (N = 3) ~ 2.366. This naturally raises several questions: First, one may ask whether
this phenomenology persists (possibly with a different D.(N)) to high orders of derivative
expansion. As an intermediate step, one may also look to reproduce this phenomenon in
a different but superuniversality-compliant cut-off scheme (in other words, one may ask
whether avoiding this fixed-point annihilation is equivalent to violating super-universality
inD=2+¢).

A further interesting aspect that has been neglected entirely in the present analysis
is the influence of competing channels. The lower the spacetime dimension, the less
canonically irrelevant 4-Fermi operators of the form (1)M1)? become. At the level of
Yukawa vertices, an interaction of the form ¢ ;1M1 can only renormalize itself; a different
Yukawa vertex ¢ppipM'yp (M # M') does not get generated by quantum corrections
if absent at the classical level. At the 4-Fermi level, however, box diagrams like the
one shown in Fig. 3.10 can generate not only (¢ M1))? (if the spinor-space structure of
the Yukawa vertex is M) but also — to first order in perturbation theory — terms like
(Y M~*#4))%. These in turn can generate further 4-Fermi interactions not present in the
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original action. The competition of multiple 4-Fermi channels has been shown to yield
very rich phenomenology in other settings (cf., e.g., Szabo & Roy 2021). An extension
of the present FRG calculation to include a Fierz-complete 4-Fermi basis for the chiral
SO(3) system would hence be an excellent direction for future research. The fact that
the 4-Fermi interaction [¢ (13 ® La)¥]? is not closed unter renormalization would
also necessitate the inclusion of higher-spin (in the sense of the D-dimensional rotation
group) fields in the large-N formalism when going beyond the present order in 1/N,
which appears to be an interesting technical challenge. In terms of the loop expansion, a
complementary 2 + ¢ expansion®”) may be instructive. In fact, preliminary investigations
by the present author have shown that close to certain critical flavour numbers, the
putative non-perturbative collision partner may fall within the weak-coupling regime.
This may allow one to disconnect the D = 4 — ¢ fixed point from the D = 2 + € one in a
perturbatively controlled manner.

2D Recall that this is simply a loop expansion in the 4-Fermi theory, since that is the perturbatively
renormalizable version of the theory at D = 2



Chapter 4

Luttinger Fermions in Two
Spatial Dimensions

4.1 Introduction

The critical exponents of (2 4+ 1)-dimensional Dirac fermions are challenging to predict
with high precision, at least for practically relevant flavour numbers. We saw explicitly
in Chap. 3,9 that obtaining full consensus between the three complementary theoretical
approaches we employed — the functional renormalization group in the improved local
potential approximation, the 4 —e expansion to three-loop order, and the 1/N expansion in
next-to-next leading order (NNLO) — remains a challenge. It is difficult to obtain reliable
‘internal’ error bounds for the individual methods (at least at the level of sophistication
that is currently the state of the art), and as such, it is not possible to judge which
method is closer to the ultimate correct value.? An equally weighted — in the spirit
of maximum ignorance — average over the three methods allows one to salvage some
best-guess estimates with comparatively high-confidence error bars, but this ultimately
leads to uncertainties that are quite large. On the numerical side, the presence of gapless
fermionic degrees of freedom means the lattice sizes currently attainable in, e.g., quantum
Monte Carlo simulations, are much smaller than in purely bosonic systems. This again
increases the uncertainty in extrapolations to the thermodynamic limit.

In this chapter, we shall (re-)visit quantum criticality in two-dimensional® Luttinger
fermions, and point out that it can serve as a welcome counterexample to the above
difficulties. Luttinger fermions are gapless fermions with a quadratic low-energy dispersion,

The notion of quadratically dispersing particles per se is not entirely unknown; in ‘Nature’,
they abound in the limit of Galilean mechanics, where the kinetic energy of an object with
momentum p is given by e(p) = p?/2m. The crucial distinction of Luttinger fermions is
the gaplessness of the spectrum. When deriving the non-relativistic limit of a massive

U Although we specifically studied only the SO(3) flavour symmetry, this is true for all flavour symmetry
groups.

2 This is not to say that there are no internal error estimates for the individual methods at all. However,
they are not rigorous upper bounds; taking any of them at face value would (probably erroneously)
invalidate the other two methods.

3) Here and throughout the remainder of this chapter, ‘dimension’ by itself shall refer to spatial dimension
by default. This is because the system we study from hereon in has no relativistic symmetry.

69
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relativistic particle, the actual dispersion — including both the particle and anti-particle
‘branches’ — reads as

non-rel B 2 1 p262 O 4/ 4
€4 (p) xmc + 2m204 + (p /C ) )

where the speed of light ¢ has been reinstored temporarily for illustration. Importantly,
there is an energy gap the size of the rest energy g = mc?. The fact that there is no
such mass gap in Luttinger fermions means they cannot arise directly in ‘Nature’ from
elementary particles, but only emerge as quasiparticles of some many-body ground state.
The usual avenue is by a quadratic crossing of two bands, such as in Bernal-stacked
bilayer graphene to good approximation [cf., e.g., Cvetkovic, Throckmorton & Vafek
(2012) and references therein|, as well as in 3D semimetals such as grey tin and mercury
telluride [cf., e.g., Witczak-Krempa et al. (2014) for a review]; we shall revisit the issue
of explicit microscopic (lattice) realizations of the pertinent field theory later in this
chapter.

The fact that the two bands cross quadratically means the density of states at the
Fermi energy is significantly enhanced; using a simple dimensional argument, one can
estimate p(¢) = const. +O(|e — ep|) for the density of states g at energies e close to
the Fermi level ep. A constant density of states near the Fermi surface is a feature of
two-dimensional metals. As such, it is natural to expect such a Luttinger semimetal to
be unstable with respect to spontaneous symmetry breaking at infinitesimal interactions.
This nalve picture survives a more rigorous RG calculation (Sun et al. 2009).

Dimensional analysis (i.e., GauBlian power counting) can also be used to obtain an
intuitive quantum field theoretic picture. The d-dimensional spatial volume element has
inverse length dimension —d per definitionem, i.e., [d%z] = —d. The dimension of the
Euclidean time line element is [d7] = —z, the (negative) dynamical critical exponent.
Assuming a canonical form for the temporal part of the kinetic term,

Sp o JdT A4z ioy, (4.1)

one can deduce? [¢)] = d/2. Consider now a 4-Fermi (in other words, generalized
‘density-density’) interaction of the form

Sint O fg f dr ddz (T Myp)? (4.2)

with an unspecified matrix M acting in combined spinor-flavour space, and corresponding
coupling g. Requiring the action be dimensionless then yields [g] + 4[¢)] = d + z, whence
using [¢] = d/2 one obtains

[g] =2z —d. (4.3)

We thus see that if d = z, the 4-Fermi interaction becomes dimensionless (i.e., canonically
marginal). Specializing to Luttinger fermions (z = 2), this occurs at d = 2 spatial
dimensions. It is usually referred to as the lower critical dimension dioy = diow(2),
which depends only on the dynamical critical exponent.?) Hence, the leading term of its

4 To derive this explicitly, use the fact that the action must be dimensionless, [S] = 0, and that
derivatives scale opposite to line elements, [0-] = —[d7] = 2

%) The dynamical critical exponent at the lower critical dimension is not renormalized to one-loop order
due to kinematic reasons.
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B-function is®

By =Ag>+ -, (4.4)

where A a numerical constant. Unless it vanishes by accident or by dint of symmetry, we
may then change variables to g = Ag, with S-function 35 = g + - - . Integrating out the
flow to scales k < A, one hence finds

1
~ 1/g(A) —In(A/k)

If the flow is initialized at a negative g(A) < 0, one obtains g(k) — 0 for & — 0. The
ground state is thus given by the non-interacting semimetal. On the other hand, for a
positive initial condition §(A) > 0, §(k) hits a pole at a critical scale kggg = Ae™1/9(A)
signalizing the onset of spontaneous symmetry breaking (SSB). Both scenarios incidentally
have counterparts in the Standard Model (in D = 4 spacetime dimensions) with the
coupling g roughly corresponding to the square of the gauge coupling, g = €2 > 0. As
such, the sign of the initial condition is always fixed: sgn g(A) = sgn A. The case A > 0
occurs, for instance, in the SU(3) gauge sector — i.e., quantum chromodynamics (QCD).
At low energies, the elementary fermions, called quarks, do not occur freely, but only in
bound states; the simplest example of them are quark-antiquark states called mesons.
The case A < 0 is realized in the U(1) gauge sector, quantum electrodynamics. The
infrared behaviour of QED is known to be unspectacular: (quasi-) free electrons abound
in Nature at low energies; the gauge coupling is screened by vacuum polarization, and
thus the electron-electron repulsion (or equivalently electron-positron attraction) becomes
weaker at lower energies.

In the case of 4-Fermi interactions in Luttinger semimetals, both signs of g are allowed;
one of the allowed signs will always exhibit a low-energy instability. The sign of g for
which this occurs will essentially decide whether the fermions in the ordered state will
be bound into (generalized) excitons or Cooper pairs.”) The fact that the instability
is triggered at infinitesimal interaction means the transition is governed by a Gauflian
fixed point, g, = 0. This fixed point, however, is not critical — strictly speaking, it is
trans-critical (i.e., marginally relevant for ¢ — 0° and marginally irrelevant for g — 075,
with s € {+, —} fixed by internal details of the theory). As a theoretical consequence, some
critical exponents are rendered ill-defined (of the form 0, oo, or ‘0-o0’). One of the aims of
this chapter is to ‘make sense’ of these pathologies. In case of vanishing or infinite critical
exponents, this means working out the leading (essential) singularity of the observable;
in case of ‘0 - 00, it entails deriving the power law exponent. Rather interestingly, it
turns out that both the essential singularity as well as the formally indeterminate power
law significantly deviate from the corresponding canonical or mean-field prediction, in
spite of the Gauflian nature of the fixed point. For the former, we show this by explicit
computation of the (Callan—Symanzik-improved) order-parameter effective potential
directly in d = 2 dimensions. For the latter (which concerns the so-called susceptibility
exponent ), we shall see via an excursion to d = 2 + € spatial dimensions that this
value is one-loop exact. The key conceptual ingredient behind this is the fact that the
order parameter, being bilinear in the fermion fields, is a composite operator. As a

g(k) (4.5)

6 We restrict to the case where there is only one coupling g, since this will mostly be sufficient for our
purposes in this chapter. A more general case appears in Chap. 6.

™) It turns out that in the case we will be interested in, the instability is excitonic. However, most of our
calculation would go through for a superconducting instability.
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by-product of our RG analysis, we revisit the concept of reformulating the theory in a
way such that the order parameter is promoted to an elementary field by means of a
(scale-dependent) Hubbard-Stratonovich transformation (i.e., trading the one-particle
irreducible 4-Fermi vertex for a reducible ‘meson’ exchange process). As pointed out
for relativistic 4-Fermi theories (specifically, in the setting of Gross—Neveu-Ising and
—Heisenberg quantum criticality) by Janssen & Herbut (2014), the physically correct point-
like 4-Fermi limit of meson exchange arises dynamically at the lower critical dimension
only if the regularization scheme is chosen judiciously enough. We investigate to what
extent this holds in the present non-relativistic setting of Luttinger fermions.

Throughout, we shall focus on the ‘maximally minimal’ theory comprising two-
component spinors. The smallness of the spinor space dimension, allied with the Grass-
mann nature of fermionic fields, means there is precisely one Fierz-independent 4-Fermi
interaction channel, and ensures the calculations remain tractable at all stages. We remark
here that the corresponding relativistic version of the problem in d = djow(z = 1) = 1 is
degenerate in some sense: the so-called Gross—Neveu theory in D = 2 spacetime dimen-
sions with 2-component spinors is equivalent to the Thirring model, which is integrable
with infinitely many conserved quantities (among other things, this makes the S-function
of the 4-Fermi coupling vanish to all loop orders).

The material in this chapter is organized as follows: In Sec. 4.2, we review the
construction of the Luttinger fermion from symmetry considerations. Subsequently, we
derive the g-functions in both 4-Fermi and Yukawa formulations in Sec. 4.3. The fixed
points of the theory at d > 2 and their collision for d — 2 are elucidated in Sec. 4.4.
We shall then demonstrate in Sec. 4.5 that some non-mean field behaviour survives
this collision, and that the fixed-point collision actually renders the non-mean field
exponent one-loop exact. Sec. 4.6 is devoted to an explicit microscopic realization of
two-dimensional Luttinger semimetals, namely on a kagome lattice. The chapter closes
with a summary and outlook in Sec. 4.7.

4.2 Action from top-down construction

In this section, we review the ‘top-down’ construction of Luttinger fermions, following
Janssen & Herbut (2015). Assume a canonical non-interacting action Sy = {drd?zLy
with Lagrangian

Lo =T [0r + Ho(—i0)] . (4.6)

The function Ho(p) is precisely what is usually called the single-particle Hamiltonian.
Choose as ansatz for Hy the form

Ho(p) = Tijpip; (4.7)

with implicit summation over ¢,j = 1,...,d. A rotationally invariant and particle-hole
symmetric spectrum® 4 (p) = +p? can be achieved by requiring HZ = p*14, with dy
the dimension of the ‘spinor’ space. This in turn can be shown to lead to the following
conditions for the algebra of the entries of (Tg):

{Tij, T} =0 (i,5) # (k1) ni# (4.8)

8 An overall factor is needed to ensure the Hamiltonian has units of energy. This factor is usually denoted
1/2m™*, and m™ is referred to as the ‘effective band mass’. In the RG approach, this factor can be
absorbed into field (re-)normalization.
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ATyTy + {Tww, Tu} =2 a#b (4.9)
Tii =0 (4.10)

(no implicit summation over underlined indices). To satisfy these conditions simultaneously,
one requires at least 1(d + 2)(d — 1) mutually anticommuting matrices.

Specializing to d = 2, the minimal spinor dimension is thus ds = 2, and the 7;; can
be represented using Pauli matrices:

(Tij) = <UZ i ) (4.11)

Ho(p) = da(p) 0a- (4.12)

The index a = 1,2 labels?) spatial directions similar to i = 1,...,d above. However, we
specifically use letters from the beginning of the Latin alphabet to remind ourselves
that objects carrying an index a transforms as rank-2 tensors under spatial rotations.
The d,(p) are the £ = 2 spherical harmonics, (dq(p)) = (pi — pi, 2pxpy). Under a spatial
rotation p; — (Rg)ijp; with Ry € O(2), it follows from explicit computation'?) that
do(p) — (R2¢)apps- The fact that the form factor ‘rotates twice as fast’ as the Dirac
Hamiltonian p;o; can be shown to imply that the Berry flux of a quadratic band touching
(QBT) point is twice that of a Dirac point. Since Berry flux is only conserved modulo
27, the usual fermion-doubling restriction does not apply, and a two-dimensional spinor
space is sufficient.

The fact that we have a very small spinor space greatly simplifies the structure of
4-Fermi interactions: the only non-vanishing quartic in Grassmann fields is given by

Y3 1o

with ¢ = (11,42)" and ‘star’ denoting the Grassmann conjugate. Thus, any 4-Fermi
term (wTM ¥)? with M € €?*2 can be expressed in the above form — a particularly
simple but also severe example of a Fierz identity. Amongst the many equivalent ways of
writing the 4-Fermi interaction, one form is particularly well-suited, especially in view of,
e.g., a subsequent rewriting as a Yukawa interaction using the Hubbard—Stratonovich
transformation: the (¢T0y¢)2 channel. This is because it is the only channel where a
vacuum expectation value (vev) of the corresponding bilinear, <1N0yz/1> # 0, leads to
a full gap in the spectrum,'”) and hence constitutes the leading instability (Sun et al.
2009). Thus, we write the interacting part of the action as Siy = Sdedeint with

Lini = —%(Mayw)z. (4.13)

9 Note that this means we have a cyclically permuted sequence of Pauli matrices, oo = (02,02,0y). This
representation has the advantage that time reversal is represented simply by complex conjugation. At
the level of quantum field theory, this will be neither particularly important nor useful. However, it
will play a prominent role when relating the quantum field theory to the microscopic lattice model
later in Sec. 4.6.

19)This is easiest to see in polar coordinates p = p(cos @, sin ). In these variables, Ry € O(2) acts as ¢ —
@ + 0 while p is invariant. The assertion follows from the observation that (da(p)) = p?(cos 2, sin 2¢).

By contrast, a vev (¢)To,0) (a = z,z) splits the QBT into two Dirac points. The axis joining the
two Dirac points picks out an axis in momentum space — the spontaneously broken symmetry is thus
spatial rotational invariance. We shall revisit this form of spontaneous symmetry breaking in Chap. 6.
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The full Lagrangian of the Luttinger 4-Fermi theory is then given by Li4r = Lo + Lint.

By means of a Hubbard—Stratonovich transformation, one can always trade — at least
in principle — a 4-Fermi theory for a Yukawa theory. The resulting Lagrangian, which we
call the Luttinger—Yukawa Lagrangian L1y, reads as

Lry = Ly + L (4.14)
1
0=Lo+ 4 (=02/c* —0° +71) ¢ (4.15)
bt = —hovloyy. (4.16)
The equivalence between Lr4r and L1y requires the identification
h2
= 4.1
9= (4.17)

The field ¢ can be related to the fermion bilinear to which it couples via the Yukawa
vertex L, using the equations of motion §.5/0¢ = 0:

Wloy =20 (4.18)

Although the kinetic terms of ¢ do not appear directly upon Hubbard—Stratonovich
transformation, they would be generated under the RG flow; we may hence just as well
include them in the action from the outset. The ‘propagation velocity’ c of the ¢-field is
necessary to account for the broken Lorentz invariance in the free fermionic part L.

Let us now work out the canonical scaling dimensions of the new variables. Since
[0%] = 2, the canonical dimensions of r and ¢ as well as the ¢-field are fixed due to the
presence of the Laplacian term in Lj), to wit:

[r] =2, (4.19)
[c] =2—-1, (4.20)
[¢] = (d+2z—2)/2. (4.21)
This then implies for the Yukawa interaction
[h?] =6 —d— 2. (4.22)

4.3 Renormalization

The diagrams needed to evaluate the pertinent S-functions and anomalous dimensions
are shown in Fig. 4.1. From a Yukawa perspective, the only restriction is that diagrams
should be one-particle irreducible (1PI) with respect to both fermion and boson lines.
For the renormalization of the 4-Fermi version of the theory, the ‘diagrammar’ has to
be modified as follows: (i) diagrams need to be 1PI only with respect to fermion lines —
¢-reducible graphs are perfectly admissible; (ii) there should be no external ¢-legs; and
(iii) internal ¢-lines are replaced by 1/r.'2) Thus, diagrams 4.1(a)—(e) renormalize Ly,
whilst (d)—(c”) are responsible for the renormalization of Ly p.'%

12)Note that the ¢-field still carries 3-momentum (as far as, e.g., momentum conservation at vertices
is concerned), even though the prescription is tantamount to evaluating the propagator at vanishing
3-momentum. In other words, the dynamics of the ¢-field is ‘switched off’ by hand.

%) Note that the diagrams Fig. 4.1(d,e) have four fermion legs, i.e., it does not correspond to a term
already present in Lry. As we shall see, it will be absorbed by a non-multiplicative renormalization of

4 The explicit one-loop S-function of the 4-Fermi coupling g was computed previously in fixed dimension
d = 2 by Sun et al. (2009) as B, = g*>/(4n). The reference is unclear on the regularization scheme
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Figure 4.1: Feynman diagrams that renormalize the theory of Luttinger fermions at one-loop
order. The bottom row contains ¢-reducible diagrams that are only admissible in the 4-Fermi
formulation, whilst the top row contains two diagrams with external ¢-legs, which are only
allowed in the Yukawa version of the theory. The dashed line stands for the free boson
propagator (w?/c? + p? + r)~! in the Yukawa formulation, and reduces simply to 1/r in the
4-Fermi formulation.

Let us first write down the general expression for the diagrams, whilst remaining
agnostic as to the regularization and renormalization scheme to be used. We find (with
Go and Dy the free fermion and boson propagators respectively):

) dw’dd /

Fig. 4.1(a) = -1 f ﬁ oy Go(w',p') oy Do(w — w',p — p') (4.23)
. do.)’dd /

Fig. 4.1(b) = h? J ﬁ tr[oy Go(w',p') 0y Go(w — W', p — P')] (4.24)
. dw’dd /

Fig. 4.1(c) = —h* j ﬁ oy Go(w', p') oy Go(w', p') oy Do(W', P') (4.25)

) dw’dd /
Fig. 4.1(d,e) = —h* J ﬁ oy Go(w',p') oy Do(w', p')

® Oy [GO(U/, p/) + GO(_wla _p,)] Oy DO(w,a p/) (426)

) dw’ddp'
Fig. 4.1(f) = *gJ‘(QW)dHtr[ay Go(w',p')] oy (4.27)
Fig. 4.1(b/) = ¢?0, ® 0, x [Fig. 4.1(b)]/n* (4.28)
Fig. 4.1(¢) = g°0, ® [Fig. 4.1(c)] py—1/r/h’* = Fig. 4.1(c") (4.29)

In the expressions for Fig. 4.1(d,e) above, the replacement Dy — 1/r when computing
the renormalization constants in the 4-Fermi theory is implicit; the replacement is noted
explicitly from the outset for the ¢-reducible diagrams. In said diagrams, we have also
recombined h?/r — g; the fact that this is always possible may also be seen as a first
sanity check. The vertex renormalization condition is usually formulated at vanishing
external 3-momentum. That we have done so from the outset requires further comment.
In general, the momentum dependence of proper vertex functions will be non-analytic;
as such, Taylor expansion in external 3-momenta is not mathematically well-defined.
However, since we are working in d = 2 + € > 2, the loop integrals will be IR-finite and

used to compute the quoted S-function. However, since g is a dimensionless coupling, the coefficient
1/(4m) is expected to be universal at one-loop order. Primarily for reasons of academic curiosity, we
shall arrive at the same [S-function using a family of different regularization schemes to confirm this
expected universality does hold.
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as such continuous in the limit of vanishing external 3-momenta. Thus, it is sufficient for
our purposes.

4.3.1 4-Fermi formulation

We begin with the 4-Fermi version of the theory, for the following reason: since the
interaction vertex g is dimensionless (in other words, canonically marginal) at d = 2, the
coefficient(s) of the  function is expected to be scheme-independent. Let us choose a
‘field-theoretic’ scheme, i.e., we integrate over all loop 3-momenta (modulo suppression of
certain parts of momentum space due to regularization). Promoting all quantities in Lry
to bare ones — i.e., g — Z,g, (Y, 1) — 4/Z¢Zw(¢,1/ﬁ),d7 — Z5Ydr, and 0; — Z,0; —
and putting Z = 1 + §Z, we arrive at the counter-term Lagrangian

Liar, ot = VT [(0Z0 + 62y) 0r + 6 Zyda(—i0) 00 ¥
1 2
-3 (g +290Zy + 396 Z.,) (vToyy)”, (4.30)
with dg := §Z,g as per convention. Since the fermionic self-energy diagrams, Figs. 4.1(a)
and (f), are tadpole graphs if ¢ is not a dynamical field, we have

87y = 624 = 0. (4.31)

To find dg, we need to evaluate Figs. 4.1(d,e,b’,¢’,¢"). For simplicity, we define the
analytical continuation of the loop integrals to d # 2 by performing the spinor algebra
and angular integration at fixed d = 2 and perform only the radial integration in d
dimensions.

When regularizing the loop integrals, we leave the frequency integration untouched.
The result is then essentially fixed by dimensional analysis; any pertinent one-loop 4-Fermi
diagram G comes down to a momentum integral of the form

ag g> d
G_ 999 |p|

2m)e | plie (4.32)

Here, ag is a diagram-dependent but regularization-independent numerical pre-factor
(consisting of factors from symmetry, spinor algebra, and possible negative signs due to
closed fermion loops). The p-dependence of the integrand is constrained by rotational
invariance to a |p|-dependence; it is the only dimensionful constant that can come out of
the frequency integration. The power of the denominator is fixed by comparing units:
since g has units of (length)¢, G which renormalizes it should too.

The integral is UV-divergent, with superficial degree of divergence e. We regularize it
by multiplying the integral measure by a function f, to wit:

[l = ["apl sl (4.33)
reg. 0

A change in the choice of f corresponds to a different choice of regularization. Substituting
u = |p|/A, we now arrive at

G 16 gN JOO duf(u) _ agg’Ac Cey (4.34)
Som Jy uime T aami ¢ |

The regularization dependence now resides in the constant C y. Let us quantify this
more precisely. For the function f, we impose that (i) f(u) = o(u™¢) for u — o0, and (ii)
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f(u) = 1 for u — 0. Property (i) is a necessary consequence of the fact that f should
improve the UV-convergence of integrals. Property (ii) expresses that the IR-behaviour
of a given loop integral is unchanged by the UV regularization. Both properties are
obviously physically motivated. We can now estimate C y using integration by parts:

o0 0
Cof = f du f(u) ews™ = [ (w)u]? —j du f(u) (4.35)
0 0

The first term vanishes for every € at the upper limit due to property (i) and at the
lower limit due to property (ii). The second term hence is the only one that survives, and
yields'® in the limit € — 0: Co,f = f(0) = 1. Thus, the regularization dependence drops
out entirely in the limit € — 0, and the S-function becomes one-loop universal as expected
of a canonically marginal coupling. Note that when inserting the renormalization constant
into the S-function, the 1/e-pole cancels against the factor of € coming from the scale
derivative, to wit: dA¢/dIn A = eA°. A pedagogically interesting point is that working
at finite (but small) e ensured the loop integral only had one kind of divergence. In the
present setting, the parameter € > 0 increases the spatial dimension, and as such leads to
more divergent UV behaviour. However, IR divergences are cured. The regularization
thus needs to introduce only one scale.!® The absence of other dimensionful parameters
in the theory then ensures that the loop integrands have a very obvious structure fixed
entirely by dimensional analysis. A similar simplification will be exploited in Chap. 6,
but there, € will serve to reduce the spacetime dimension. The role of UV and IR will
then be reversed, and the renormalization scale will enter through the need to regularize
the IR behaviour, with the UV-finiteness guaranteed a priori.

Summing up the graph-dependent factors ag and introducing the dimensionless
4-Fermi coupling C, yA°g/(27)¢ — g, the f-function in d = 2 + € dimensions reads as

gZ

4.3.2 Yukawa formulation

The renormalization in the Yukawa case is more involved. For one thing, it contains
more dimensionful parameters, which means the final result is no longer completely
determined by dimensional analysis. Furthermore, diagrams can have widely varying
degrees of divergence, and they can occur both in the UV and the IR. To treat them on
a level footing within a conceptually clean framework, we employ a ‘mode-decimation’ or
‘Wilsonian’ version of RG. At one-loop, it is sufficient to do so again at the level of the
loop integration measure, similar to how we regularized the 4-Fermi loop integrals in a
‘field-theoretic’ manner. We thus set

wdp d
J éﬂ-ctl-&-l ’ J J d’p \p\/k lF,lB) (A — ‘p‘) .. (4_37)
reg.

The second factor, the Heaviside step function, simply imposes a UV cut-off. The factor
F' is to be chosen such that it suppresses IR modes below the RG scale k. We allow it to
depend on the number of internal fermionic and bosonic lines I, Ig (essentially, so that

15)The derivative may need to be interpreted in a weak sense, e.g., if f(u) = (1 —u) (commonly referred
to as ‘sharp cut-off’).

16>By contrast, at critical dimensions — both upper and lower — both UV and IR divergences are present,
and one needs at least two dimensionful parameters.
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it can mimick the effect of a momentum-dependent mass on an operative level). Note
that the the integration over Matsubara frequencies is left unrestricted, as is common in
non-relativistic field theories. To complete the specification of the RG scheme, we need to
define the renormalization constants. We define the renormalized fields and couplings as

Tu[®; X;7] ~ S[Z;,/zZ}J/Q(I); X Z;lr] , (4.38)

i.e., the 1PI effective action computed with unrenormalized fields & = ((ﬁ,zb,zﬂ) and
couplings X = (h,r,c) as input and with all fluctuation modes suppressed below the
IR scale k should be equivalent to the classical action we started with, but evaluated
at suitably renormalized fields and couplings. Note that the time coordinate also needs
renormalization, due to the non-relativistic dispersion relation contained in the classical
action; in the absence of Lorentz invariance, the classical value of the dynamical critical
exponent is not protected against quantum corrections. The scheme outlined above
essentially amounts to a ‘quenched’ approximation to one-loop exact RG schemes such
as that of Ellwanger—Morris—Wetterich — instead of self-consistently inserting an ansatz
for the ‘average effective action’, we instead feed in the classical action S and iterate
once (see Sec. 2.2 for details); to first order in interactions, this is equivalent to the
‘usual’ loop expansion. Note also that throughout, the dependence on the UV cut-off A is
notationally suppressed. This is justified, because for typical regulators, the evolution
equation is local in k£ and the A-dependence drops out.

In Eq. (4.38) above, the symbol ‘~’ is there to remind us that the average effective
action I'y, should be expanded in fields and their derivatives, and only those terms should
be kept which are already present in the classical action S. A subtlety arises in the form
of the two diagrams Figs. 4.1(d) and (e). These are 1PI in both ¢ and ¢ fields, and
are furthermore canonically marginal; as such, they cannot be discarded outright. Their
contribution can, however, be absorbed as an additional contribution to the Yukawa
vertex by performing a Hubbard—Stratonovich transformation on the average effective
action I'y (Janssen & Herbut 2017). In the context of mode decimation-inspired schemes,
this is often called ‘dynamical bosonization’, since it corresponds to performing the
transformation after the mode decimation step (Gies & Wetterich 2002; Floerchinger
& Wetterich 2009). In field-theoretic language, it corresponds to a non-multiplicative
renormalization of the ¢ field, as pointed out by Luperini & Rossi (1991) in the context
of the (1 + 1)-dimensional Gross-Neveu model. If we denote by dgpox 1 the result of the
‘box diagrams’ 4.1(d) and (e), then the correction to the Yukawa vertex can be shown to
amount to!”)

r
2h

Evaluating the diagrams allows us to read off the pertinent renormalization constants,
and thence the S-functions as fx = —kdp X}, for the couplings X = (h,r,c) as well as the
anomalous dimensions 7¢ = —kdg In Zg for the fields ® = (¢, 1), 4"). Finally, the running
dynamical critical exponent is given by z = 2 — 1y, + kdi In Z,,. In general, it is expedient
to evaluate the scale derivative before the loop integration. On an operative level, this
simply amounts to evaluating the diagrams, but with the substitution

hk — hk + 5gb0x7k. (4.39)

Flpl/k: b, ) — PLF (pl s 1, 1) (4.40)

1We are working within one-loop approximation; since dgnox,r is formally already of one-loop order, the
prefactor r/2h contains no quantum corrections.
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in the integral measure, with ‘prime’ denoting differentiating with respect to the first
argument.
For our main calculations, we use the ‘sharp’ regularization

Fa(Ipl/k; Iy, ) = O(|p|/k — 1); (4.41)

we shall later also study the use of a regulator that suppresses the IR modes more
gradually, viz.,

Fiin(|pl/k3 U, 18) = O(lpl/k — 1) + ©(1 — |pl/k) (|p|*/%?)

This is meant to mimic linear regulators in FRG, which fulfil certain optimality criteria
for RG flow in bosonic theories (Litim 2001). However, there are indications that it may
be incompatible with a nearly point-like 4-Fermi vertex, which is the case close to the
lower critical dimension (cf., e.g., Janssen & Herbut 2014, or Chap. 3 of this thesis). For
the sharp regulator, the derivative is given by

Fu(Ipl/k; e, 18) = 0(lpl/k — 1). (4.43)

In this case, all contributions to RG flow essentially come from a thin shell around the
RG scale k. For this reason, it is common to refer to a scheme that uses a sharp cut-off as
an IR regulator ‘momentum-shell RG’ (Herbut 2007; Sachdev 2010a). We now explicitly
evaluate the Feynman diagrams 4.1(a)—(e) in sharp cut-off regularization:

lF/2+lB (4 42)

—koy [Fig. 4.1(a)]

h2 [ 2miw k?/c? n mda(p) 0a ](4.44)

T EARmE | (4R = k2)2)2 (14 1/ — K22y
2 m
—kdy, [Fig. 4.1(b)] = W (272&;2 +p? — m:?) (4.45)
. h3m oy

ko [Fig. 4.1(0)] = 15— LRI (e yeTE: (4.46)

. . htm oy Q@ oy

_k;ak; [Flg. 4.1((1,6)] = ]{:67d(271')d (1 N T/k2)3/2 (1 N T/k‘2 _ ]{,‘2/62)3
X [ (1 + r/k:2)5/2 — 5k%/c? (1 + r/k2)3/2

+5k3/c3 (1+ r/kz) - k5/c5]

(4.47)

This now allows one to read off the - and n-functions as well as the running dynamical
critical exponent. Upon introducing dimensionless couplings as r/k? s r, k?/c? — 1/c?
and (27) "k~ (*9h% — h? with € = d — 2 as usual, these take the form:

h? 1 2¢2
=2—- — — 4.4
i dr | (1+r—c2)3 (1+r—02)2] (4.48)
h2
- 4.4
Mo = o (4.49)
h? 1
_» 4.50
" dr (14+7r—c2)3 ( )
h2
Br=(2-ng)r— 5= (4.51)

2
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By = (—2— )l+’ﬁ (4.52)
1/e? = )2 T 3y '
Rt 2
=(2—€e—ng—2ny) h? — —
Prz = (2= e =mo = 2mu) " = o\ S A i
Bt 1o € S e o O € B ) e (4.53)

(14+7)32(1 4+ 7 —c2)3

4.4 Fixed-point analysis

We begin again with the 4-Fermi version of the theory. The only fixed-point condition
then is that the right-hand side of Eq. (4.36) vanish. Apart from the Gaufiian solution
g«.1.sMm = 0, there is an interacting one at g« qcp = 4me. The labelling of the fixed points
anticipate their physical content. Since ﬁ; (9x,1.sM) = —€ < 0, the associated fixed point
is IR~attractive, and hence represents a stable phase of matter. Since all symmetries
remain intact, it a semimetal — the Luttinger semimetal (LSM). On the other hand, we
have B;(g*chp) = € > (. The interacting fixed point is hence repulsive — since the theory
space has no other directions, it is a quantum critical point (QCP). Furthermore, we can
read off v = 1/e for the quantum phase transition from the LSM to the SSB-induced
insulator. We also note that, for kinematic reasons, there is no correction at one-loop to
the dynamical critical exponent and the fermion anomalous dimension, 7y, 2 —2 = O(e?).

The Luttinger—Yukawa theory requires to solve three equations, viz. for S, By
and (2 [Egs. (4.51), (4.52) and (4.53) respectively]. Obviously, there is again a Gaufliian
fixed point, hy = ¢, = 7 = 0. It is, however, not the LSM fixed point identified in
the 4-Fermi theory, since it has too many IR-relevant directions. When searching for
non-interacting fixed points, the equations (especially ;2 = 0) contain complicated non-
linear combinations of the unknown quantities. Let us make the simplifying assumption
that r, » 1. It can be motivated as follows: From a formal point of view, the boson
anomalous dimension 74 — 2 for ¢ — 0.'® Since 1, ~ h? from Eq. (4.49), this implies
h? = O(1) (e — 0) for both LSM and QCP. Now k2 and r, are both dimensionful, and as
such their values depend on details of the regularization. However, their ratio (h?/r), is
dimensionless, and should hence be scheme-independent at one-loop. Furthermore, from
the Hubbard—Stratonovich transformation, we know it is equal to g, and must therefore
vanish for ¢ — 0, as demonstrated in the 4-Fermi analysis above. Hence, r, — oo for
€ — 0, and we automatically enter the large-mass limit provided ¢ is small enough.

Let us now convert the heuristic picture above into a serious calculation. Expanding
B2 in powers of 1/r, we obtain!?

ht h*

Bp2 = (2 —€)h* — yly O(1/r?). (4.54)

For convenience, we also rewrite using chain rule the S-function of r in terms of 1/r as

follows:
R2\1 hR?1
=—(2—— ) -4+ —=. 4.
By < 477) r * 27 12 (4.55)

) This itself follows from dimensional analysis. Due to 4-Fermi GauBiian power counting, one has [¢] = 1
and thus on one hand (¢(0, z)#(0,y)) ~ |x — y|* (since ¢ is bilinear in ). On the other hand, this
exponent is equal to d + z — 2 + 74 per definitionem. Hence, ny = 2, q.e.d.

9 Note that 8, and B1/c2 are independent of r and do not require further expansion.
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As a first sanity check, we note using the product rule that

h2 1 (Y
th/r = % - hzﬁl/r = _67 + — (> s (456)

AT \ r

in agreement with the calculation in the 4-Fermi theory. For € > 0, we can now read off
two non-trivial fixed points

1 1

LSM : ('I"*,LSM, 1/C>2k,LSM7 hi,LSM) = (OO, Z - TGE, 47'('(2 - €)> (457)
) ) 11 1

QCP : (rv,qcp, /¢ qeps hi.qep) = -1 8¢ 8m(1—€) (4.58)

We have again chosen the labelling of the fixed points in anticipation of their corre-
spondence to those found in the 4-Fermi theory above. The relation is easiest to check
by studying the number of relevant directions. To do so, we form the stability matrix
(OxBx)| X, X= (14, 1/c2 02 the number of positive eigenvalues is then precisely the number

of relevant directions. For the LSM, we find only negative eigenvalues, thus verifying its
IR-stability. For the QCP, on the other hand, there is precisely only positive eigenvalue,
A = e+ O(€?). Hence, the correlation length exponent is v = 1/\; = 1/e + O(e%). Note
that one-loop universality for dimensionless quantitites is maintained, as we can now check
explicitly: First, the fixed-point 4-Fermi coupling extracted from the Luttinger—Yukawa
theory, gi%é)P = (h%/r)«.qcp = 4me agrees with the result found from field-theoretically
renormalizing the 4-Fermi Lagrangian L1 4r. Furthermore, the separatrix formed by the
ray from LSM to the trivial fixed point at the origin, satisfies (h%/r). = 4me for all (in
particular also non-fixed-point) values of 7. We remark in passing that the loop expansion
in the Yukawa formulation is still controlled, even though the Yukawa vertex is of order
one. This is because every higher-order 1PI graph must have an increasing number of
boson lines, which allows the large boson mass to provide the necessary suppression.

4-Fermi superuniversality and regularization. Near their lower critical dimension
and to one-loop order, some of the critical exponents of 4-Fermi theories are not only
universal, but superuniversal. More precisely, the exponents 1/v as well as 7, and z are
in fact independent of the concrete field content of the theory??. The exponents 7y and
corrections to z is an obvious consequence of momentum conservation, since they require
a non-vanishing momentum-dependence of the self-energy and at one-loop the only self-
energy diagram is a tadpole graph. The superuniversality of 1/v is a consequence of the
fact that the only non-vanishing S-functions, that of the 4-Fermi coupling(s), is given by
a family of bilinear forms of the same coupling(s) (for a more detailed proof, see Gehring,
Gies & Janssen 2015). It has, however, been observed that in Yukawa (also known as
‘partially bosonized’) formulation of the same theory, these relations are violated for the
so-called linear regulator (cf., e.g., Janssen & Herbut 2014). We attempt to elucidate
further the mechanism underlying this violation within the present set-up. To do so,
it is sufficient to re-evaluate the scale derivative of the vacuum polarization diagram,
—kog[Fig. 4.1(b)], but with the regulator Fj;, instead of F,.2Y) More specifically, the

20)This statement is of course non-trivial for z only in the absence of Lorentz symmetry.
2DWe also note that the (1 +1)D Gross—Neveu theory can be treated within the current set-up if we
modify the inverse fermionic propagator

iw + da(p) 0a — pios (4.59)
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anomalous dimension 7 is fixed by the ~ p? part of the diagram. We furthermore work
to leading order in €, where the dominant contribution arises when the scale derivative
hits the power part of Fj;,. We thus arrive at

i  dlp| h* /1
lin o 1
Mg <JO p/|< + O(U) 2~ e <€ + 0(1)> . (4.61)

Let us now use the fact that we are only interested in fixed points that recover 4-
Fermi canonical power-counting in the ¢ — 0 limit. This is equivalent to requiring that
s = 2+ O(e) (see the discussion in Footnote '¥)). This, however, when combined with

the leading-order behaviour of ngn above, implies

h3 qcply, = O(6). (4.62)

On the other hand, the ratio h2/r, being canonically dimensionless, has to show the same
one-loop universal O(e) behaviour as in the case of the sharp cut-off. Hence, r, qcp = O(1).
Thus, the physics will not be that of a point-like 4-Fermi vertex, but instead that of a
weakly coupled Yukawa theory. This fact is at the heart of superuniversality violation. As
an example, for finite r, the dynamics of the ¢-field is no longer effectively frozen — the
fermion self-energy diagram Fig. 4.1(a) is then no longer effectively a tadpole; the lack of
this kinematic obstruction means 7, and quantum corrections to z are generically O(e).
On the other hand, if r, is large enough — at least O(1/¢), as is the case with the sharp
cut-off — then z —2 = O(1/r3) and ny, = O(1/r?) from Egs. (4.48) and (4.50) respectively
and hence vanish to first order in €, in agreement with the expectation from the tadpole
nature of the fermion self-energy graph in the 4-Fermi theory.

To summarize, at the lower critical dimension, the suppression of IR modes by the
linear cut-off is too slow to adequately regularize the IR divergences arising from the
gapless nature of the fermionic excitations. Intuitively, these are the same divergences
that are physically responsible for ‘asymptotic freedom’ in 4-Fermi theories at the lower
critical dimension: the IR divergences are so violent that already at arbitrarily small
4-Fermi interactions, Nature prefers a ground state that spontaneously breaks some
symmetry and in doing so cures said divergences (e.g., by gapping out the fermion
spectrum). Precisely what constitutes an ‘optimal’ regulator may be worth revisiting in
the context of fermionic theories near their lower (in the 4-Fermi sense) critical dimension.
As far as this work is concerned, we shall restrict ourselves to making predictions using
the sharp regularization scheme, being both analytically tractable and compatible with
superuniversality.

Boson anomalous dimension. We close this section by computing the leading correc-
tion to 714, working again in the ‘sharp’ regularization scheme Fy, (however, we suppress
the analogous superscript ‘sh’ for brevity). We find upon inserting

77¢‘LSM =2 — €, (463)
nglacp = 2 — 2e. (4.64)

where (p;) = p and (0;) = (0, 04); to complete the implementation of the dimensional reduction, we
also need a suitably modified prescription for Sreg' in Eq. (4.37), to wit:

Fiin(p/k) — 6(w) Fiin (P/F)- (4.60)
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At the LSM fixed point, all higher orders vanish, since the boson mass is infinite. To all
loop orders, the LSM 74|1.sm hence satisfies d + 2z — 2 + 1y = 4[¢)] where [¢] = d/2 is
the canonical dimension of the fermion field; 74 is hence merely that what is required to
change the scaling dimension of the ¢-field from its canonical value to the one compatible
with fermionic canonical power counting, [¢] — 2[t)]. On the other hand, ng4|qcp at O(e)
deviates from canonical scaling and is a true quantum correction.

4.5 Non-mean-field behaviour

Unlike usual € expansions, the physical case of interest corresponds to sending ¢ — 0.
As illustrated in Fig. 4.2, in this limit, the QCP and LSM fixed points collide.??) This
raises the question regarding to what extent the scaling one would observe at such a
transition deviates from simple dimensional analysis. Indeed, as far as observables such
as order-parameter correlation functions and the expectation value in an external field is
concerned, there is in fact no difference. Certain observables like the correlation length and
order parameter expectation value show essential singularities. However, such a behaviour
also arises generically in mean-field theory. We shall show by explicit computation that
the exponent of the leading singularity of the order parameter expectation value is
different from the mean-field theory prediction by a factor of 2 (Subsec. 4.5.1). Finally,
the susceptibility turns out to be an observable that shows power law behaviour but
cannot be derived simply from dimensional analysis, because the exponent becomes
indeterminate; we shall show that by computing it first in 2 4+ ¢ dimensions first and then
letting € — 0 gives a well-defined answer which is not mean-field but still exact (Subsec.
4.5.2).

4.5.1 Order-parameter expectation value

The effective potential is the effective action evaluated at constant values, to wit:
Vig (@)Y = I'[@]]|¢=const. Where V is the spacetime volume. The quantum equation of
motion, 6I'/d¢ = 0, for constant fields translates to the condition

o ((8)) =0 (4.65)

for the vev (¢). Since we already have anomalous dimensions and S-functions at hand, it

is most expedient to compute it using the Callan-Symanzik equation?3)
0 0 0o 1 0
A= — yp2h?—= — ypr— — =Ny — = 0. 4.
< ah g v 2n¢¢>a¢> Vet (¢) =0 (4.66)

Here, A is the UV cut-off and yx = Bx/X — [X] describes the ‘anomalous’ scaling
of the coupling, while 74 is the anomalous dimension of the field ¢ as before. Let us

22 Let us note in passing that a collision of fixed points appears generically in gauge theories, where
they usually disappear into the complex plane after the collision (Halperin et al. 1974; Gies & Jaeckel
2006; Kaplan et al. 2009; Braun et al. 2014; Herbut & Janssen 2014; Nahum et al. 2015; Janssen 2016;
Herbut 2016; Janssen & Herbut 2017; Thrig et al. 2019; Faedo et al. 2020). A collision of fixed points
can also occur in systems without gauge invariance, with and without fixed-point complexification
(Gehring, Gies & Janssen 2015; Janssen & Herbut 2016a; Gorbenko, Rychkov & Zan 2018a,b; Roscher
& Herbut 2018; Gracey, Herbut & Roscher 2018).

%) Gee, for instance, Schwartz (2014).
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Figure 4.2: RG flow in the 4-Fermi theory (a,b) and the Luttinger—Yukawa theory for
c=cs(d=2) (¢c,d) ind=2+c¢€ (ac) and d = 2 (b,d) dimensions. The two fixed points at
g«,1.sm = 0 and gy qcp = 4me in the 4-Fermi theory correspond to the non-Gaufian fixed
points denoted as LSM and QCP, respectively, in the Luttinger-Yukawa model. For € — 0,
the two fixed points approach each other in both theories.

quickly recapitulate the ingredients appearing in the Callan—Symanzik recipe in the limit
h?/r « 1:

h2
=T =" (4.67)
h? h? MF
T TN T oy T (469
h: R W2
LSy oy vl e [ (4.69)

For future reference, we have split the contributions further into two parts: those coming
from (i) diagrams without internal ¢-lines (hence mean-field, ‘MF’) — i.e., the vacuum
polarization diagram Fig. 4.1(a) — and (ii) diagrams with virtual ¢-bosons, which would
not survive in the mean-field limit. The latter concerns the last term in ~;2, and is given
by the sum of the triangle diagram [Fig. 4.1(c)] and the bosonization of the box diagrams
[Figs. 4.1(d) and (e)].

To complete the set-up, let us recall the structure of the full effective potential to all
loop orders, which is given by

h2¢2 0 1 h2 n h2¢2 m
Vet (¢ h?/rZ > C’nm<16ﬂr> <ln 4A4> : (4.70)

n=0m<n

(This is essentially a consequence of Collins’ theorem.) Formally, the contributions at fixed
n arise from n-loop vacuum diagrams. However, even to leading order in h2/r, observables
such as the vacuum expectation value (¢) are sensitive to so-called ‘leading logarithms’
(i.e., those terms with m = n in the series above). Thankfully, these contributions
(including higher-loop ones, i.e., n > 2) are fixed entirely by the one-loop RG functions.?*

2)We refer again to standard textbooks such as that of Schwartz (2014) for the demonstration.
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Hence, in addition to the one-loop coefficients C'1 g and C' 1, we can compute all coefficients
Cp n for arbitrary n by inserting the initial ‘seed” Cp o = 1 obtained by matching to the
classical potential Vy(¢) = r¢?/2 = h2¢?/(2h%/r) into the Callan-Symanzik equation
[Eq. (4.66)] and iterating using the one-loop RG functions above. For the one-loop
contribution to the effective potential, we thus obtain C1; = 2 and C1 9 = —2. Writing
out explicitly, it reads as

242 2,2
(n<l), T o h°¢ h=¢ _ MF
Vi) = 5o+ o (o —1) < 1) (a.71)
The last equality expresses the fact that the one-loop effective potential is the same
regardless of whether one computes it with the mean-field version of the RG functions or
the full version. We may use Eq. (4.71) above to derive the mean-field expectation value

of ¢,
Wy = A2 e=47/9, (4.72)

This agrees with the computation of Sun et al. (2009), and we shall require this result to
compare with the quantum value which also incorporates order-parameter fluctuations.
The latter corrections may be expected to be particularly important in the present setting,
since the spinor space is as small as algebraically permissible (recall that mean-field
theory becomes exact in the limit of infinitely many flavours). Interating for the higher
Ch.n coefficients, we find Cy9 = C11/2 = 1, which goes beyond the mean-field level.
Remarkably, all further leading logarithms vanish in this theory: C, , = 0Vn > 3. Thus,
the effective potential given by

B h2¢2 h2/7" h2¢2 h2/T h2¢2 2

includes leading logarithms to all loops and subleading logarithms to one loop. Minimizing
(4.73) with respect to ¢ yields

hpy = N2 e=57/9, (4.74)

As advertised, the exponent is twice as large as in mean-field theory.

Dimensional transmutation. To conclude this subsection, we interpret the above
result in terms of dimensional transmutation. This concept was originally introduced
in the context of massless scalar electrodynamics by Coleman & Weinberg (1973), and
refers to ‘trad(ing) a dimensionless parameter ... on which physical quantities can
depend in a complicated way, for a dimensional one ... on which physical quantities
must depend in a trivial way, governed by dimensional analysis.” In the present 4-Fermi
setting, the dimensionless parameter is the 4-Fermi coupling g. A natural candidate for
the dimensionful parameter is kssg, the scale at which the running 4-Fermi hits a pole;
by explicitly integrating the RG flow, it works out to kssg = A e~*"9. Comparing with
Eq. (4.74), we indeed find that

Wy ~ (kssp) ™!, (4.75)

in agreement with dimensional transmutation. [Note on the other hand that the mean-
field result (4.72) violates dimensional transmutation due to the missing order-parameter
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fluctuations.] A similar observable is the scaling of the free energy near criticality; in our
set-up, it simply corresponds to the effective potential evaluated at the vev, Vog ((¢)). It
is readily obtained by inserting Eq. (4.74) into Eq. (4.73) and yields

Ve ((9)) oc A*e15M/9 ~ (kggp)™*7 (4.76)

which furnishes a further test for dimensional transmutation.

4.5.2 Susceptibility exponent

Unlike the observables considered in the previous section, the power-law behaviour of
the susceptibility x oc (6g)~7 survives the fixed-point collision. Assuming hyperscaling,2°)
we may use Fisher’s scaling law v = (2 — n,) v. Working directly in d = 2 and using
ny = 2 (as dictated by dimensional analysis) and v = oo (representing the essential
singularity) yields a formally indeterminate ‘0 x c0’. However, working in d = 2 + € and
using 14 qcp = 2 — 2€ and v = 1/e yields v = 2 4+ O(e).

To appreciate that this is truly a quantum result, consider the result of using instead
a mean-field 74 in place of the true quantum value. Since it coincides with canonical
power counting in the 4-Fermi sense, we do not need a separate calculation, but can
simply use dimensional analysis in the form d + z — 2 4+ 7y mr = 4[¢0]. With d = 2 + ¢,
z =2+ 0(e?) and [¢] = 1 +¢/2+ O(€?) [since ny, = O(€?)], it follows that nymF = 2 — e,
whence yvr = 1 4+ O(€). We thus see that the susceptibility exponent contains physics
beyond mean-field theory. Just as importantly, although fluctuation effects at one-loop
survive the fixed-point collision for ¢ — 0, higher-order corrections vanish. The final
result at the physical number of dimensions d = 2 reads as

v =2, (4.77)

and is one-loop ezact.

We close this subsection by noting the somewhat curious fact that v = 2yyp. There
is hence the same mismatch by a factor of 2 in the exponent between mean-field theory
and the correct result, as we found previously for the vacuum expectation value. Whether
this is a coincidence or contains a deeper connection is left for future investigation.

4.6 Bottom-up construction: Spinless fermions on
kagome lattice

Thus far, we have studied the universal physics emerging in the IR within a low-energy
effective field theory. In this section, we shall now turn our attention to an explicit
microscopic realization. To this end, we shall study an extended t—V model for spinless
fermions on the kagome lattice. In Subsec. 4.6.1, we shall show that the tight-binding
dispersion features a QBT that is rotationally invariant and can be made particle-hole
symmetric for suitably chosen hopping ratios. The exercise of projecting the tight-binding

2)1f we accept dimensional transmutation (whose validity we checked explicitly for two observables
in Subsec. 4.5.1), hyperscaling follows as a trivial consequence of [{] = —1 and [Veg] = d + 2. Our
argument ultimately does not rest on hyperscaling directly at d = 2, but rather at small but finite
€ = d—2. In the latter case, the fact that the fixed point QCP governing the transition has precisely one
relevant direction is sufficient to guarantee hyperscaling (cf., e.g, Herbut 2007). The critical exponent
we derive for the susceptibility x will turn out to have a regular ¢ — 0-limit, implying the survival of
the power law (modulo subleading logarithmic corrections).
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Figure 4.3: (a) Kagome lattice. The unit cell (shaded rhombus) consists of three sites (red,
green, and blue dots). (b) Spectrum of the tight-binding Hamiltonian Hy (for t' = —t/3)
along high-symmetry lines, displaying the quadratic band touching point at the center of the
Brillouin zone. The dashed line denotes the Fermi level for 2/3-filling (1/3-filling) for ¢ > 0
(t < 0). Inset: Conduction-band dispersion in the first Brillouin zone (color plot) and path
used in the main panel (red line).

model down to the universal single-particle Hamiltonian will also provide us with a
mapping between the fermionic operators on the lattice and the low-energy spinor degrees
of freedom appearing thus far in the low-energy effective field theories. This knowledge
can be used to match microscopic short-ranged interactions to the UV initial condition
for the 4-Fermi interaction, which we shall do explicitly for nearest and next-to-nearest
neighbour extended Hubbard interactions in Subsec. 4.6.2. To finish our study, we shall
finally elucidate the fate of small deviations from the particle-hole symmetric point by a
two-loop self-energy calculation (Subsec. 4.6.3).

4.6.1 Tight-binding dispersion
The tight-binding Hamiltonian including up to next-nearest hopping is given by
Hy=—t Z c;-rcj -t Z c;-(cj + H.c. (4.78)
<ify Kig»
where ¢ (') is the hopping amplitude for nearest (next-nearest) neighbours {(ij) ({ij»)

on the kagome lattice, and ¢; (CI) annihilates (creates) a fermion at site ¢ [see Fig. 4.3(a)].

In momentum space, it can be written as
d?p
- | W' (p) H6(p) ¥ (p), (4.79)
peBZ (277)

where the momentum integration is to be performed over the first Brillouin zone (BZ).

The fermion operators on the sublattices A, B, and C are collected into a three-component

vector ¥'(p) = (cL(p),cTB (p), cTC (p)); J%(p) is a 3 x 3 matrix acting in this space for

every p € BZ, whose non-vanishing entries are given by

A2 (p) = H5* (p) = 2t cos(9an - p) + 21’ cos(Fyg - p) (4.80)
A5 (p) = A (p) = 2t cos(Sac - p) + 2t cos(8c - P) (4.81)
AP (p) = A3 (p) = 2t cos(dpc - p) + 2t cos(dp¢ - P). (4.82)

In the above, dap (0) denotes the (next-)nearest neighbour displacement vectors
between A and B atoms, and likewise for AC and BC. Explicitly, these may be written as

N % <1, —\/§>T dpc = % (1,\/§>T dac = (1,007 (4.83)
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O = % (3, \/3)T e = % (3, —\/§)T & =(0,3)7 (4.84)

with the lattice constant set to unity for notational convenience. Anticipating the QBT
point to be located at p = 0, we may expand 4 (p) for small momenta. To zeroth order,
this leads to the eigenvalues

e12(p) =2t (L +¢/t) + O(p?), (4.85)
e3(p) = —4t (L +t'/t) + O(p?). (4.86)

The degenerate pair is simply the manifestation of the band crossing at zero momentum.
Its eigenspace — henceforth referred to as the low-energy subspace — can be spanned for
instance by

w = (VI/6.~V2/3./176) (487
us = (~V12.0.V/172) . (4.88)

Given the eigenbasis, we may now construct the projector P onto the low-energy subspace
in usual fashion as a sum of dyads, to wit:

P = urui + usug . (4.89)

The third eigenvector at p = 0 is given by

w = (VI3 VIB V) (490

The orthogonal transformation which diagonalizes 4 (p = 0) can now be constructed
from the three eigenvectors as

U = (ui,ug,us). (4.91)

Since the low-energy subspace and its complement are clearly separated, we can perform
a Schrieffer—Wolff transformation to obtain the low-energy content of Hy up to order
O(p?) by first expanding %(p) to O(p?), then projecting onto the low-energy subspace
using P, and finally blockdiagonalizing using U, to wit:26)

Ho = | '(p) Holp) v(p) + - (4.92)

p
(Hoou’) g) = JU'P[ @) Am)| U (4.93)
i =u) U, (i=1,2) (4.94)

The ellipsis has been used to suppress terms that are (i) bilinears from the high-energy
subspace and (ii) constant energy shifts within the low-energy subspace. (Note that terms
at O(|p|) vanish due to the Cs symmetry of the kagome lattice.) Evaluating the above
expression for Ho(p) yields

Ho(p) = <(

tp% + 3t’p§ (t— 3t/)pxpy 1 ’ 1 N2
L= 8)papy 3R+ tp?/ = 2(t 3t")du(p)oa + 2(t + 3t )p“1y. (4.95)

20)The reader is referred to Bravyi, DiVincenzo & Loss (2011) for details of the proof as well as an
analysis of the limits in which this is a good approximation.
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The offending piece is the last term oc 1o, since it generates particle-hole asymmetry.2?)
In order to arrange for it to vanish, we need to impose t'/t = —1/3. At the particle-hole
symmetric point, the single-particle Hamiltonian matches precisely that of the low-energy
effective field theory, up to a global factor of ¢. This is to some extent a happy accident:
in the generic case, the single-particle Hamiltonian defined by Eq. (4.93) may incur an
additional rotation of the o, basis, which would then have to be compensated by a
suitable redefinition of . In the present case, however, Eq. (4.94) is sufficient. For future
reference, let us quote the inverse mapping explicitly in the following form:

1 1
cA B %2 V2 ”
ecg|=|-4/%2 O (4.96)
3 o
cc 1 1
NG V2

4.6.2 From Hubbard to Fermi

To complete the study of the microscopic realization on the Kagome lattice, we need to
match the Hubbard-like interactions to their low-energy 4-Fermi counterpart. We shall
consider explicitly the nearest and next-nearest neighbour interactions

Hy=V Z c;-rcic;r-cj + V! Z c;-(cic;cj. (4.97)
(ig) &igy

(Note that since we are working with spinless fermions, there is no on-site Hubbard
interaction.) To leading order in gradient expansion, these are contact terms, since
(second-)nearest neighboring sites belong to different sublattices. We thus find for the
low-energy content of Hiyt in the continuum limit

Hine =2(V + V’)J [CL(:B) ca(x) c};(w) cp(x) + cL(a:) ca () cTC(w) ca(x)

x

+ () en(@) ¢l (z) cc(w)] + O(0c(z)) (4.98)

where cL(w) creates a particle in the sublattice A at position x, and analogously for

the sublattices B and C. Using Eq. (4.96), we can rewrite these in terms of the spinor
¢ = (1,102) " appearing in the low-energy theory. This yields

Hos =2V + V) | v](@)r @)ul(@)ae) (4.99)

— 2V + V’)J % (@' (@)oyi(@))”. (4.100)

T

To complete the matching, we need to recall that the single-particle Hamiltonian H(p)
derived microscopically had a global factor of t. The universal theory was defined with
the factor of the kinetic term normalized to unity. The most efficient way to absorb
this factor is by rescaling the Euclidean time as 7 — 7t. Physically, it corresponds to
measuring temperatures (and energies) in units of ¢. For the 4-Fermi interaction, this
implies g(A) = 2(V + V') /t. Satisfyingly, this is a dimensionless quantity, which maps
nicely to the power-counting we did in the top-down construction.
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Figure 4.4: Two-loop self-energy contributing to the flow of particle-hole asymmetry «.

4.6.3 Fate of particle-hole asymmetry

The universal theory we worked with in this chapter had particle-hole symmetry. However,
as we saw in Subsec. 4.6.1, this is subject to tuning the ratio of hopping amplitudes ¢/t at
the microscopic level. Since any experimental set-up has uncertainties, this naturally raises
the question whether the fixed point is stable under particle-hole symmetry-breaking
perturbations. To prepare our theory set-up, let us extend the quadratic part of the
universal theory [Eq. (4.12)] by a term

Lo = —ap’é®y (4.101)

with dimensionless parameter «. It is in fact the only perturbation that is compatible
with the remaining symmetries (viz. spatial rotation and time-reversal) whilst not being
canonically irrelevant. In microscopic terms, « is related at the UV scale A ~ 1/a (with
lattice constant a) to the hopping amplitudes by the relation a(A) ~ (¢ + 3t')/t. The flow
of v is determined by the self-energy. Since the one-loop diagram in 4-Fermi theories is a
tadpole, we need to got to two-loop order in order to get a definitive answer. The diagram
we therefore need to compute is shown in Fig. 4.4. This diagram has a sunset topology,
which allows the loop integration to be performed efficiently by going to position space
and back (Groote, Kérner & Pivovarov 1999), during the course of which the two coupled
integrals over 3-momenta essentially decompose into two independent Fourier transforms.
The contribution of the sunset diagram is given by

Fig. 4.4 = ¢* JdT g e W HP2) o, Go(T, ) o) (tr —1) [Go(—T, —x) 0, Go(T, x) ay]
(4.102)

where

B 2 i(wr+p-x)
ded T e (4.103)

Go(r, @) = (27)3 iw + do(p) og + ap?
is the position-space propagator. For small particle-hole asymmetry || « 1, all expressions
may be expanded in powers of a. For the propagator in momentum space, this leads to
—iw+do(p)oa  P*(wr—p?) + 2iwp’de(p) o,

S2ipt ¢ (w2 + pt)?

Go(w,p) = + 0(a?). (4.104)
Let us now compute the Fourier transform of the above to derive the position-space
propagator. The integral over w is elementary. For the spatial part of the Fourier transform,
it is expedient to introduce polar coordinates p = p(cos ¢, sin ¢), x = p(cos ¥, sin ). Then,
p - x = pocos(¢ — 1), and subsequently we may use the Jacobi-Anger identity to write
the exponential factor as

P = Jo(po) + 2 Z i" Jim (po) [cos(mp) cos(md) + sin(mep) sin(md)], (4.105)

m=0

2D This may be seen in a more pedestrian way by observing that the spectrum is given by e+(p) =
[t +3t) £ (t—3t)] p”.
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where Jp,(-) is the Bessel function of the first kind and order m. The integral over ¢ can
now be performed by exploiting the orthogonality of sines and cosines, for instance over
L?([0,27]), and the series conveniently terminates at m = 2 since rotational invariance
is still intact. The final integral over ¢ turns out to be expressible in terms of elementary
functions as well, yielding neat expressions for the tree-level position-space propagator to
the desired order in a:

i o= /Al o=@ /AT (32 4 A7) — 4|7] dy(x)

G -
o(r;2) 8T * 8ma2|T| x2 ¢
2
e—x?/(4l7])
* 32772 [iﬂg —4|7| + sgn(7) do(x) aa] o

+ O(a?). (4.106)

To obtain the selfenergy in momentum space, we have to perform the inverse Fourier
transform, followed by an expansion in powers of external momentum p to extract
renormalization constants. The integral is both infrared and ultraviolet divergent, which
we may efficiently regularize using a sharp cut-offs. The procedure is technically similar
to how we regularized the Luttinger—Yukawa theory (Subsec. 4.3.2), except that we are
now regularizing in position rather than momentum space. Mutatis mutandis, we thus
have

dr d’z = OOdT Rz O(|jz| — 1/k)O(1/A — |z|), 4107
f [ ar [ezeqel - 1meq/a - ja) (4.107)

where we have used that k, A ~ (length)~! when defining the position-space UV and
IR cut-offs. The scale derivative then converts the ©-function into a J-function. Hence,
for small external momenta, |p| « k, we may expand the diagram in powers of external
momentum prior to integration, which simplifies the angular integration greatly (the
radial integration is trivial due to the aforementioned J-function). We thus find

. 9> [1 114\ A
—koy[Fig. 4.4] = ) ﬁda(p) oat g1 In 3)op” |+ O(w,p") (4.108)
=1y do(p) 00 + (npr + Ba) P* + O(w, p*). (4.109)

Hence, we may read off the S-function

2
g 1.4 5
== (Cms -2 ) 4.110
b 4772<4n3 72)0“ (4.110)

Importantly, the derivative of the right-hand side with respect to « is negative, and shows
that small particle-hole asymmetry is an irrelevant perturbation. In other words, although
there is some tuning of the hopping ratio ¢/t needed to get the system somewhat close to
particle-hole symmetry, there is no need for fine-tuning; deviations from the particle-hole
symmetric point, provided they are small enough, are guaranteed to die out over the
course of RG flow.

4.7 Discussion

We have studied an example of a QCP between a stable semimetallic phase with quadratic
dispersion and an interaction-induced insulator. The QCP is characterized by a collision
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(or more aptly, a ‘coalescence’) of two fixed points. Although some exponents revert
to their canonical values as a consequence of this collision, there are observables that
still exhibit deviations from mean-field theory. Many observables of this kind (such
as the correlation length and the order-parameter expectation value) have essential
singularities, which may be interesting in their own right, for instance due to similarities
with the Berezhinskii-Kosterlitz—Thouless transition (cf., e.g., Herbut 2007), though the
precise extraction of their exponents from experiment (both on the computer or in the
laboratory) may be challenging. The most promising observable is the susceptibility,
which shows a power-law decay; its exponent is distinct from dimensional analysis, but
is computable exactly at one-loop (essentially because the GauBiian participant in the
fixed-point collision kills all loops higher than one). The fact that the one-loop correction
survives at all is connected in turn to the fact that the correlation length has an essential
singularity (i.e., that the correlation-length exponent is formally divergent). Such exact
non-canonical exponents are especially useful as a benchmark for numerical methods. In
particular, there has been much effort in simulating systems that suffer from the so-called
sign problem, using techniques such as Lefschetz thimbles (cf., e.g., Cristoforetti, di Renzo
& Scorzato 2012; Alexandru, Bagar & Bedaque 2016), but also beyond (Alexandru et al.
2016). The explicit lattice construction presented above may serve as an interesting test
case in this regard, being unamenable to techniques that rely on the absence of a sign
problem, whilst also coming with exact benchmarks. How to construct a two-dimensional
Luttinger semimetal using ultracold atoms has been demonstrated before, for instance,
by Sun et al. (2012). This also raises the possiblity that (slightly modified versions of)
the QCP proposed here may also be experimentally accessible in the laboratory.



Chapter 5

Dirac from Luttinger I: Explicit
Symmetry Breaking

The quantum criticality of Dirac fermions in d = 2 spatial dimensions (or equivalently, in
D = 3 spacetime dimensions) is a challenging problem. We had a first-row view of this in
Chap. 3, where we studied the breaking of SO(3) flavour symmetry. The results from a
three-loop € expansion, an NNLO leading-order large-N expansion and FRG in LPA’
approximation had significant deviations from each other. A similar story unfolds in
theories describing graphene-like systems (see also the discussion in Subsec. 1.1.2). Alas,
an experimental realization of quantum critical D = 3 Dirac fermions proves difficult.
In graphene, the interactions are usually too weak to trigger spontaneous symmetry
breaking. Finding a material with a Kitaev spin-orbital liquid groundstate, as appearing
in proposals such as that of Seifert et al. (2020), and then unambiguously identifying it
as one, is also likely very challenging — both technically and conceptually.

Compared to graphene, Luttinger fermions (as realized in quadratic band touching
semimetals) in d = 2 has something of an embarassment of riches — they order already
at infinitesimal interaction strength (see also Chap. 4). Topologically, however, one
might argue quadratic band touching (QBT) points are not elementary. This may be
quantified by the fact that they have Berry charge +2, whilst Dirac cones by comparison
only have charge +1 (cf., e.g., McCann & Koshino 2013). In principle, therefore, a
Luttinger fermion may split into Dirac fermions under suitable conditions (i.e., symmetry
breaking, which we shall discuss in more detail subsequently). In such a system, the
physics at long length scales, as near a quantum phase transition, will be governed
by Dirac fermions: it will realize Gross—Neveu quantum criticality. On the other hand,
the proximity to the Luttinger parent state may lead to a lower value of the critical
interaction strength. Hence, low-symmetry Luttinger fermions may provide experimental
access to Gross—Neveu universality classes.

Fig. 5.1 illustrates the two minimal — as measured, for instance, by the number
of ‘reaction products’ — scenarios for the splitting of one Luttinger fermion into Dirac
fermions. In both cases, the line(s) joining the Dirac points with their ‘centre of mass’
selects an axis or several axes in momentum space, and thus breaks rotational symmetry
O(2) down to a discrete subset. The solution with the lowest number of Dirac fermions
requires two of them, and corresponds to the splitting of Berry charge according to
2 — 1+ 1.Y The line joining the two Dirac points selects precisely one axis, which

Y For definiteness, we consider a Luttinger fermion with positive Berry charge, but the discussion is
obviously just as valid if the sign of every Berry charge is flipped.
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Figure 5.1: Scenarios for the splitting of a Luttinger fermion into (a) two and (b) four
Dirac cones. The label denotes the Berry charge of each fermion.

corresponds to breaking the rotational symmetry down to Cy, cf. Fig. 5.1(a). A second
scenario is ‘2 — (—1) + 3 x 1’. In this case, there are three axes related by rotational
symmetry, and the final state has three-fold rotational symmetry C'.

A paradigmatic realization is provided by electrons on the Bernal-stacked bilayer
honeycomb lattice. At the level of the nearest-neighbour tight-binding model — an
often-used approximation used to describe Bernal-stacked bilayer graphene (BBLG),
see McCann & Fal’ko (2006) — the spectrum features band crossings at the corners of
the Brillouin zone (the so-called K points). Unlike its monolayer cousin where these
are Dirac points, the band crossings in the bilayer system are quadratic, giving rise
to Luttinger fermions with their aforementioned instability at infinitesimal coupling.
Indeed, experiments on Bernal-stacked bilayer graphene find an ordered ground state
at low temperatures, though the precise nature of the order has not been established
conclusively.?) As we shall see, in addition to the potential for realizing a plethora of
exotic ordered phases, Bernal-stacked bilayer graphene may be a good candidate to realize
at least one of — if not both — ‘Dirac from Luttinger’ scenarios discussed above. The low
symmetry needed to render QBTs on the Bernal-stacked honeycomb bilayer fragile has
two origins. In case of the ‘2 — (—1) + 3 x 1’ mechanism, the rotational symmetry is
broken explicitly by the lattice, since the rotational symmetry about the K points of the
Brillouin zone of the honeycomb lattice (bilayer or otherwise) is only Cs. This is roughly
speaking the subject of the present chapter. On the other hand, the symmetry breaking
needed for the ‘2 — 1 + 1’ mechanism is spontaneous; that, along with its accompanying
phenomenology, is the topic of Chap. 6.

The appearance of Dirac cones on the Bernal-stacked honeycomb bilayer can already
be ‘seen’ at the tight-binding level, if one allows for hopping beyond nearest-neighbour
bonds — more specifically, this is what happens when interlayer hopping beyond the
shortest range (so-called trigonal warping) is taken into account (McCann & Koshino
2013). One of the main goals of this chapter is to demonstrate explicitly that, even when
the trigonal warping terms are absent in the microscopic Hamiltonian, the presence of
higher-order terms, despite being irrelevant in the RG sense, generate effective trigonal
warping at low energy. This leads to a stable semimetallic phase at weak short-range
interactions and a nontrivial quantum critical point at finite coupling. We establish the
relevant (2 + 1)-dimensional Gross—Neveu universality class for the transition and map
out the pertinent phase diagram in the plane of temperature T" and interaction strength

g.

) cf., e.g., Feldman, Martin & Yacoby (2009); Martin et al. (2010); Weitz et al. (2010); Velasco Jr. et al.
(2012); Freitag et al. (2012); Bao et al. (2012); Veligura et al. (2012).
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U=2 U=3

Figure 5.2: (Adapted from Pujari et al. 2017) Quantum Monte Carlo results for the
antiferromagnetic structure factor of Hubbard model on honeycomb bilayer as a function
of Hubbard interaction strength U. Note that infinitesimal U is insufficient: onset of order
occurs only once a critical strength is exceeded. This, along with the fact that the dynamical
critical exponent is z = 0.9(2) near the transition (cf. ibid.) suggests a Dirac semimetal
ground state at weak coupling.

Our calculations will thereby confirm the schematic RG picture previously purported
by Pujari et al. (2017) in the context of quantum Monte Carlo simulations of the Hubbard
model on the bilayer honeycomb lattice (see also Fig. 5.2). In the absence of trigonal
warping, the numerics pointed to an extended gapless phase at weak coupling and a
quantum critical point to a gapped ordered phase at a finite Hubbard interaction. The
measured values for the dynamic critical exponent z = 0.9(2) and the correlation-length
exponent v = 1.0(2) were broadly consistent with the (2 + 1)-dimensional Gross—Neveu
universality class, the particular type of which, however, had not been possible to
establish unambiguously. The crucial ingredients for this mechanism are the interaction-
induced corrections to the fermion self-energy. However, at the one-loop order, which
has been thoroughly investigated in previous works,® the self-energy correction happens
to vanish as a consequence of the interaction being local.¥) A consistent field-theoretic
understanding of the quantum criticality observed in the numerical simulations therefore
necessitates one to go beyond one-loop. This is a daunting task, since not only is Fuclidean
spacetime rotation symmetry SO(3) absent, even the spatial rotation symmetry O(2)
is broken down to the discrete subgroup C3. As a result, a proper RG analysis of this
physics has, to the best of our knowledge, thus far been lacking in the literature. It is
one of the main technical advances of this chapter to demonstrate that the two-loop
self-energy corrections can be computed in an analytical way by employing a suitably
adapted regularization scheme in position space. We shall construct a minimal continuum
low-energy field theory that captures the salient physics of interacting Cs-symmetric
QBTs. We shall then evaluate all loop corrections to the leading nonvanishing order.
This, most importantly, shall include the crucial two-loop self-energy diagrams and it
will allow us to derive improved RG flow equations. This will then enable us to construct
the corresponding quantum phase diagram, and to reveal the pertinent universality class
and its critical exponents. We shall also compare with mean-field solutions, which are
controlled in a certain large-N limit, and discuss the behaviour at finite trigonal warping
on the microscopic level.

3) For instance, see Sun et al. (2009); Zhang et al. (2010); Vafek & Yang (2010); Vafek (2010); Uebelacker
& Honerkamp (2011); Scherer, Uebelacker & Honerkamp (2012); Lang et al. (2012); Song, Liang &
Haas (2012); Cvetkovic, Throckmorton & Vafek (2012).

4) The one-loop correction is finite, however, if long-range interactions are present (Sinner & Ziegler
2010).
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The body of this chapter is organized as follows: Sec. 5.1 introduces the minimal
effective field theory starting from the tight-binding model on a Bernal-stacked bilayer
honeycomb lattice. Mean-field solutions are studied in Sec. 5.2. In Sec. 5.3, we shall then
proceed to evaluating the leading loop corrections and investigate the phase diagram
arising from the RG flow equations. Section 5.4 is devoted to discussing critical exponents
and the finite-temperature phase diagram. A brief summary and an outlook (Sec. 5.5)
closes the chapter.

5.1 From lattice to continuum

This section serves to motivate a minimal continuum field theory that shall subsequently
constitute the main object of study in this chapter. For concreteness, we shall begin
with a specific microscopic model on a lattice with C5 symmetry and derive thence a
Euclidean action serving as an effective low-energy description. The pure QBT theory
with z = 2 on the one hand and the relativistic Gross—Neveu theory with z = 1 on the
other hand are recovered from this continuum field theory in two opposite limiting cases.
It is worth emphasizing, however, that the physics investigated herein is independent of
the particular lattice model and quite generally applies to any interacting two-dimensional
Fermi system with QBT and C5 rotational symmetry.

5.1.1 Fermions on Bernal-stacked honeycomb bilayer

Consider a model of spinless fermions on the Bernal-stacked bilayer honeycomb lattice at
half filling, defined by the tight-binding Hamiltonian (Castro Neto et al. 2009)

2
H[) = —1 Z Z a;-fmbjm — tJ_ Z azlbig —tw Z allbjg + H.c. (5.1)
(igym=1 ¢ Ggy

The operators a;,, (bin) annihilate a fermion in layer m and sublattice A (B) at position
R; of the Bravais lattice. The parameter ¢ corresponds to hopping processes between
nearest neighbours {(ij) within the same honeycomb layer, while | corresponds to
hopping between sites that are located on top of each other and belong to different
layers and different sublattices. The third term in Hj, parametrized by t,, denotes
the trigonal warping term allowed by C3 symmmetry; it corresponds to next-nearest-
neighbour interlayer hopping processes. The primitive Bravais lattice vectors are denoted
as a; = (1/2, \/§/2) and as = (1/2, —\/5/2), with the lattice constant set to unity, a = 1,
for notational simplicity. Proper units of a will be restored below whenever needed. In
reciprocal space and upon collecting the Fourier-transformed fermion operators into a

vector cf (k) = (a{(k:), bg(kz), a;(k), bI(k)), the tight-binding Hamiltonian can be written
in matrix notation as

[ Ak c
o= [ 5l ) alh) clk), (52)

where the k-integration is over the Brillouin zone (BZ). The Hermitian 4 x 4 matrix Hg
reads in block notation

/Hll(k) HlZ(k)> , (53)

Holk) = (%ka) Hon (k)
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Figure 5.3: Tight-binding dispersion along the high-symmetry line '-K—M-T from Eq. (5.7)
for t/t; = 0.25. The insets show the dispersion of the low-energy conduction band in the
first Brillouin zone (color plot) and the path used in the main panels (red line). In (a), there
is no trigonal warping, ty/t; = 0, and only the two QBTs at k = + K touch the Fermi level
at € = 0. For nonzero ty/t; = 0.1 (b), the two QBTSs split into two central Dirac cones at
k = + K and six ‘satellite’ Dirac cones at incommensurate wavevectors between I' and K.

with the 2 x 2 blocks having nonvanishing entries only on the off-diagonal,

) = -t (9 7o), (5.4

Hia(k) = —t (f*?k) f(ok)> , (5.5)

Moo (k) = —1, ((1) é) . (5.6)

Here, f(k) = Y5 €*? is the nearest-neighbor form factor of the honeycomb lattice, with
d € {(1,0),a1,as} the three nearest-neighbor displacement vectors. The spectrum of
Ho(k) consists of four bands with dispersion +e4(k), given by

1
L(k) = 5B + @2 + )2 £ {td + 8 (42 +22) |

+ 2t 1| f[2 (262, — 142 + 4£%t, Re f)}l/z]. (5.7)

Here, the momentum dependence of the form factor f = f(k) has been suppressed for
notational brevity. The above spectrum exhibits particle-hole symmetry, which shall be
assumed throughout from hereon in. Note, however, that it will be broken upon inclusion
of longer-ranged terms in the tight-binding Hamiltonian (5.1), such as next-nearest
neighbor intralayer hopping (McCann & Koshino 2013). The additional physics due to
broken particle-hole symmetry is interesting in its own right, and will be left for future
work.

At half filling and low temperatures, only the two bands at t+e_(k) contribute to
physical observables. The general properties of the spectrum now depend crucially on
whether the trigonal warping ¢y, is finite or vanishes; let us therefore discuss these two
cases separately in the following.

First, when the trigonal warping is tuned to zero, ty, — 0, the two low-energy bands
touch at k = + K, where K = (47/3,0) denotes the high-symmetry K point at one of
the corners of the hexagonal Brillouin zone. To see that these two band crossings are
indeed quadratic, let us expand the form factor around + K as

_V3 Fip , L i
FEK +p) = 2 |pl 7 +[p[? =27 +O(1pl?), (5-8)
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where ¢ = arg(p, + ip,) denotes the polar angle of the local momentum p = k T K.
Upon subsequent expansion of the low-energy spectrum to next-to-leading order in |p|,
we find

2 gt a (- Ipl 6

e2 (£K +p) 62 Pl (1 + \/3008390> +O(|p"), (5.9)
valid for |p| « ¢t /t. This demonstrates the existence of two two-fold degenerate QBT
points located at the two inequivalent K points in the Brillouin zone and at energy
e_(xK) = 0. By inspection of the full band structure given by Eq. (5.7), one can
readily convince oneself that there are no further bands crossing the zero-energy level, cf.
Fig. 5.3(a). In the half-filled case, the Fermi level is therefore fixed precisely at the two
QBT points.

Note that the leading-order term o |p|* in Eq. (5.9) exhibits a continuous O(2)
rotational symmetry in momentum space. The next-to-leading order term o |p|® cos 3¢,
by contrast, breaks this symmetry explicitly down to Cjs, reflecting the lattice symmetry
of the honeycomb model.

At the level of the free theory, the O(2) rotational symmetry therefore emerges
dynamically if one restricts the window of observation to sufficiently low energies. We
shall see, however, that this is no longer true once interactions are taken into account.

Let us now switch on a small finite ¢, > 0, and expand the spectrum again to
next-to-leading order in local momentum, but now keeping the leading ¢, correction in
each power of |p|. The low-energy spectrum then takes the form

2 2
e2(+K +p) = 3fTW|p|2 <1 + ;/gt Ip| cos3g0> +O(pY). (5.10)
1tw

Note the lower exponent of the leading-order term as compared to Eq. (5.9). Consequently,
the local dispersion near + K is no longer quadratic, but linear, and the spectrum exhibits
Dirac cones at k = + K. In addition, for each Dirac cone at one of the high-symmetry K
points, there are three ‘satellite’ Dirac cones located at incommensurable wavevectors
k = £K + p with

B At |ty

where n = 0,1,2 and we have assumed ¢; > 0 and t,, > 0 for concreteness. The full
dispersion in the presence of trigonal warping is illustrated in Fig. 5.3(b). This concludes
the discussion at the non-interacting level. In particular, the fermiologies in the QBT
and Dirac cases are distinct, and going from the former to the latter requires ‘switching
on’ a parameter like ¢, by hand, as done above. In the presence of fermion-fermion
interactions, however, this occurs dynamically. To elucidate this further, we need a
pertinent low-energy continuum field theory.

and ¢ = (4n+1i1)%,

(5.11)

5.1.2 Continuum limit

For the non-interacting part, let us begin by writing down the Hamiltonian for QBT in
the case of ty = 0. In a 4 x 4 representation, it can be written as®

HP (p) = do(p) (0 ®12),  a=1.2, (5.12)

%) cf., e.g., Sun et al. (2009); Vafek (2010); Janssen & Herbut (2015). We have encountered the discussion
concerning the single-particle QBT Hamiltonian, upto a slight change of notation and representation,
already in Chap. 4; the discussion is repeated here partly for recapitulation, but mainly to fix notation.
The discussion of the symmetry-breaking terms, on the other hand, is specific to the current set-up.
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with implied summation over repeated indices. In the above equation, the diagonal factor
15 can be understood to act on the valley index. The 2 x 2 matrices ¢® anticommute
with each other and square to one, and may be represented by the usual Pauli matrices,
ol =0, and ¢? = oy. The time-reversal operator can then be defined as T = (0, ® 0,)IC,
where K denotes complex conjugation. The functions d,(p) are p? times the real spherical
harmonics of angular momentum ¢ = 2, which in two dimensions simply become d;(p) =
p2 — pf/ = p? cos 2¢ and da(p) = 2p,p, = p*sin 2¢p.
Under O(2) spatial rotations with angle 6,

cos —sinf

a.,_ a . b _
p (Ro)%p",  Ro (sin@ cosf

) € 0(2), (5.13)

the d, and o transform respectively as
da(P) = (R20)," db(p), 0% > (Rag)* 0", (5.14)

While the former equation follows from direct computation, the latter is to be understood
in the sense that the o transform as components of the second-rank tensor (Janssen &

Herbut 2015)
O'1 0'2 0'1 O'2
( 2 1> HRJ< 2 )Ro- (5.15)

g —0 o —0'1

With the above definitions, it is straightforward to verify that the product o'o? is
also invariant under rotations. Consequently, the two remaining matrices ¢° = 15 and
03 = —io'o? that together with o' and o? span the space of 2 x 2 matrices, are
rotationally invariant. At the quadratic order O(|p|?), therefore, the only possible term
in the Hamiltonian that is compatible with the C3 symmetry and diagonal in valley space
is the O(2) invariant one present in the above 7—[(()2). The upshot is that any free 2D Fermi
system with QBT and C,, symmetry with n > 3 has emergent O(2) symmetry at low
energies.

At the linear order O(|p|), however, a C3 invariant term that breaks O(2) is perfectly

possible. For instance, the term

H (p) = Pa(0° ® ) (5.16)

with (p,) = (ps, —py) transforms under rotations as H(()l)(p) > Py (R39)%0?” and is
therefore only symmetric under the C'5 symmetry, but not continuous O(2) rotations.

At the cubic order O(|p|?), an analogous term is C3 symmetry allowed,

3 _
H (p) = P2 Pal0” ® 0%, (5.17)
which manifestly has the same symmetry properties as 7—[(()1).
A general non-interacting low-energy Hamiltonian consistent with C3 rotational
symmetry can therefore be written in terms of three parameters fi, fs, and f3 as

Ho(p) = 0° ® [[1,0° + foda(p) 12 — f3p°P,0° | + O(|p[*), (5.18)

where the signs of fi, fo and f3 have been chosen for later convenience. The spectrum of
Ho(p) is given by

e2(p) = f1Ip]* + 2f1 folp|* cos 3 + (f3 — 2f1 f3)|p|* — 2f2f3]p|° cos 3¢
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+O(Ipl°), (5.19)

which reproduces the tight-binding dispersion near the K point at k = + K [Egs. (5.9)
and (5.10)] for

V3twa 3t2a? a® 3t?
fi= ; f2 = ; fa=——F7= (5.20)

2 4ty 24/3 4t
and the same equations hold, up to a suitable change of the local momentum basis p — P,
near the second K point at k = —K as well. Here, the lattice constant a has been

reinstated in order to make the physical units more readily apparent. In the following,
we shall in particular be interested in the situation in which f; is tuned to zero at
the microscopic level (which corresponds to ty, = 0 in the tight-binding Hamiltonian)
describing a system whose bare spectrum has a QBT (referred to henceforth as ‘the QBT
limit’), and study the dynamical generation of f; due to interactions.

The Lagrangian is constructed from Eq. (5.18) in canonical fashion, namely

Lo = ] [0r + Ho(—i0)] ¥, (5.21)

where 7 denotes imaginary time and 1°, w;r are four-component complex spinors with
‘flavour’ index ¢ = 1,..., Nt. On the honeycomb bilayer and in the limit of vanishing
trigonal warping t,, « t2/t,, for which the spectrum has a QBT, the flavour number Nt
can be understood as the real-spin degeneracy of each band, with Ny = 1 for spinless
fermions. For the sake of generality, however, we shall keep the flavour number Nt
arbitrary in the calculations to come. This will also allow us to make contact with the
limiting cases Ny — 00, which represents the mean-field limit, and N¢ = 1/2, which can
be understood as a Fermi system with a single point of QBT in the Brillouin zone, as
realizable for spinless fermions on the Kagome and checkerboard lattices Sun et al. (2009).
Note, however, that for the latter systems, the linear and cubic terms in Eqs. (5.16) and
(5.17) are forbidden by time-reversal symmetry, and the QBT is therefore protected for
Ne=1/2.

It is worth emphasizing that the above Hamiltonian Hg, with the correct interpretation,
is sufficient to capture the behaviour at substantial trigonal warping as well. In this
limit, Eq. (5.18) describes massless Dirac fermions subject to a quadratic perturbation
o fo, with the spectrum given by Eq. (5.10). Some care is needed when it comes to the
flavour content of the low-energy Dirac theory. Since a separate fermion flavour has to
be introduced for each Fermi point, one requires four Dirac points for every valley in the
QBT theory. Flavour symmetry between the ‘satellite’ and the central Dirac point can
be restored by a suitable rescaling of the local momentum, viable in the low-energy limit.

In conclusion, therefore, the Lagrangian (5.21) constitutes two different continuum field
theories describing two opposite limits of the low-energy physics of fermions on the bilayer
honeycomb lattice: On the one hand, the QBT limit for vanishing or infinitesimally small
trigonal warping t,, « 2/t is described by Eq. (5.21) with flavour number Ny = N/2,
where N is the number of valleys in the QBT limit. On the other hand, the Dirac limit
for ty, » t2/t) is described by the same Eq. (5.21) in the low-energy limit, but now with
N¢ = 2N (Dirac) fermion flavours. Hence, the number of four-component fermion flavours
in the low-energy description is

N = {N/Q for f1/f2 « 1/a,

(5.22)
2N for fi/fa » 1/a.

As noted above, the concrete lattice realization of spinless fermions on a honeycomb
bilayer corresponds to N = 2.
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5.1.3 Interactions

A generic four-fermion interaction can be written in the form

1 |
5 9rs (W] A5) (0 AL ) (5.23)

with coupling parameters g,s, where r,s = 1,...,16 (Herbut, Jurici¢ & Roy 2009; Gies
& Janssen 2010). The smallest subspace closed under the RG flow for N > 2 consists
of three independent (i.e., Fierz irreducible) couplings Vafek (2010). The nature of the
concrete state that emerges upon spontaneous symmetry breaking is sensitive to the form
of interactions present microscopically in the system. Our primary interest, however, is
in the question whether spontaneous symmetry breaking takes place at all for arbitrarily
small couplings (as one would expect for a symmetry-protected QBT), rather than the
competition (or cooperation) between the different possible orders. For this purpose, it is
sufficient to restrict the calculations to a single interaction channel. For definiteness, let
us choose Ay = AY = (63 ® 03)§¥, corresponding to

L = —go[ul (P @ 0% (524

where the sign convention has been chosen such that the ordered state is stabilized for
positive values of g. This particular choice of Ly is natural and appropriate for the
following reasons: Firstly, note that ¢® ® ¢ anticommutes with Hg. A finite bilinear
condensate in the above interaction channel, i.e., <wZT (03 ®o3)yty # 0, would therefore
correspond to a state with a full mass gap in the spectrum, which is typically energetically
favored within mean-field treatments (Sun et al. 2009; Herbut & Janssen 2014; Janssen
& Herbut 2015). The state is characterized by an imbalance of the number of particles
on layer 1 compared to layer 2 and thus breaks inversion symmetry between the layers.
Time reversal, by contrast, remains intact and the new ground state thus represents
a topologically trivial interaction-induced insulator. In fact, precisely this interaction
channel has been found as the dominant ordering tendency in the ¢-V model of spinless
fermions on the Bernal-stacked honeycomb bilayer subject to a repulsive nearest-neighbor
interaction V' within a multi-channel RG analysis (Vafek 2010).

Secondly, this channel is readily identified with the simplest possible Lorentz scalar,
[w;r(a3 ® )Y']? = (042, where 9; = wg(a3 ® 03) is the Dirac conjugate. This is
the familiar Gross—Neveu-Ising interaction, which in the Dirac limit t,, » t? /t; has a
well-understood quantum critical point at finite ¢.9 Furthermore, to leading order in
1/N, it turns out that the above interaction channel is closed under RG in the sense that
no further interactions are generated upon integrating out high-energy modes if absent
on the microscopic level. We also note that for NV = 1, in which case there are in total
only two spinor components in the QBT limit, any finite four-fermion interaction must be
proportional to ¥To3¢. The single-channel approximation is therefore exact not only for
N — oo, but also at N = 1. Although bilayer graphene with N = 2 falls in neither class,
we expect our major conclusions, concerning in particular the existence of a quantum
critical point at finite coupling in the QBT limit, to hold also in this case. The effect of
other interactions will be briefly commented upon when discussing the universality class
of the transition, see Sec. 5.4.

% ¢f., e.g., Hands, Koci¢ & Kogut (1993); Vasil'ev, Derkachev & Stepanenko (1993); Gracey (1994b);
Vojta, Zhang & Sachdev (2000a,b); Braun, Gies & Scherer (2011); Gracey, Luthe & Schroder (2016);
Mihaila et al. (2017); Zerf et al. (2017); Iliesiu et al. (2018); Ihrig et al. (2018)
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The full action describing both the situations with and without a finite trigonal
warping term is hence given by

S - JdeQm (Lo + Lint) (5.25)

Let us conclude this section by reading off the mass dimensions of the quantities appearing
in the theory. In the QBT limit, we would like to renormalize the fields such that the
coefficient fo in front of the QBT term remains fixed during the RG. Then, in the
noninteracting limit, the dynamical critical exponent is z = 2. Consequently, the linear
coefficient has mass dimension [f1] = 1 and is RG-relevant, while the cubic coefficient
is RG-irrelevant with [f3] = —1. The four-fermion coupling becomes dimensionless,
[g] = 0, i.e., the interaction is marginal at tree level. In the opposite Dirac limit, the
renormalization scheme should fix the coefficient f; of the linear term. Hence, in this case
z =1, [f2] = —1, [f3] = —2, and the four-fermion coupling becomes irrelevant, [g] = —1.

5.2 Mean-field theory

Let us begin by discussing the large-N limit, which can be solved exactly in the framework
of mean-field theory. To distinguish the ordered from the disordered phase, it is useful
to think in terms of the composite field ¢ oc wz (03 ® 03)yt. Then, the symmetric phase
corresponds to (¢) = 0, whilst long-range order is characterized by ¢ developing a
finite vacuum expectation value via spontaneous symmetry breaking. A finite {¢) # 0
acts as an effective mass term and opens up a full gap in the fermion spectrum. For
the present interaction channel, the new ground state spontaneously breaks inversion
symmetry between the layers. Let us rewrite the action solely in terms of ¢ by performing
a Hubbard—Stratonovich transformation and then carrying out the path integral over the
fermion fields. This results in an effective action,

Set[@] = JdeQw %(ﬁQ — Trin[0- + Ho(—i0) — /g ¢ (03 ® 03)] ) (5.26)

where the trace Tr(-) is taken over spinor and flavour indices as well as coordinate space.
A meaningful large-N limit is obtained by fixing g/Ny = const. and ¢?/N; = const. Let us
reiterate that the fermion flavour number N; is equivalent to the number of QBT points
N/2 in the limit of vanishing trigonal warping, while Ny = 2N when each QBT point
splits into four Dirac cones. From the trace over the flavour indices, the action (5.26)
for ¢ attains an overall factor of N;. In the large-IN limit, the path integral over ¢ is
then dominated by the extremum of Seg[¢]. If we assume constant field configurations
#(x) = ¢ = const., this leads to the effective potential Vg (¢p) = V7! Seg[¢]’¢(x):¢, where
V is the spacetime volume. The mean-field analysis then boils down to minimizing Vg (¢).
It proves to be technically more convenient to evaluate Vi (¢) by differentiating (5.26)
once with respect to ¢ and performing the trace over the spinor and flavour indices,
yielding in momentum space

dwd?p g9
(2m)3 w? + Ho(p)? + 9o

ci(9) = ¢ — 4fo (5.27)
The divergence occurring for large frequency w and large momentum p is handled by
introducing a finite ultraviolet cut-off A. In the QBT case, it is expedient to implement
this as the restriction |w| < foA? and |p| < A, in agreement with the dynamic scaling
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exponent z = 2 for f; = 0. By contrast, in the Dirac limit for finite fi, the integral is
more efficiently regularized as /w? + fZp? < |f1] A, respecting the different dynamic
exponent z = 1 for fo = f3 = 0.

Let us first recapitulate the case of pure QBT with Ny = N/2 and f; = f3 = 0 (Sun et
al. 2009). Then, Ho(p)? = f2p* and the integral is soluble in terms of standard functions.
Expanding around A — oo and rescaling ¢/(1/f2A?) — ¢ and g/fs — g, one finds

e() o <Z>[ +ln(49¢2)] (5.28)

Thus, the minimum for all g > 0 is located not at ¢ = 0, but at the new minimum
po = 2971 2e4m/(GN), (5.29)

Hence, infinitesimal g leads to spontaneous symmetry breaking for a rotationally in-
variant QBT, in agreement with the various previous works on the subject.”) Let us
next investigate the stability of the symmetry-broken phase under perturbation by an
infinitesimal Dirac term, realized by switching on small non-vanishing f;. To this end,
consider the curvature of the effective potential around ¢g and expand it in powers of

|f1/(f2A)| < ¢ to obtain

Vit (60) o 90 [1 = /0N japo)?] (5.0)

where we have rescaled f1/(faA) — fi/f2. The ordered phase is stable (or at least
metastable) as long as V;(¢o) > 0. For a given fixed and small f;, this condition holds
if and only if g > g., with the critical coupling

fi/f2\7
14 2 ) (5.31)

valid for |f1/f2| « 1. The inclusion of f3 is possible as well by numerical means. However,
within mean-field theory, this does not lead to qualitatively new physics since the crucial
self-energy corrections, which are prerequisite to obtaining a finite g. in the QBT limit
f1/f2 = 0, are suppressed for large N (as we shall show explicitly later). At the mean-field
level, therefore, spontaneous symmetry breaking occurs for g > g. = 0 with g. — 0 for
fi/fa — 0.

Let us now turn to the opposite limit of Ny = 2N Dirac flavours perturbed by a
small fo term. We investigate an instability towards the symmetry-broken state by
studying the curvature Vi (0) at the origin ¢ = 0. Since g now has mass dimension
[g] = 2 — 2 = —1, we rescale gA/fi > g, &/(VFiAY?) — &, and fi/(f2A) — fi/fo. To

the leading non-vanishing order in (f;/f2)~!, the curvature is

A9l [1 <£> ] . (5.32)

Vig(0)ocl — —5-
The phase boundary occurs when the curvature of the effective potential at the origin

2
vanishes, yielding
N1 )
) 5.33
i (7 (53

M ¢f., e.g., Sun et al. (2009); Zhang et al. (2010); Vafek & Yang (2010); Vafek (2010); Uebelacker
& Honerkamp (2011); Lang et al. (2012); Scherer, Uebelacker & Honerkamp (2012); Cvetkovic,
Throckmorton & Vafek (2012); Song, Liang & Haas (2012)

gc(f1/f2) ~ 2% <— In

72
9e(f1/f2) = IV [1
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Figure 5.4: Mean-field phase diagram for f3 = 0 using Egs. (5.31) and (5.33), showing
the Dirac semimetal (DSM) phase for small g < g. and finite f1/f2 and the spontaneous-
symmetry-broken (SSB) phase for g > g.. At the origin, (f1/f2,9) = (0,0), the fermion
spectrum exhibits a quadratic band touching (QBT). The dashed curve at intermediate
|f1/f2] = 1 is given as a guide to the eye.

valid for |f1/f2| » 1. Note that, within our continuum field theory, the two limiting cases
fi/fa = o0 and f1/fs — —o0 are in fact equivalent, as they are related by momentum
inversion p — —p. Eq. (5.33) in this limit precisely agrees with the known large- N
critical coupling in the relativistic Gross—Neveu theory with 2N four-component Dirac
flavours in 2 + 1 dimensions (Hands, Koci¢ & Kogut 1993; Braun, Gies & Scherer 2011).
The perturbation o (f1/f2) 2 is new and represents the influence of the quadratic term
in the dispersion £(p). It decreases the critical coupling, which is consistent with the
general expectation that an increase in the density of states tends to destabilize the
disordered semimetallic state. The combined mean-field phase diagram, showing the
phase boundaries both for |f1/fa] « 1 in the QBT regime as well as for |f1/f2] » 1 in
the Dirac regime, is depicted in Fig. 5.4.

5.3 Renormalization-group analysis

5.3.1 Flow equations

To go beyond the mean-field level, we now turn to an RG analysis. Since we are dealing
with a gapless model, the loop integrals will not only have UV, but also IR divergences.
The most efficient way to regularize the theory is to use both a UV cut-off A as well as
an IR cut-off k. The precise implementation of these cut-offs is, as usual, dictated by the
detailed structure of the quantum corrections. In the present setting, the leading loop
diagrams are shown in Fig. 5.5. (Possible diagrams of the same order that are not shown
vanish in the the present single-channel approximation.) Note that the one-loop self-energy
diagram is absent due to kinematics: It is independent of the external momentum (i.e., a
so-called tadpole graph) and hence can at most generate a mass term, which is forbidden
by symmetry. For completeness, let us also specify the definition of the renormalized
fields and couplings. These are defined as

Te[w, 01 X3 7] = 8| 2322w, 0 X 257 (5.34)

i.e., the 1PI effective action computed with unrenormalized fields (1/,4") and couplings
X = (g, f1, f2, f3) as input and with IR cut-off k£ should be equivalent to the classical



5.3. Renormalization-group analysis 105

action we started with, but evaluated at suitably renormalized fields and couplings. We
have suppressed the dependence on A, since it will usually drop out if the scheme is
chosen judiciously enough in any case. Evaluating the loop diagrams in Fig. 5.5 allows
us to read off the pertinent renormalization constants, and thence the S-functions as
Bx = —kop Xy for the couplings X = (g, f1, fo, f3) as well as the anomalous dimensions
Ny = —koyIn Zy, for the fields. Finally, the running dynamical critical exponent is given
by z =2 —ny + ko In Z,,.

Let us briefly sketch the general strategy regarding the evaluation of the loop correc-
tions, beginning with the (evidently more challenging) two-loop self-energy correction
shown in Fig. 5.5(a). The diagram has the so-called sunset topology. For translationally
invariant systems, the evaluation of such diagrams turns out to be particularly efficient
when carried out in position space (Groote, Kérner & Pivovarov 1999). This way, the
evaluation of the diagram ultimately leads to a single position-space integral, which is a
considerable technical simplification over the corresponding momentum-space version. In
particular, the two-loop contribution to the self-energy simply becomes

X(w,p) Jd’l’ d?g e7iwrtP2) (0® ® 0®) Go(r, z) (0* ® o)
x Go(—7,—x) (6 ® o) Go(r, %) (0° ® o°) (5.35)

where Go(7, ) = [0, + Ho(—id)] 7! is the tree-level propagator and we have suppressed
coupling constants, numerical prefactors, and contraction over spinor indices for brevity.
Similarly, the contribution to the four-fermion vertex can be written in position space as

ST o Jdr Pz Go(r,z) (0° ® 0*) Go(—7, —z) (0° ® ?), (5.36)

where we have also set external coordinates to zero.

All position-space integrals are now regularized simply using sharp cut-offs both in
the short- and long-wavelength limits, viz. foc 1/A ~ a and Loc 1/k. In the QBT regime,
we put

f dr d’z = Jd7d2w6(|m| —7/(2k)) O(n/(2A) — |z|), (5.37)
reg., QBT
whilst in the Dirac regime, we choose

f dr %z = de 2z 0 («/72 Fa? - 7r/(2k)) o (Tr/(m) /e 932> . (5.38)
reg., Dirac

This regularization prescription not only respects the different symmetries in the strict
QBT and Dirac limits, but also allows us to perform the loop integrations analytically.
Note also that (i) the presence of the IR cut-off allows the self-energy to be expanded in
external momenta, and (ii) the derivative with respect to k collapses the ‘radial’ part of
the loop integration, since the (weak) derivative of the Heaviside ©-function is the Dirac
0-distribution. The a priori arbitrary constant 7/2 in the definition of the position-space
cutoffs has been chosen such that the resulting large- N critical coupling ¢, in the Dirac
limit | f1/f2| — oo matches the mean-field result, Eq. (5.33). Evidently, a major part of the
difficulty of evaluating the loop corrections now resides in computing the position space
propagator Go(7, ), additional information pertaining to which is given in Appendix A.

The fact that the location and shape of the Fermi surface changes when a QBT point
splits into four Dirac cones requires us to start with separate discussions of the two cases
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(a) (b)

Figure 5.5: Feynman diagrams representing the first non-vanishing loop corrections to
self-energy and the four-fermion vertex.

|f1/f2] <« 1 and |fi/f2] » 1. To obtain the full RG flow also for finite values of | f1/f2| ~ 1,
we shall eventually interpolate between the respective limits by means of a suitable Padé
approximation.

Let us start by discussing the QBT limit, to which an infinitesimal |f;/f2] < 1 has
been added. Keeping the quadratic coefficient fs fixed, the -function 8, = —kdigx for
the dimensionless short-range interaction g becomes

f3
< f2> ] (5.39)

el T (1 () ()2

o 240 fa
where we have rescaled f1/(fok) — fi/f2, fsk/fo — f3/f2, and g/fs — g as in the
mean-field theory. Note that the above equation is valid only for N > 1. For N = 1, there
is an additional Fierz identity which leads to a finite S-function for g in this case as well.
The self-energy diagram in Fig. 5.5(a) leads to a nontrivial flow of the small parameters
f1 and f3. To the leading order in fi/f2 and f3/f2, they are given by

/Bg:

B PN -1\ (A 116N —1) [ f3
s = (- 0) () am (7) (640)
and
B 59¢°(2N — 1)\ [ fs\ G*(2N—1) (f
Brstpz = = (1 VLTS > (fQ) LT (f2> ' (5-41)

The anomalous field dimension 7, reads in this limit

FEeN-1) |1 25-36In(4/3)7* (i}
()

=TT 18 2880 s
, (5.42)
(BN (L) () 8T (s
23 432)\ fo )\ f 24372 \ fo
and the dynamic critical exponent z becomes
2 2 2
(2N —1) [9In(4/3) =2 49 —-30In2 —9In3 72 [ f,
—2— e 4
: 4r? 72 * 5760 7 (5.43)
_ 1593In(4/3) — 422 ( f1\ (3 , 1850 —4860In(4/3) ( f3 > (5.44)
216 f2 ) \ fo 24372 f2) | '

Note that the contribution oc (f1/f2)? to z is negative, tending to decrease the dynamic
exponent from z = 2 towards the Dirac value of z = 1 for large enough |f1/fa].
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In the Dirac limit with a quadratic perturbation oc fo added to the Hamiltonian, the
effects of the strongly-irrelevant cubic coefficient f3 can be safely neglected. We find,
for |f1/f2| » 1, f3 = 0, and Ny = 2N Dirac flavours, for the flow of the short-range

interaction
2 2
g°(4N — 1) 4128 [ fo
= — 1 = 5.45
By g+ = + 5 s Ak (5.45)

where we now have rescaled gk/f1 — g and fok/f1 — fo/fi. The small parameter fo/f1
is irrelevant in the Dirac limit; its flow reads as

29 g2(8N —1)1/( f2
=—|1+——=——|=]. A4
Bta/fr { + 420 4 i (5.46)
The anomalous dimension 7, and the dynamic critical exponent z become in this limit
2 2
g°(8N —1) | 1 1312 [ fo
_ il Ed 5.47
" e TRETEAC VAR (5.47)
8°(8N —1) (o)
=1l-——"(==]. 4
z ; 7 (5.48)

5.3.2 Basic flow properties

Before solving the full set of flow equations to construct phase diagrams, let us first extract
some general characteristics by analytical means. We begin with the Dirac case, which
in the limit |f;/f2] — o0 boils down to the (2 + 1)-dimensional relativistic Gross—Neveu
theory. Apart from the fully attractive non-interacting Dirac fixed point

D: (fl/f?yg)* = (iO0,0), (5'49)

the only interacting fixed point for |f1/fa] » 1 is at

2
GNj3 : =+ . 5.50
3 (f1/f2:9). <_OO> AN 1) (5.50)
The fixed point GNj is characterized by a dynamic critical exponent z = 1 and an
anomalous dimension

8N —1

Ty = 204N —1)2° (5.51)

For N = 2, this yields 7, = 0.026. Within our approximation, the correlation-length
exponent v = 1, but there will be N-dependent corrections once higher loop orders are
taken into account. GN3 has a unique RG relevant direction along the g axis, as fo/f1
is irrelevant in its vicinity. We also note that other short-range interactions, such as
flavour-symmetry-breaking operators, are irrelevant at this fixed point (Gehring, Gies &
Janssen 2015). GN3 describes a transition from the semimetallic Dirac phase for g < g
to an ordered phase for g > g, in which the fermions acquire a dynamical mass gap
as a consequence of spontaneous symmetry breaking. Hence, GN3 is an incarnation
of the celebrated relativistic Gross-Neveu critical point in 2 4+ 1 dimensions.®) (This

8) For instance, see Hands, Koci¢ & Kogut (1993); Vasil’ev, Derkachev & Stepanenko (1993); Gracey
(1994b); Vojta, Zhang & Sachdev (2000a,b); Braun, Gies & Scherer (2011); Gracey, Luthe & Schroder
(2016); Mihaila et al. (2017); Zerf et al. (2017); Iliesiu et al. (2018); Ihrig et al. (2018).
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also explains the choice of notation.) In our interaction channel, the ordered state is
characterized by (1T (0® ® 03)¢) # 0, which spontaneously breaks inversion symmetry
between the layers (Vafek 2010). In the large-N limit, the Gross-Neveu fixed-point value
is g« = 72/(4N) + O(1/N?), in agreement with the result we found in the mean-field
theory, Eq. (5.33). Note that values of couplings are in principle non-universal and depend
on the regularization scheme. Here, the position-space regularization has been adapted
to match the mean-field result for the critical coupling. However, it is worth emphasizing
that this agreement may not carry over in the case of other nonuniversal quantities. For
instance, this is the case for the separatrix that defines the phase boundary between the
Dirac semimetal and the interaction-induced insulator for |fi/f2| » 1, which is obtained

from the RG flow as
2 4128 [ f1\ 2
Gelh/) ~ oy [1 E=1CON (5:52)

This is in qualitative, but not quantitative, agreement with the mean-field result,
Eq. (5.33). Let us reiterate that this discrepancy is a consequence of the difference
in regularization schemes and has no effect on universal observable quantities such as
critical exponents, mass ratios, etc., which are scheme-independent.

Let us now proceed to the QBT limit for 0 < |f1/f2| « 1. In this regime, there is only
the Gauflian fixed point at

Q: (fl/f27g)* = (070)7 (553)

describing a noninteracting Fermi system with a quadratic dispersion. The fixed point Q
has a marginal direction along the g axis, while f; is power-counting relevant.

Let us first review the O(2)-invariant case for f; = f3 = 0 and g > 0 in order to
connect with previous work by Sun et al. (2009). In this case, 4 is positive and finite
for all g > 0, implying an instability of the system towards the infrared. More precisely,
integrating the RG flow equation for g, Eq. (5.39), we find for f; = f3 =0,

1
/g0 — n(A/R)(N —1)/(2m)’

with initial value gg = g(k = A). Patently, the evolution of g exhibits a pole at a finite
RG time In(A/kssg) = —27/[go(N — 1)]. Informed by the mean-field analysis, we can
trace back this runaway flow to an instability of the semimetallic state towards the
interaction-induced insulator. The latter is characterized by inversion-symmetry breaking
and a finite vacuum expectation value of the fermion bilinear (¢) o <@Z)ZT (03 ® o3)yt)y # 0.
The effective amplitude of the condensate follows essentially from dimensional analysis,

g(k) for k > kgsp, (5.54)

(p) oc kigp oc e 4/ loo(N =11, (5.55)

where we have used the order parameter’s scaling dimension [¢] = (z + 2)/2 = 2. It is
conceptually satisfying to note that the exponential factor in the above estimate in the
limit N — o0 agrees precisely with the mean-field result, Eq. (5.29). This furnishes a
nontrivial consistency check.

The RG flow equations also allow one to compute the form of the phase boundary
at finite 0 < |f1/f2| « 1. To this end, consider trajectories in parameter space starting
infinitesimally close to the non-interacting QBT fixed point Q. In this regime, fi1/fo
flows according to its canonical scaling dimension, (fi/f2)(k) = (fi/f2)0 k/A, where
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(f1/f2)o = (f1/f2)(k = A), whereas the RG evolution of g is given by Eq. (5.54) above.
Eliminating k/A, one finds the RG trajectories near the fixed point Q as

2 1

9(hi/f2) = N—1InC —1In|f1/fs]

(5.56)

with a positive constant C' = ™90 (N=DI|f, /f,) that is determined by the initial values
((f1/f2)0, g0) of the flow for k = A. Each member of the family of RG trajectories defined
by Eq. (5.56) and parametrized by C' can now be continued ‘backwards’ in RG time
In(A/k) — —oo and will eventually approach the noninteracting QBT fixed point Q. In
the opposite RG time direction, ¢ — 00, one member of the family must be the separatrix
that precisely flows into the critical Gross—Neveu fixed point GN3 in the Dirac limit for
|f1/f2] » 1. In the mean-field theory, this happens for C' = In4, for which the large-N
limit of Eq. (5.56) agrees with Eq. (5.31). Without the mean-field input, the perturbative
RG analysis around Q for |f1/f2| « 1 alone has nothing to say on which of the trajectories
is the separatrix; we shall discuss in the following subsection how to circumvent this
problem by making use of the flow near the Gross—Neveu fixed point in the opposite limit
| f1/f2| » 1. In this subsection, it shall suffice to note that a separatrix that connects Q
with GNj exists for all N and has the form as given in Eq. (5.56).

Let us now discuss the situation for f3 # 0, which induces non-trivial self-energy
corrections that go beyond the mean-field result. To see this, consider the trajectories
starting on the f; = 0 line. Inspecting the flow equations, one finds the slope of all
trajectories with g > 0 as

d(f1/f2) _ ﬁfl/f2 11 2N — 1 f3 1

dg By 213 N—1 fal+ 32(f3/fo)

5+ O(f1/f2). (5.57)

Importantly, the slope is finite for all g > 0, implying that every RG trajectory (except
the one that connects the free theories Q and D at fixed g = 0) crosses the line f; =0
at a finite ¢ when f3 # 0. In particular, this is true for the separatrix that connects Q
with GN3. There must, therefore, be a critical coupling strength g. > 0, below which the
system flows to a Dirac semimetal phase — in contrast to the situation at a symmetry-
protected QBT (cf. Chap. 4). This hence provides a rigorous RG demonstration of the
phenomenology found numerically by Pujari et al. (2017). It is also consistent with the
result obtained within a random phase approximation by Honerkamp (2017).

We close by answering why the mean-field theory is unaware of this behaviour, the
reason for which is more transparent when the above is expressed in terms of the 't
Hooft coupling ¢’ = gN, which remains finite at the Gross—Neveu fixed point GN3. In
(f1/f2,4") space, the same slope is

A(f1/f 22 f
(dlg// 2) = 277T3N]Tz + O(fl/f27 1/N2) 5 (5.58)

and is therefore subleading when sending N — oo while keeping ¢’ = const. In other
words, self-energy effects are suppressed in the large- N limit.

5.3.3 Phase diagrams

We proceed to construct the RG phase diagram in the full (fi/f2,g) coupling space.
As the configuration of the Fermi surface changes from the QBT limit for |f1/fs] « 1
to the Dirac limit for |fi/f2| » 1, the standard regularization scheme in momentum
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Figure 5.6: RG flow diagram in the plane spanned by (fi/f2) and g for constant f3 =
(24/3)7! for (a) N = 2 and (b) in the limit N — co. The Gaussian fixed points corresponding
to the non-interacting Dirac and QBT systems are denoted D and Q respectively, while GN3
is the (2 + 1)-dimensional Gross—Neveu fixed point. The separatrices connecting the different
fixed points are shown in dark red.

space, as well as our position-space regularization scheme, required us to a priori treat
these different regimes separately. This approach led us to the flow equations (5.39)—
(5.41) in the former limit and (5.45)—(5.46) in the latter, and these equations should be
understood as asymptotic expansions in the two different regimes of an unknown set
of flow equations valid for all fi/fs. A useful approximation to these can be obtained
by employing suitable Padé approximants which interpolate between the known limits.
The [m/n] Padé approximant is defined as a degree m/degree n rational function, where
the coefficients in the polynomial numerator and denominator are chosen such that
the approximant reproduces the correct expansions for |fi/fa| « 1 (QBT regime) and
|fi/f2] » 1 (Dirac regime). For the flow equations of fi1/fs and f3/f2 we use [3/2] and
[2/2] Padé approximants,

ao + a1(f1/f2) + aa(f1/f2)* + (f1/f2)?

e Y WYY AR Y A (559
_co +ei(fi/f2) + e i/ fo)?
5f1/f2 = 1+ (f1/f2)2 ) (5.60)

which corresponds to the minimal degree necessary to match Eqgs. (5.40), (5.41), and
(5.46). Other choices are possible in principle as well, and the above approximants have
been selected under the demand that they be of minimal degree needed to faithfully
reproduce the asymptotic expansions for fi/fs — 0 and fo/f1 — 0, respectively, and do
not introduce any unphysical poles in the resulting Padé-approximated flow equations.
For the flow equation of g, it proved advantageous to perform the interpolation separately
for the even and odd parts in fi/fo, explicitly

5, = do + da(f1/f2)* + da(f1/f2)* N di(f1/f2)
J L+ e2(f1/f2)? + (f1/f2)* L+ (fi/f2)*

Note that the coefficients a;, b;, ¢;, d;, and e; are independent of fi/fs, but depend on g
and f3/fs. Their explicit values are given in Appendix B.

The resulting RG flow diagram for N = 2, relevant for the honeycomb bilayer, is
depicted in Fig. 5.6(a). The diagram shows a cut through parameter space at a fixed
f3/f2 = (2/3)7! in the QBT regime, chosen to match the microscopic tight-binding value
in the honeycomb bilayer, Eq. (5.20). For simplicity, the UV cut-off A has been identified
with the inverse of the lattice constant. Apart from the non-interacting fixed points Q at

(5.61)
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fi/f2 = 0and D at | f1/f2] = o0, the critical Gross—Neveu fixed point GN3 at |f1/fa| = o0
is the only interacting fixed point. (Recall that the two vertical axes at fi/fo = +0o0
and f1/fs = —o0 should be identified with each other, as they are related by inversion
symmetry p — —p emerging for fo = f3 = 0.) All RG trajectories for g > 0 cross the
QBT axis at f1/f2 = 0 with a finite slope. The separatrix connecting Q with GN3 in the
regime f1/f2 = 0 therefore crosses this line at a finite value of the coupling. The critical
coupling g. at which this happens for N = 2 and fixed f3/f> = (2¢/3)~! in the QBT
regime is found to be g, &~ 0.35. We have checked numerically that the inclusion of the
running of f3/fs in the QBT regime does not change the qualitative characteristics of the
flow diagram, and only moderately modifies its quantitative features. In particular, we
find that the improved critical coupling that includes the running of f3/fs is g. ~ 0.40 for
the initial value (f3/f2)(t = 0) = (24/3)~!. This should be contrasted with the situation
for N — oo, depicted in Fig. 5.6(b). In this limit, the flow diagram becomes symmetric
with respect to fi/fa — —f1/f2, and the separatrices no longer cross the QBT axis for
strict N = o0. Inclusion of a finite f3/f has qualitatively no influence. In the QBT limit,
the critical coupling g., below which the semimetallic phase is stable, vanishes for large
N, implying spontaneous symmetry breaking for all finite values of g > 0. As an aside,
let us note the qualitative agreement between Figs. 5.6(b) and 5.4, which is reassuring.

The low-temperature physics conveyed by the RG flow can be summarized as follows:

1.) For initial couplings f; = f3 = 0, which corresponds to the QBT with the full
rotational O(2) symmetry, there is an instability already at infinitesimal coupling,
in agreement with the previous works.?) This is illustrated in Fig. 5.7(a).

2.) For the QBT systems with C5 symmetry only and trigonal warping tuned to zero,
f1 =0and f3 # 0, there is a stable Dirac semimetal phase for g < g. with a finite
critical coupling g. > 0, see Fig. 5.7(b). The instability occurs only for g > g., in
agreement with the numerics of Pujari et al. (2017). The critical coupling vanishes
in the large-N limit, as well as when all O(2)-breaking microscopic perturbations,
such as fs, vanish.

3.) When the QBT point is split into the four symmetry-allowed Dirac points by a
sufficiently small positive trigonal warping, a more complex scenario emerges. For
initial (microscopic) parameters 0 < fi/fa « 1, lines of constant fi/fa cross a
separatrix connecting Q and GN3 three times. This leads to a rich phase diagram as
a function of the short-range coupling g, including three quantum phase transitions
at gei, © = 1,2, 3, between semimetallic and symmetry-broken phases, see Fig. 5.7(c).
In the limit f1/f2 \, 0, both g1 and geo go to zero, and we recover the standard
phase diagram comprising a single critical coupling g. = gc3. This scenario is
directly testable in current numerical setups (Lang et al. 2012; Pujari et al. 2017).

5.4 Discussion

Let us discuss the critical behaviour that one should expect for the continuous semimetal-
insulator transitions established above for QBT systems with C3 symmetry. To begin

9 ¢f. Sun et al. (2009); Zhang et al. (2010); Vafek & Yang (2010); Vafek (2010); Uebelacker & Honerkamp
(2011); Lang et al. (2012); Scherer, Uebelacker & Honerkamp (2012); Cvetkovic, Throckmorton &
Vafek (2012); Song, Liang & Haas (2012)
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Figure 5.7: Schematic low-temperature phase diagram of QBT systems with (a) full
rotational O(2) symmetry, (b) C5 symmetry without trigonal warping t, = 0 and (c)
sufficiently small trigonal warping 0 < t,, « t2/t; on the microscopic level, as a function
of the short-range interaction g. The insets indicate the low-energy fermion spectra in the
quadratic band touching (QBT), Dirac semimetal (DSM), and spontaneous-symmetry-broken
(SSB) phases.

with, note that all RG fixed points found by interpolating between the QBT and Dirac
regimes are located in the strict limits f1/fo = 0 and | f1/f2| — o0, respectively. That this
must be so, at least on the level of perturbation theory, can be inferred from the following
indirect argument: Assume that a fixed point at finite 0 < |f1/f2| < 0 exists. Such a
fixed point would describe a scale-invariant Dirac system in which the coefficient fo/f1
of the quadratic term in the dispersion does not flow. This, however, is in contradiction
with the fact that fo/f; is power-counting irrelevant. Thence, the only possible path in
parameter space for the separatrix emanating from the fixed point GN3, when continued
backwards in RG time, is through the QBT axis fi/f2 = 0 (crossing this axis, as we have
seen above, at a finite angle), and eventually approaching the fixed point Q. This general
argument is in agreement with our explicit findings, see Fig. 5.6.

The quantum critical transitions shown in Figs. 5.7(b) and (c) are therefore described
by the fully relativistic Gross—Neveu universality class with dynamic exponent z = 1,
comparatively large correlation-length exponent v = 1 4+ O(1/N), and large order-
parameter anomalous dimension 74 = 1+ O(1/N). The O(1/N) corrections to these
exponents depend on the symmetry of the order parameter and the number of fermion
flavours, as we discuss in the following.

For the case of spinless fermions on the honeycomb bilayer, natural instabilities
are towards an inversion-symmetry-broken state (Vafek 2010), a charge-density wave
(Scherer, Uebelacker & Honerkamp 2012), or a quantum anomalous Hall phase (Sun
et al. 2009; Zhu et al. 2016; Zeng, Zhu & Sheng 2018; Sur et al. 2018), all of which
spontaneously break Ising Zs symmetries. The critical exponents of the corresponding
Gross-Neveu-Ising universality class are well-established.!®) Within the 1 /N expansion,

10)¢f. e.g., Hands, Kocié & Kogut (1993); Vasil’ev, Derkachev & Stepanenko (1993); Gracey (1994b);
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they read as (Vasil’ev, Derkachev & Stepanenko 1993; Gracey 1994b; Janssen & Herbut
2014)

4 632 + 2772
1/v=1-— 1/N3
/v 3N T ormane T OW/NY)

~ 1.018(85)  for N =2, (5.62)

8 304 — 2772
=1 1/N3
¢ 5N T ormnz O/

~ 0.868(4) for N = 2. (5.63)

Here, the size of the O(1/N?) correction serves as a simple estimate for the numerical
uncertainty at N = 2. Note that NV in the present notation corresponds to the number of
QBT points in the microscopic theory, each of which splits into four Dirac points with
two-component (pseudo-)spinors (equivalent to two four-component Dirac flavours per
QBT valley), in the case without a physical spin. The values of the other exponents «, 3,
7, and § can be obtained from v and 7, by means of the usual hyperscaling relations
(Herbut 2007). For the fermion anomalous dimension, even the O(1/N?3) correction is
known,

1 98 501+ 2268¢(3) — 72(94 + 216 1n2) ,
_ _ O(1/N
W= 3Nt or Nz 129676 V3 +O(1/N7)
~0.0195(1)  for N = 2. (5.64)

Although the precise determination of the exponents has not been the focus of our
endeavours this chapter, it is satisfying to note broad agreement of the above results
with our RG calculations, which led to the estimates v ~ 1 and 7y, ~ 0.026 for N = 2, as
noted earlier.

For the spin-1/2 case, the number of fermion flavours is doubled, i.e., N = 4 for
the case of the honeycomb bilayer. An instability towards a charge density wave phase
is possible in this case as well upon tuning the nearest-neighbor repulsion (Scherer,
Uebelacker & Honerkamp 2012). Such a transition would be described by the Gross—
Neveu—Ising universality class with the above equations evaluated for N = 4, leading
to 1/v ~ 0.988(21), 1y ~ 0.933(1), and 7, = 0.00910(1). The most natural instability,
however, which occurs upon tuning the on-site Hubbard repulsion, is towards the Néel
antiferromagnet (Lang et al. 2012; Pujari et al. 2017), spontaneously breaking the
Heisenberg SU(2) spin symmetry. The critical behaviour of the continuous transition
is described by the corresponding Gross-Neveu-Heisenberg universality class.')) In the
1/N expansion, the exponents are (Gracey 2018)

4 104 + 972 3
1/V—1—7T2N+ SN2 + O(1/N?)
~ 0.940(41) for N =4, (5.65)
16 + 372 3
=1+ —— 1/N
Mo =1+ 1T 4 O(1/NY)
~ 1.010(10) for N = 4, (5.66)

Vojta, Zhang & Sachdev (2000a,b); Braun, Gies & Scherer (2011); Gracey, Luthe & Schroder (2016);
Mihaila et al. (2017); Zerf et al. (2017); Iliesiu et al. (2018); Ihrig et al. (2018)

Wef, Janssen & Herbut (2014); Parisen Toldin et al. (2015); Otsuka, Yunoki & Sorella (2016); Zerf et al.
(2017); Knorr (2018); Gracey (2018)
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Figure 5.8: Schematic phase diagram of QBT systems with C3 symmetry as a function of
temperature T" and short-range interaction g. Dashed curves denote crossovers, the solid curve
denotes the finite-temperature phase transition for the case of discrete symmetry breaking.
The dashed green horizontal line separates the universal regime at intermediate and low
temperatures from the non-universal high-temperature regime. At intermediate temperatures,
the fermion spectrum is effectively quadratic, characterized by dynamic exponent z = 2
(QBT). At temperatures below the blue dashed curve, the flow enters the Dirac regime with
z = 1 (DSM). The black dashed lines emerging from the critical point at g. denote the
quantum critical regime, characterized by a continuum of excitations. The transition towards
the ordered phase occurs at finite temperature in the case of discrete spontaneous symmetry
breaking (SSB). The critical temperature T, oc (g — g.)” is shown as solid red curve, together
with its concomitant classical critical regime (grey shaded).

and
1 4 332 — 378¢(3) + 972(5 + 41n 2) 4
= 2N + 3TiN2 7275 N3 +O(1/N7)
~ 0.0261(1) for N =4, (5.67)

with z = 1. Let us note that the rough estimates v = 1.0(2) and z = 0.9(2) obtained
by Pujari et al. (2017) in simulations of spin-1/2 fermions on the honeycomb bilayer
are consistent with the above values for N = 4 (corresponding to eight flavours of
four-component Dirac spinors).

Let us append a discussion on the expected finite-temperature phase diagram, assum-
ing a QBT system without trigonal warping (i.e., ty, = 0) on the microscopic level. The
qualitative finite-temperature behaviour can be obtained from the RG by noting that
temperature sets a scale at which the flow is effectively cut off. For weak interactions
g < gc, the RG scale at which the flow escapes the regime of fixed point Q is exponentially
suppressed, leading to a large regime of temperature values at which the dynamic critical
exponent is effectively z = 2, see Fig. 5.8. Signatures of the splitting into Dirac cones
will only be observable at low enough temperatures T < (Ti/N?) exp(f;—]’\r]), where
T, = O(t?/t1) denotes the absolute energy scale in the honeycomb bilayer system and
the factor 1/N? accounts for the fact that self-energy effects are suppressed in the large- N
limit, cf. Eq. (5.58). In the quantum critical regime at g ~ g., there is a continuum of
excitations and the specific heat CYy/, for instance, will scale as

T for T 2 T N 2e=4m/(9eN)

T2 for T < T,N~2c—4/(9eN) (5.68)

CVoCTd/Z ~ {
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At stronger couplings g > g, there will be a finite-temperature phase transition towards
an ordered state, assuming that the latter does not break a continuous symmetry. This is,
for instance, the case for the inversion-symmetry-broken, charge density wave, or quantum
anomalous Hall states discussed earlier. The critical temperature scales as T oc (g — gc)¥?
with z = 1 and v as in Eq. (5.62) near the (2 + 1)D Gross-Neveu-Ising quantum critical
point. The classical critical regime in the vicinity of the finite-temperature transition
in this case is then described by the classical 2D Ising universality class, e.g., v = 1
and 714 = 1/4. It shrinks upon approaching g — g. from above. Note that in the case
of continuous symmetry breaking in the ordered ground state, such as in the spin-1/2
Hubbard model on the honeycomb bilayer for large on-site repulsion, there will be no
genuine finite-temperature transition as a consequence of the Coleman—Mermin—Wagner
theorem. Nevertheless, the finite-temperature crossovers depicted in Fig. 5.8 will persist.

5.5 Summary and outlook

We have performed a theoretical analysis of 2D Fermi systems with quadratic band
touching on lattices with C3 symmetry. A natural physical realization is given by the
problem of interacting fermions on Bernal-stacked bilayer honeycomb lattices, such as in
bilayer graphene. We have derived an effective low-energy continuum field theory that
accounts for the explicit breaking of the continuous rotational symmetry characteristic for
tricoordinate lattices and have shown, within a consistent perturbative RG calculation,
that density-density interactions at two loops drive a splitting of each QBT point into
four Dirac cones. In contrast to the QBT systems with full rotational symmetry, in
the systems with C3 symmetry only, the semimetallic state is stable within a finite
range of interactions 0 < g < g.. At the critical coupling g., the system undergoes a
continuous quantum phase transition that has no classical analogue due to the presence
of gapless fermion degrees of freedom at criticality. This result is in agreement with
previous quantum Monte Carlo (Pujari et al. 2017) and random phase approximation
studies (Honerkamp 2017).

The RG flow demonstrates that the quantum critical behaviour near g. is described
by the celebrated Gross—Neveu—Ising (Gross—Neveu—Heisenberg) universality class for
the case of Ising (Heisenberg) symmetry breaking, and we have given estimates for
the universal critical exponents by employing known large-N calculations (Vasil’ev,
Derkachev & Stepanenko 1993; Gracey 1994b; Janssen & Herbut 2014; Gracey 2018).
Our RG results have also uncovered the complex phenomenology at finite temperature,
revealing crossovers between QBT, Dirac, and quantum critical regimes. Furthermore,
at small positive trigonal warping, 0 < t,, « t2/t;, we have predicted an interesting
sequence of three Gross—Neveu quantum phase transitions as a function of the short-range
interaction. All these predictions are directly testable using current numerical setups
(Lang et al. 2012; Pujari et al. 2017).

Concerning the real-world system of Bernal-stacked bilayer graphene, we can use
the RG analysis presented in this chapter thus far to obtain a simple estimate for the
interaction strength as follows: Bernal-stacked bilayer graphene exhibits an ordered
ground state below T, ~ 5K with a zero-temperature gap A(0) ~ 3meV (Bao et al.
2012). The general scaling argument suggests T ~ The *™/(9N) with the effective energy
scale Ty, which may be estimated from the coefficient of the quadratic term in the
dispersion [Eq. (5.9)] as kgTx ~ t2/t; ~ 20eV (Zhang et al. 2010). From this, we arrive
at the estimate g ~ 0.6, which appears to be only slightly larger than our result for
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the critical coupling g. ~ 0.4 (see Sec. 5.3.3). This suggest that Bernal-stacked bilayer
graphene may be not too far from the Gross—Neveu quantum critical point and may
show vestiges of the quantum critical scaling, e.g., in a regime above but close to the
transition temperature, T = T,.12)

Let us also mention in this context that one may also be able to reveal this quantum
critical regime directly in set-ups which allow one to tune the interaction strength
experimentally — for instance, using cold atoms in an optical lattice (Sun et al. 2012).

A worthwhile theoretical issue that we have neglected here, but may be relevant
for bilayer graphene, is the effect of the long-range tail of the Coulomb repulsion. In
the QBT limit, with vanishing trigonal warping, the density of states is finite and
a long-range interaction is expected to be screened at low energy. When the QBT
points split into Dirac cones due to the self-energy corrections, by contrast, screening is
effectively suppressed. This might lead to a nontrivial interplay between the long-range
and short-range components of the Coulomb interaction, potentially with similarities to
the intriguing higher-dimensional case.!®) It may also be useful to study the self-energy
effects in the context of the competing-order problem occurring in realistic models for
Bernal-stacked bilayer graphene (Cvetkovic, Throckmorton & Vafek 2012). To this end,
one would need to extend the present single-channel analysis by employing a suitable
Fierz-complete basis of four-fermion interactions (Herbut, Juri¢i¢ & Roy 2009; Gies &
Janssen 2010; Vafek 2010) and studying the resulting interplay between these channels.
This could lead to even richer physics at low and intermediate temperatures.

Throughout this work, we have assumed particle-hole symmetry. In real bilayer
graphene, this will be broken due to the presence of longer-ranged hopping terms. In
that case, the Dirac cones generated dynamically from self-energy effects would tend to
form electron and hole pockets at tree-level. This, however, may be counteracted by the
mechanism of emergent particle-hole symmetry, which we computed explicitly for the
Luttinger semimetallic state in Chap. 4. Whether this mechanism also goes through for
the Dirac semimetal may be an interesting topic for future research. (There may also be
non-trivial interplay between the formation of pockets and the emergence of particle-hole
symmetry.) If the emergence of particle-hole symmetry turns out to be subordinate to
the formation of pockets, there may be further instabilites at the lowest temperatures,
and potentially new universality classes beyond the relativistic Gross—Neveu—Yukawa
family.

121t is worth noting the contrast to graphene, where estimates for the interaction strength place it far
from quantum criticality (cf., e.g., Castro Neto et al. 2009); the significantly reduced g., which allows
Bernal-stacked bilayer graphene to avoid this fate, is an imprint of the (approximately) QBT dispersion
at the microscopic level, even though the ultra-deep IR physics near quantum criticality is of the
Gross—Neveu kind just like in monolayer graphene.

13)¢f., e.g., Moon et al. (2013); Herbut & Janssen (2014); Savary, Moon & Balents (2014); Janssen &
Herbut (2015, 2016b, 2017); Boettcher & Herbut (2017).



Chapter 6

Dirac from Luttinger II:
Spontaneous Symmetry Breaking

In the previous chapter, we saw that based on some rough estimates, one may consider
Bernal-stacked bilayer graphene (BBLG) to be situated close to a quantum critical point
of the Gross—Neveu family. Beyond the general paucity of experimentally accessible
signatures of Gross—Neveu quantum criticality, this is notable for two reasons: First,
there is the emergence of relativistic Dirac fermions in BBLG, which is unusual given
that the microscopic band structure hosts quadratic band touchings (QBTSs), and thus
the (bare) low-energy excitations are Luttinger fermions. The reason behind this is
the fact that the lattice explicitly breaks the rotational symmetry down to C3, which
generates a linear term in the dispersion via a two-loop self-energy correction. Secondly,
the proximity to quantum criticality is also somewhat unusual, given that its monolayer
counterpart (i.e., monolayer graphene) is far from criticality. This, as we saw from the
explicit computation, is because the critical coupling is significantly lowered compared to
a pure Dirac semimetal. This in turn was — roughly speaking — because the RG flow is
initiated with a quadratic dispersion, which has a comparatively high density of states.

The goal of this chapter is to study the complementary ‘Dirac from Luttinger’ scenario,
namely where one Luttinger fermion splits into two Dirac fermions (or in terms of the
band structure, a QBT into two Dirac cones). On honeycomb bilayers, such a process
becomes symmetry-allowed, if the rotational symmetry is spontaneously broken down
to Cy — i.e., in the presence of nematic order.?) Signatures of a quantum critical point
from the Gross—Neveu family will arise, if these emergent Dirac fermions subsequently
undergo spontaneous symmetry breaking of their own. The final state will then feature
two independent order parameters with non-vanishing vacuum expectation value: a
coexistence phase.

That the ground state of BBLG may be in (or proximate to) such a phase is a
plausible proposition. This is due to the fact that electrons on the honeycomb bilayer
have many possible ground states to select from, which are very close to each other
in energy (Jung, Zhang & MacDonald 2011). Indeed, for this reason, the ground state
of BBLG has attracted considerable attention ever since its experimental realization
by Novoselov et al. (2004); an unambiguous identification of the actual nature of the

U In the present chapter, we shall only consider phases that arise from the ‘Luttinger semimetal’ by
spontaneous symmetry breaking. At ultra-low temperatures — or equivalently, at the very longest
length scales, this physics will be cut off in any case by the generation of Dirac cones by the mechanism
discussed in Chap. 5.
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Figure 6.1: Ground state of two different BBLG samples. Left (adapted from Velasco
Jr. et al. 2012): At low temperature, the differential conductance G as a function of gate
voltage V vanishes in a finite range around the charge neutrality point V = 0, suggesting
an insulating state with a gap of roughly 1.9meV. Right (adapted from Mayorov et al.
2011): The conductivity minimum o,;, as a function of temperature T saturates at low
temperatures to about (20/7)(e?/h), where h = 2rh is Planck’s constant. This excludes a
gapped state, but also the QBT state in BBLG, for which the zero-temperature conductivity
minimum would be significantly lower, viz., (8/7)(e?/h) (see Snyman & Beenakker 2007).
That this is indeed due to nematicity rather than trigonal warping (see Chap. 5 for details
on the latter) can be demonstrated by measuring the degeneracy of the lowest Landau level,
which comes out at 8 rather than 16, see again Mayorov et al. (2011).

material’s zero-temperature ground state is, however, outstanding to date. Transport
and spectroscopic experiments have indeed observed an interaction-driven reconstruction
of the fermionic spectrum at temperatures below around 10 K — an ordered ground state
is hence beyond doubt. However, while some of the experiments indicate an insulating
ground state with a full bulk band gap (Velasco Jr. et al. 2012; Freitag et al. 2012; Bao
et al. 2012; Veligura et al. 2012), others suggest only a partial gap opening in which
four isolated Dirac cones remain gapless in the bulk spectrum (Mayorov et al. 2011), see
Fig. 6.1. The latter would imply a low-temperature ground state that breaks part of
the lattice rotational symmetry spontaneously. In fact, such an electronic nematic order
had indeed previously been predicted on the basis of perturbative renormalization group
(RG) analyses (Vafek & Yang 2010; Lemonik et al. 2010). Later theoretical studies? have
shown, however, that an antiferromagnetic state, characterized by finite and opposite
net magnetizations within the two layers (Lang et al. 2012; Kharitonov 2012), is at least
comparable in energy and in fact prevails over a large section of parameter space. This
layer antiferromagnet features a full gap in the electronic spectrum, and among the
different candidate ground states it appears to be the one that is most consistent with
the measurements on the samples that become insulating at low temperatures (Velasco
Jr. et al. 2012).

Our strategy in this chapter will be as follows: First, we shall revisit the problem of the
low-temperature ground state in bilayer graphene by investigating the phase diagram of a
model of short-range-interacting electrons on the honeycomb bilayer. We shall focus on the
competition between the nematic and antiferromagnetic orders, which appear to be the
two most promising candidate ground states consistent with the experiments (Mayorov et
al. 2011; Velasco Jr. et al. 2012). In particular, we study the possibility of coexisting orders,
which was only insufficiently addressed in previous work (Cvetkovic, Throckmorton &
Vafek 2012). At small to moderate coupling, we shall in this way show that the nematic

2 cf., e.g., Vafek (2010); Cvetkovic, Throckmorton & Vafek (2012); Lemonik et al. (2012); Scherer,
Uebelacker & Honerkamp (2012); Lang et al. (2012); Pujari et al. (2017); Honerkamp (2017); Leaw et
al. (2019)
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and antiferromagnetic phases are generically separated by an intermediate coexistence
phase, which features both layer antiferromagnetism and nematicity, see Fig. 6.2. (In
the coexistence phase, the fermionic spectrum thus exhibits a full, but rotationally
anisotropic band gap.) The main focus of this chapter will then be the transition between
the coexistence phase and the nematic phase. At this transition, the electronic band gap
closes at four isolated Fermi points in the Brillouin zone, with linear band dispersions in
their vicinities. This is a necessary condition for Gross—Neveu quantum criticality, but it
is not sufficient. Due to the non-vanishing nematic order parameter, not only Lorentz
symmetry, but in fact even spatial rotational symmetry is broken [in other words, the
spacetime symmetry is only Zs x Co instead of SO(3)]. We shall hence need to establish
that Lorentz symmetry is indeed emergent. This we shall do so by computing the scaling
dimension of symmetry-breaking perturbations to first order in perturbation theory,
using two complementary approaches: (i) a 2 + € and (ii) a 4 — € expansion around the
lower and upper critical dimensions respectively (i.e., the spacetime dimensions where
the 4-Fermi and the Yukawa theory are perturbatively renormalizable, respectively).

6.1 Model

Since a fully satisfactory microscopic model of the electronic interactions in bilayer
graphene is currently not agreed upon,® we shall employ here a minimal theoretical
description that allows us to study the competition between nematic and antiferromagnetic
orders and the possibility of a coexistence phase on the honeycomb bilayer. The present
approach may be viewed as a simple phenomenological modelling that captures the
physics of the two most prominent candidate ordered states discussed in experimental
works (Mayorov et al. 2011; Velasco Jr. et al. 2012). It restricts the multidimensional
parameter space discussed in previous more comprehensive works? to a simple two-
dimensional subspace. Explicitly, let us consider the Euclidean action S = SdeQmﬁQBT
in imaginary time 7 and two-dimensional space = (z,y)' with
/
%[@T(Fa@)ng)\y]z,
(6.1)

Lopr = U'[0r + do(~10) (0 ® 12)]¥ — [ (0. @ 00) ¥]° -

where a = 1,2 and a = x, ¥, z. In the above and the following equations, the summation
convention over repeated indices is implicitly assumed. The d, functions are ¢ = 2 real
spherical harmonics in d = 2, given by

di(—10) = =03 + 0;,  da(—i0) = —20,0,, (6.2)

and transform under spatial rotations as components of a second-rank tensor (Janssen
& Herbut 2015). The spinors ¥ and ¥ have eight components, corresponding to the
layer, valley, and physical spin-1/2 degrees of freedom (Vafek & Yang 2010). The 2 x 2
Pauli matrices o, o = x, ¥, z, act on the physical spin index and transform as a vector
under SU(2) spin rotations. The 4 x 4 matrices I'y, I'y, and I, realize a four-dimensional
representation of the Clifford algebra, and can be represented explicitly by tensoring
Pauli matrices as

Iy =12 g, Fy = T, @ Ly, I, =1® u., (63)

3) See, nevertheless, Wehling et al. (2011) for ab-initio results for monolayer graphene and bulk graphite,
as well as Zhang et al. (2008) for an overview of band structure model parameters for bilayer graphene.
Y cf., e.g, Cvetkovic, Throckmorton & Vafek (2012); Lemonik et al. (2012); Szabo & Roy (2021)
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where in the above tensor products the first (second) factors act on the layer (valley)
indices. Here, the 2 x 2 Pauli matrices that serve as building blocks for the I" matrices
have been denoted by 7, and u, to distinguish them from those acting on the physical
spin index. While I';, and I', transform as components of a second-rank tensor, I', is
a scalar under spatial rotations (cf. Chap. 5). In this representation, the time-reversal
operator is given as T = (7, ® 12) ® 0y, IC, where K denotes complex conjugation. The
first factor of the unitary part essentially represents interchanging the two valleys, while
the second factor represents spin flip. Eq. (6.1) assumes particle-hole symmetry and a
continuous spatial rotational symmetry. In particular, this model neglects the effects of
trigonal warping that are expected to play a dominant role only in the weakly-interacting
regime.?) The units have been chosen such that the isotropic effective band mass is
m* = 1/2. The spectrum of the noninteracting Hamiltonian Ho(p) = du(p)(Ta ®12) then
is simply 60i (p) = +p?, where p denotes the deviation from the corners K and K’ of
the hexagonal Brillouin zone. It describes the nonrelativistic two-dimensional ‘Luttinger’
semimetal (cf. Chap. 4) in which the valence and conduction bands touch quadratically
at the two Fermi points at K and K'.

The four-fermion interactions parametrized by the couplings ¢ and ¢’ in Eq. (6.1)
are chosen such that they stabilize antiferromagnetic and nematic long-range order,
respectively. This can be seen as follows: The three-component fermion bilinear ¢ ~
U, ® o)V, associated at the mean-field level with the four-fermion coupling g, is
even under time reversal, a scalar under spatial rotations and a vector under SU(2) spin
rotations. Assigning a finite vacuum expectation value to ¢ hence breaks spin-rotational
symmetry while leaving spatial rotational symmetry and time reversal intact. It describes
the layer antiferromagnet, in which the two honeycomb layers feature finite and opposite
magnetizations (Cvetkovic, Throckmorton & Vafek 2012; Kharitonov 2012). Importantly,
the corresponding operator I', ® o anticommutes with the single-particle Hamiltonian
Ho, and hence a vacuum expectation value of ¢ opens a uniform gap in the fermionic
spectrum, of size oc [{¢)|. Microscopically, the 4-Fermi term parametrized by g can be
understood to arise from an interlayer interaction that couples spin densities on the two
honeycomb layers (Vafek 2010; Cvetkovic, Throckmorton & Vafek 2012). On the other
hand, the bilinear corresponding to the coupling ¢, nga ~ ¥/(T'y ® 15)¥, transforms
as the components of a second-rank tensor under spatial rotations, while being even
under spin rotations and time reversal. When n, obtains a finite expectation value, the
spatial rotational symmetry on the honeycomb bilayer is spontaneously broken while
all other symmetries are left intact. The bilinear n, corresponds to the nematic order
parameter (Vafek & Yang 2010; Cvetkovic, Throckmorton & Vafek 2012). Its components
commute with one of the matrices appearing in the single-particle Hamiltonian, while
anticommuting with the other. A gap in the electronic spectrum is therefore not opened
up in the state with nematic order alone; instead, each quadratic band touching point
splits into two mini-Dirac cones located in close vicinity of the corners K and K’ of
the hexagonal Brillouin zone, along the axis chosen by {(n,). On a microscopic level, the
coupling ¢’ can be thought of as parametrizing inter-valley scattering processes between
the K and K’ points (Vafek & Yang 2010; Vafek 2010; Cvetkovic, Throckmorton &
Vafek 2012).

The symmetry of the noninteracting Hamiltonian allows a number of further short-
range interactions (Vafek 2010), which are neglected here for simplicity. These may change

%) cf. Cvetkovic, Throckmorton & Vafek (2012); Pujari et al. (2017); Honerkamp (2017); Hesselmann et
al. (2020); see also Chap. 5 of this thesis
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Figure 6.2: Mean-field phase diagram of interacting electrons on the Bernal-stacked honey-
comb bilayer as a function of short-range couplings g and ¢’ defined in Sec. 6.1. Blue and
red colour codings indicate the magnitudes of the nematic and antiferromagnetic orders,
respectively. The electronic spectra near the corners of the hexagonal Brillouin zone are
depicted for the different states in the insets. The grey rectangle shows a zoom into the
weakly-interacting regime, with the dotted grey line indicating the phase boundary between
nematic and antiferromagnetic orders in the fermionic RG calculation (Sec. 6.2). The dashed
black line indicates the cut used in Fig. 6.3. The antiferromagnetic-to-coexistence transition
(thick white curve) becomes weakly first-order due to higher-order symmetry-breaking terms.
The nematic-to-coexistence transition (thin white curve) is continuous and falls into the
Gross—Neveu-Heisenberg universality class (Sec. 6.3).

some of our results on a quantitative level, such as the size of the phases and the location
of the phase boundaries in parameter space. However, our main conclusions, including
the existence of a coexistence phase and the nature of the transitions into and out of
this phase are expected to be robust upon the inclusion of these further interactions,
as long as they do not become too large. The same holds for the long-range tail of the
Coulomb interaction, which may be included as well, but is expected to be screened at
low energies (Lemonik et al. 2012).

6.2 Phase diagram and transitions

The object of this section is to explore the phases contained in the model (6.1) as a
function of the coupling parameters g and ¢’ at the level of mean-field theory, and
establish some basic facts about possible transitions between them. The considerations
are restricted to positive interactions g, ¢’ > 0, which allows one to obtain an equivalent
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order-parameter field theory by means of a Hubbard—Stratonovich transform,

¢2 n? + .
EHST = % + 279/ +VU [67- + da(—la)(ra ® ]12)] v
— 0o VT, ®00)¥ — n, 0N, ® 12)7, (6.4)

where ¢? = ¢podn, @ = 2,1,z and n? = ngng, a = 1,2. The collective fields ¢, and
ng are related to fermion bilinears via the equations of motion ¢, = g¥T(I', ® 0,)¥
and n, = \IIT(I‘Q ® 12)W. Let us now integrate out the fermions by performing the path
integral of ¥ and U in Lygr, allowing us to write down an effective description in terms
of the two order parameters alone,

¢*  n®  Np :
Lop=—+ 2— — Trln [6 + d, (—la)(ra ®]12) - ¢a(rz ®0a) - na(P(I@]lQ)]‘

29 4
(6.5)

In the above, an additional parameter Nt has been inserted; it counts the number of valley
and spin degrees of freedom, with Nf = 4 corresponding to the present case of spin-1/2
fermions on the honeycomb bilayer. In the limit Ny — 00, bosonic fluctuations freeze out
and mean-field theory becomes exact. One can then replace ¢, n, with corresponding
classical fields and perform the trace in momentum space. Evaluating the frequency
integral, one thus finds the familiar sum over energy of filled states for the mean-field
effective potential

¢? d’p _
VMF((rbvna) - 27 + ? + fo <A (2 )2 5¢7n(p)7 (66)
where
el (p) = £\/p* + ¢ + n® — 2n,da(p) (6.7)

denotes the fermion spectrum in the presence of a constant bosonic background, and A
is a UV momentum cut-off. In the following, we shall assume n, = (n,0) without loss of
generality. The momentum integration and subsequent energy minimization is performed
numerically. The resulting phase diagram assuming ¢, n « A? is shown in Fig. 6.2. If the
interaction is predominantly g (¢’), the antiferromagnetic (nematic) state is preferred.
While the electronic spectrum in the antiferromagnetic phase is fully gapped, in the
nematic phase each quadratic band touching point splits into two gapless mini-Dirac
cones. In between, however, a state in which both {(¢) and (n) are nonvanishing is
stabilized—a coexistence phase. This phase is characterized by an anisotropic, but fully
gapped electronic spectrum, see inset in Fig. 6.2.

In the limit g, ¢’ — 0, the coexistence phase shrinks and is located around the line
described by ¢’ = 2g (dotted grey line in Fig. 6.2). The latter can be understood from an
RG perspective: The pertinent S-functions at one-loop order essentially® follow from the
N¢ — o0 limit of Egs. (7) and (8) of Vafek & Yang (2010). They are given by

/89 = 2927 Bg’ = (g/)Qa (6.8)

6 Note that in the strict mean-field limit N; = 00, all that matters are the (anti-)commutation properties
of the matrices appearing in the four-fermion interaction with the free fermion propagator. Hence, the
fact that we are actually studying here the spin counterpart of the rotationally invariant gapped state
considered by Vafek & Yang (2010) does not change the S-functions in this limit.
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where the couplings have been rescaled a la 't Hooft as (g,¢')Nt/(47) — (g,9’); any
terms that vanish for N — o0 have been dropped. The ¢ axis, the ¢’ axis, and the
line ¢ = 2¢g are invariant subspaces of the RG flow. We use conventions in which a
positive S-function corresponds to an infrared relevant direction. Hence, for positive
initial couplings, the flow always diverges as (g, g') — (00, 0) in the infrared. In fact, this
occurs within finite RG time and signifies spontaneous symmetry breaking. In the RG
approach, the usual strategy to determine the nature of the symmetry-breaking ground
state is then based on comparing susceptibilities of the corresponding order parameters.”)
It should be emphasized here, however, that such an analysis does not allow one to
identify possible coexistence phases in a controlled way (Cvetkovic, Throckmorton &
Vafek 2012). For the present large- Ny flow equations (6.8), the susceptibility analysis
becomes particularly simple, as the ratio ¢’/g approaches either zero or infinity in the
infrared, depending on the initial values of the couplings: For ¢'/g > 2, ¢’/g — o0 and
the nematic susceptibility has the strongest divergence. For ¢’/g < 2, on the other hand,
g'/g — 0 and the antiferromagnetic susceptibility dominates. The RG invariant line
9'/g = 2 hence represents the transition line between nematic and antiferromagnetic
orders in the weakly-interacting limit, in agreement with the present mean-field analysis
above, see Fig. 6.2. For finite short-range couplings, however, the mean-field calculation
shows that the transition line is ‘smeared out’ into an extended coexistence phase. Upon
increasing g and ¢’, the higher-order corrections incorporated in this calculation shift the
location of the coexistence phase towards smaller ratio ¢'/g.

Figure 6.3 shows the evolution of the nematic and antiferromagnetic order parameters
along the cut indicated by the dashed black line in Fig. 6.2. In the present simplified
model with continuous spatial rotational symmetry, both transitions into and out of
the coexistence phase are continuous, see Fig. 6.3(a). In the vicinity of the nematic-to-
coexistence transition, the antiferromagnetic order parameter develops an expectation
value as (¢)oCg — g1 for g = ge1, where ge; denotes the critical coupling. The linear
behaviour is consistent with Gross—Neveu-type quantum criticality in the large- Ny limit
(Hands, Koci¢ & Kogut 1993). Near the antiferromagnetic-to-coexistence transition at
ge2 > ge1, the fermionic spectrum retains a finite gap; the corresponding nematic order
parameter has a square-root behaviour, (n)o«/gc2 — g for g < geco. This is consistent
with the mean-field expectation for a purely bosonic transition, but it turns out to be
an artifact of our simple modelling, which assumes a continuous rotational symmetry.
However, the transition becomes discontinuous upon inclusion of higher-derivative terms
such as

Lot — Lot + f3016%10,(C, ® 1)V, (6.9)

where (0,) = (0z,—0y), a = 1,2, and Ty = (7, ® 12)I',. This term follows naturally
from the next-to-leading order expansion of the tight-binding dispersion near the K
points in the Brillouin zone (Pujari et al. 2017), and merely reflects the fact that the
actual point group on the honeycomb bilayer includes only discrete C'5 rotations by 120°
around a lattice site. Identifying for simplicity the ultraviolet momentum cutoff A with
the inverse of the lattice constant ag as A ~ m/ag, we obtain f3 ~ 7/(24/3A) in our units
(see Chap. 5). As shown in Fig. 6.3(b), this indeed renders the transition first-order, and
one can in fact show that the mean-field jump discontinuity at the phase boundary works

7 cf., e.g., Vafek & Yang (2010); Vafek (2010); Cvetkovic, Throckmorton & Vafek (2012); Lemonik et al.
(2012); Janssen & Herbut (2017); Boettcher & Herbut (2017).
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out to (see App. C)

CoE ) + O o) (6.10)
In the purely antiferromagnetic phase (n) = 0, the AF order parameter behaves as
(¢p) ~ e~ C/9Nt with model-dependent constant C' (cf. Chap. 4). Hence, the jump is small,
and the transition — though strictly discontinuous — only weakly first-order for small to
intermediate g.

Before moving on to our main object of interest, viz. the (putative) Gross—Neveu
transition at the nematic-to-coexistence boundary, let us close the present section by
discussing ways to improve on our mean-field analysis. Formally, mean-field theory
represents the leading order of a systematic expansion in 1/Nt. To incorporate effects
of order-parameter fluctuations on the effective potential at finite Ny, one would need
to evaluate higher-loop vacuum diagrams, the simplest topology of which is shown in
Fig. 6.4. We in fact encountered such a computation at the leading-logarithm level using
the Callan—-Symanzik equation in Chap. 4, but for a single-order-parameter effective
potential. The present situation has the added subtlety that {(¢) and {(n) allow for
two independent large logarithms, and would require a so-called multiscale scheme to
resum properly (Ford 1994; Ford & Wiesendanger 1997; Steele, Wang & McKeon 2014).
Alternatively, order-parameter fluctuations could be incorporated along the lines of the
works on competing orders in the monolayer case (Classen et al. 2015, 2016). Fluctuation
effects may shift the location of phase boundaries in parameter space, but are expected
to not alter our main conclusions concerning the existence of the coexistence phase
and the order of the transitions into and out of this phase. They do, however, play
an important role for the universal behaviour at the nematic-to-coexistence quantum
critical point. Instead of a comprehensive analysis of the full phase diagram, here we shall
therefore restrict our study of the effects of order-parameter fluctuations to the vicinity
of the nematic-to-coexistence transition. This is the primary topic which will occupy our
attention for the remainder of this chapter. We also note that we have assumed ¢, n « A?
in the above calculation, so that the integral in Eq. (6.6) is dominated by universal
logarithms such as In(A*/¢?) and In(A*/n?). For larger interactions, this assumption no
longer holds and non-universal effects that are beyond the effective analysis may become
important. This is left for future work.

3w = 1537 (n

6.3 Emergent Lorentz symmetry

In the nematic phase, the low-energy excitations are massless fermions with linear
dispersion; these then undergo further spontaneous symmetry breaking to acquire a full
gap in the coexistence phase. At the transition, the antiferromagnetic order parameter ¢
becomes critical. The nematic-to-coexistence transition is hence a promising candidate
for realizing the Gross—Neveu—Heisenberg (= chiral Heisenberg) universality class.®) The
purpose of this section is to demonstrate that this is indeed the case. The Gross—Neveu—
Heisenberg universality class is characterized by a dynamical critical exponent z = 1 and
a relativistic Lorentz symmetry in (2+1)-dimensional spacetime. In the non-interacting
limit, our model has z = 2, reflecting the non-relativistic dispersion in the Luttinger
semimetal state (see Chap. 4). The finite background nematic order present across

8) ¢f., e.g., Rosenstein, Yu & Kovner (1993); Herbut, Jurici¢ & Vafek (2009); Janssen & Herbut (2017);
Zerf et al. (2017); Knorr (2018); Gracey (2018)
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Figure 6.3: (a) Nematic order parameter {n) (blue) and antiferromagnetic order parameter
{(¢) (red) along the cut through parameter space indicated by the dashed black line in
Fig. 6.2, in the mean-field approximation. In the model with continuous spatial rotational
symmetry, both transitions into and out of the coexistence phase are continuous. (b) Nematic
order parameter in the vicinity of the antiferromagnet-to-coexistence transition, showing the
effects of the f3 term defined in Eq. (6.9), which breaks the continuous spatial rotational
symmetry down to 120° rotations on the honeycomb bilayer. Here, the antiferromagnetic
order parameter (¢) = 0.678A% has been held constant for simplicity. The inset shows a
zoom into the region very close to the transition (grey rectangle), illustrating the fact that
finite f3 # 0 renders the transition weakly first order.

Figure 6.4: Simplest order-parameter fluctuation correction to the effective potential. The
dashed (solid) lines refer to boson (fermion) propagators.

the nematic-to-coexistence transition cures the problem of the non-linear dispersion by
splitting each quadratic band crossing into two linear crossings, but in doing so, it breaks
the spatial rotation symmetry down to Cs. Nevertheless, in this section, we shall see
that not only a continuous rotational symmetry, but even a full relativistic symmetry
in 2 + 1 space-time dimensions becomes emergent at the quantum critical point at low
energy. To this end, the fate of perturbations that break both rotational and space-time
symmetries of the relativistic subspace of theory space under RG flow shall be studied.
In particular, we shall convince ourselves that such symmetry-breaking-perturbations
are always RG irrelevant near the Gross—Neveu—Heisenberg fixed point. The nematic-to-
coexistence transition on the honeycomb bilayer therefore falls into the same family of
phase transitions known from the monolayer system. There is, nevertheless, one important
difference: As each quadratic band touching point on the bilayer splits into two mini-Dirac
cones in the nematic phase, the number of fermion flavours is doubled in comparison to
the semimetal-to-antiferromagnetic transition on the monolayer. In the physical situation
for spin-1/2 fermions on the Bernal-stacked honeycomb bilayer, we thus have Ny = 4
flavours of two-component Luttinger fermions in the non-interacting limit. In the nematic
phase, this then leads to Ny = 4 flavours of four-component Dirac fermions (in other
words, the total number of Dirac spinor components is 4 Nt = 16).

We wish to work to first order in perturbation theory, for which our strategy will be as
follows: Near the lower critical space-time dimension Dy, = 2, four-fermion interactions
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are perturbatively renormalizable; the pertinent description is in terms of a 4-Fermi
theory, which we study in Sec. 6.3.1. The critical coupling is O(D — Djoy), so that the
physics in D = 2 4 ¢ dimensions is accessible in the 4-Fermi loop expansion. On the other
hand, near the upper critical dimension of Dy, = 4, the Yukawa and bosonic quartic
self-couplings are perturbatively renormalizable, giving us access to D = 4 — ¢ dimensions
from perturbation theory. This is the subject of Sec. 6.3.2. Indeed, the least-irrelevant
symmetry-breaking perturbations are of significantly different natures in the two limits,
and the two approaches complement each other thus. Agreement between the two (as we
shall find out is indeed the case in the present setting) then serves as a strong indication
that the extrapolation of the respective first-order perturbation theory results to the
physical space-time dimension D = 3 (i.e., £, — 1) is stable and well-defined.

6.3.1 Loop expansion near lower critical dimension

Unlike the better known Gross—Neveu-Ising case, in the Gross—Neveu-Heisenberg univer-
sality class, the renormalization of the pertinent 4-Fermi interaction is not closed. Already
at the one-loop level, a spin current interaction is generated, which in turn generates
further interactions. The upshot is that the renormalization of the chiral Heisenberg
universality class in the vicinity of the lower critical space-time dimension Dj,, = 2 has
so far not been systematically studied, even at one loop. Before investigating its stability
with respect to perturbations, we hence need to first identify the Gross—Neveu-Heisenberg
fixed point in the multi-dimensional space of 4-Fermi couplings.

6.3.1.1 Minimal 4-Fermi model

As a first step, we need to establish a basis in the space of 4-Fermi couplings. To this
end, let us classify all possible 4-Fermi interactions in terms of symmetry. In order
to retain the spinor structure relevant to the physical situation in bilayer graphene,
we devise the minimal 4-Fermi model in fixed D = 2 + 1 space-time dimensions. The
dimensional continuation to noninteger dimensions will be discussed in the context of the
loop integration below. In accordance with previous works (cf. Herbut, Juri¢i¢ & Roy 2009;
Vafek 2010), we employ a four-dimensional reducible representation of the Clifford algebra
{Yu, 7w} = 20,14 with p,v = 0,1, 2. In addition, there exist two anticommuting matrices
{73, %} = {75, 7%u} = {713,795} = 0. Finally, a customary shorthand is v35 := iy37s.
The Gross—Neveu-Heisenberg 4-Fermi interaction can then be written as

[@a(]lﬁl ® Ua)%]27

where 1, acts on the layer and K-point degrees of freedom and the Pauli matrices
0q, @ = 1,2,3, act on the spin degree of freedom of the eight-component spinor .
Furthermore, the flavor index a = 1,2 corresponds to the two mini-Dirac cones that
develop at both K points due to the background nematic order. We may restrict ourselves
to interactions that have a singlet structure with respect to the flavour index a; non-singlet
terms may be rewritten in terms of singlet ones using Fierz identities (cf., e.g., Gehring,
Gies & Janssen 2015). There are then a priori 64 independent four-fermion interactions,

> Gu($aMia)?, (6.11)

MeB

where M are complex 8 x 8 matrices and B = Bs U B, is a basis of C8*®, with By =
{04, Vs 3, V50 VY3, VY55 135, Yu Y35} @ Lo corresponding to the scalar spin sector and
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By = {14, Y735 Y5, Yu V3 Y5, V355 VY35 ) @ 0 to the vector spin sector, with = 0,1,2
and o = x,, 2.

The number of independent couplings may be narrowed down using Lorentz and
SU(2) symmetry. To do so, we need to group the 4-Fermi interactions according to their
behaviour under Lorentz and SU(2) spin transformations. To be precise, if the subset
A c B is invariant under combined Lorentz and SU(2) transformations, then G = G|,
for all K, L € A. The decomposition of B into disjoint subsets A is almost entirely taken
care of automatically above by grouping them according to Lorentz and SU(2) indices.
The grouping is almost exhaustive: For a final symmetry reduction, we need to take into
account that (v3,7s) is a vector under the U(1) chiral symmetry generated by 735, which
corresponds to translational invariance (Herbut, Juri¢i¢ & Roy 2009). There are hence
twelve symmetry-independent couplings. The 4-Fermi Lagrangian reads as

Lang = V(7 ® 12)0uta
O (1 ® 0wl — 2 [0 ® )l — L[5 ® 0 )]
2Nf a4 K 0 )Pq 2Nf a\Tp & 0a)Pq a\Y35 Q 0q)WPq

2N
ot Fha)? — o ® 1)bal? — o [ 35 ® 1)l
a5 © 0l = 5 ([ (25 © 00 + [ (25 @ 30}
_ QG]\?{ (€0 (1473 ® 0a)¥al® + [Ya (375 @ 0a)tal’}
O (s @ 1)l — S {[Ba3 @ Lahel? + [l @ Lo}
I3 f
— g]ii [V (Va3 @ L2)hal® + [0 (Vs @ L2)tba]?} (6.12)

as a minimal (i.e., closed under RG at one-loop) 4-Fermi theory in which to embed the
Gross—Neveu—-Heisenberg fixed point. Note that the flavour number Nt has been reinstated,
corresponding to the number of four-component Dirac spinors, with a = 1, ..., N¢/2 for N¢
even. Let us remind ourselves here that the case pertaining to the nematic-to-coexistence
transition of spin-1/2 fermions on the honeycomb bilayer corresponds to Ny = 4.

6.3.1.2 Gross—Neveu—Heisenberg fixed point

To obtain the RG flow of the couplings G1, ..., G2 in Eq. (6.12), one needs to perform the
loop integration. Here, the angular integrals are evaluated in fixed D = 2 4 1 space-time
dimensions, while the dimensions of the couplings are counted in general dimension
(Vojta, Zhang & Sachdev 2000b; Janssen & Herbut 2017). This allows one to retain the
spinor structure of the physical system in d = 2 spatial dimensions. The flow equations
may be obtained at one-loop order by applying the general formula given by Gehring,
Gies & Janssen (2015). In addition, it is expedient to perform a large-N; expansion
of the one-loop flow equations, for three reasons: (i) tractability, in that solutions of
fixed-point equations can be found analytically in its entirety, with human-readable
results; (ii) transparency, in that relations to mean-field theory (Nf — o) become more
readily apparent; and (iii) simplicity, in that the fixed point pertaining to the SU(2)-
symmetry-breaking transition is unambiguously identifiable. It is worth expanding on
this last point a little: At general Ny, a fixed point generically has many nonzero 4-Fermi
couplings. Determining unambiguously which one among the many fixed points pertains
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to the Gross—Neveu-Heisenberg universality class is typically a laborious exercise for
arbitrary N, entailing the computation of scaling dimensions of every conceivable bilinear
at every fixed point. In the large- Ny limit, however, this is unambiguous (and essentially
known already from mean-field theory): the Gross—Neveu-Heisenberg universality class
is governed by the fixed point satisfying G; = O(1) and Gix1 = O(1/N;). One may
expect this large- Ny argument to be sufficient for the present case, since the spinor-space
dimension 4Ny = 16, which effectively orders the 1/N¢ expansion, is comparatively large;
the full investigation for arbitrary Nt is left to future work.

For the Gross—Neveu—Heisenberg fixed point in D = 2 4+ ¢ dimensions, this leads to
the following non-vanishing fixed-point couplings:

2 2
G = (3 - 3Nf> e+ 0 (%, 1/N¢), (6.13)
_ 4 2 2
Gox = onE T O (¢*,1/Ny) (6.14)

Note that even if starting with a pure Heisenberg channel, a second channel is immedi-
ately generated at first subleading order, O(1/Ng). This is the four-fermion interaction
[0 (7, ®04)1a]?, the SU(2)-vector counterpart of the conventional [SU(2)-scalar] Thirring
interaction. From O(1/N?) onwards, all channels would get involved.

6.3.1.3 Fate of rotational symmetry breaking

We are now in the position to study the fate of rotational anisotropies under the RG
flow. Since the background nematic order respects inversion and lattice translational
symmetries, it is sufficient to restrict the discussion to perturbations that leave discrete
symmetries intact and break explicitly only the continuous rotational symmetry of
the Gross—Neveu—Heisenberg fixed point. Rotational-symmetry-breaking terms in the
quadratic part of the fermionic Lagrangian, such as anisotropic Fermi velocities, are
marginal within the one-loop expansion considered here. Their relevance (or lack thereof)
will be studied within the Gross—Neveu—Yukawa-Heisenberg model discussed in Sec. 6.3.2.
Here, let us focus on perturbations in the interacting quartic part of the Lagrangian. In
general, every 4-Fermi interaction that has a spacetime index pu, schematically (@M uw)Q,
allows for symmetry-breaking perturbations of the form [(v, Mota)? — (1, M11b4)?] and
[(V,Moha)? — (¢, Matb,)?]. Within the present approximation, only the SU(2)-vector
Thirring channel is present at the fixed point, so it is sufficient to consider an anisotropy
of the form

Loz = Lann
- %51 {[@a(fh ® Ua)@ba]Q - [@a('YO ® Ga)d’a]Q}
— 302 {[Va (12 ® 00)¥al” = [a(r0 ® 00)tbal?} (6.15)

with couplings %51 and %51. Using again the general formula of Gehring, Gies & Janssen
(2015) and working to first order in §’s, we find the eigenvalues of the stability matrix
(0Bs,/00;) at the Gross-Neveu-Heisenberg fixed point to be

’ 9NV

For N; = 4, pertaining to the present case of the nematic-to-coexistence transition on
the honeycomb bilayer, all eigenvalues are negative. Hence, at the transition, not just
rotational symmetry, but also Lorentz symmetry is emergent in the infrared.

019 = (-1 + 1) e+ 0O(g,1/N§) (6.16)
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6.3.2 Loop expansion near upper critical dimension

The above one-loop four-fermion results are a prior: valid only in the vicinity of the lower
critical space-time dimension of Dy, = 2. In 2 + 1 space-time dimensions, corrections
from higher loop orders may be sizeable. To check the robustness of the conclusions, let
us now consider rotational-symmetry-breaking perturbations in the opposite limit near
the upper critical space-time dimension D, = 4.

6.3.2.1 Gross—Neveu—Yukawa—Heisenberg model

The perturbatively renormalizable field theory in this limit is the Gross—Neveu—Yukawa—
Heisenberg model with Lagrangian

LNy = ¥ [14 ® (Y000 + 027101 + vyy202) [Yha + %(%%)2
— hopathy (14 ® 0a) ha + Mdada)?, (6.17)

where a = 1,..., N¢/2, in agreement with the representation used in Sec. 6.3.1. In
Eq. (6.17), spatial rotational symmetry breaking is encoded in the direction-dependent
Fermi velocities v, and v,. Their bosonic counterparts ¢, and ¢, can be subsumed into
direction-dependent dynamical critical exponents, see below; ¢, and ¢, have hence been
set to unity from the outset. The 4-Fermi interaction parametrized by G; in Sec. 6.3.1
has been replaced by a Yukawa interaction between the fermions and the SU(2) order-
parameter field ¢, parametrized by the coupling h; it becomes marginal at the upper
critical space-time dimension D, = 4. The quartic bosonic self-interaction with coupling
A is generated by the RG and has therefore been included as well. It also becomes
marginal at the upper critical dimension.

In order to deal with the spatial anisotropy, it proves expedient to perform field-
theoretic RG, with loop integrals carried out over all momenta. In the spirit of the ¢
expansion, the time axis is extended to a (2 — €)-dimensional Euclidean space, keeping the
spatial dimension d = 2 fixed and assuming that all integrands have been symmetrized
in frequency qg before the dimensional continuation. The self-energy diagrams, which are
the main subjects of study in this subsection, will turn out to be infrared divergent after
expanding in powers of external momenta, which is then regularize with a cut-off; the
renormalization scale p is introduced thus. The measure of the loop integration can thus
be written as

D 2—c, 12
| o= | S el - w (618)
reg. (27) (2m)
The terms in the Lagrangian Lonyh are accordingly promoted to bare quantities, with
v; = Zy,vi (1€ {z,y}) and © — \/Zo 2y, Zp y® (P € {p,1}). Note that the running of the
bosonic velocities ¢; are absorbed into ‘inverse dynamical critical exponents’ 0; — Z,, ;0;
(and the concomitant dzdy — Z,, ;Zp_’ ;dxdy), where the Z,; parametrize the relative
scaling of momentum coordinates with respect to frequency. (In other words, the Fermi
velocities v, and v, are measured in units of ¢, and ¢, respectively.) Finally, since the
regularization scheme above breaks Lorentz invariance, one requires non-multiplicative

counterterms, such as

Lres. = Dyl + 5D (~32)5 (6.19)
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(a) (b)

Figure 6.5: (a) Bosonic and (b) fermionic selfenergy Feynman diagrams.

These are required to ensure that in the Lorentz-invariant limit v, = v, = 1 there is
no residual breaking of Lorentz symmetry (which would then solely be a regularization
artefact). There are parallels to the treatment of supersymmetric gauge theories, where
the often-used dimensional regularization breaks supersymmetry, and one has to resort
to nonmultiplicative counterterms to restore it (Hollik & Stockinger 2001). Just like
usual multiplicative counterterms, these counterterms are often not unique, but can be
judiciously constrained by demanding certain properties of the regularization procedure,
see Appendix D. Eq. (6.19) represents the simplest choice that is sufficient for our
purposes.

6.3.2.2 Gross—Neveu—Yukawa—Heisenberg fixed point

The theory defined by Eq. (6.17) features an interacting fixed point located within the
relativistic subspace vy 4+ = vy . = 1 at

2 _ T 2
hy = Nt 16+(’)(6 )s (6.20)
™ 2+ /14 Ne(Ne+9) 9
=— -1 21
As 22( + N1 e+ O(€), (6.21)

where € = 4— D and we have rescaled ;1= €So_(27)2h? > h% and = €So_(27) 2\ > ),
with So_. being the surface area of the unit sphere in 2 — ¢ dimensions. We note that the
above fixed-point values are regularization dependent and cannot be obtained by a simple
rescaling of the corresponding values within, say, the Wilson scheme (Janssen, Herbut &
Scherer 2018). As is well known,? in the vicinity of the Gross-Neveu-Heisenberg fixed
point, the only relativistic-symmetry-allowed perturbation that is RG relevant towards
the infrared is the quadratic term ¢,¢, which corresponds to the tuning parameter of
the transition. Within the critical hyperplane, in which this term is tuned to vanish in
the renormalized action by definition, the Gross—Neveu—Heisenberg fixed point is hence
stable. In the following, we show that the stability holds also when small perturbations
that break the rotational symmetry are taken into account, such that the fixed point
hence features emergent Lorentz invariance in the low-energy limit.

6.3.2.3 Fate of rotational symmetry breaking

Within the Gross—Neveu—Yukawa—Heisenberg model, the fate of rotational symmetry
breaking is determined by the flows of the Fermi velocities v, and v, in units of the boson
velocities ¢; and ¢,. The corresponding selfenergy diagrams at one-loop order are shown

9 ¢f., e.g., Herbut, Juricié¢ & Vafek (2009); Janssen & Herbut (2017); Zerf et al. (2017); Janssen, Herbut
& Scherer (2018)
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in Fig. 6.5. The evaluation of these diagrams is somewhat involved; details thereof are
deferred to Appendix D. Defining f3,, = —pudv;/dp in terms of the RG scale p, we find

h2 1— 2
ﬁvz = { Ufo
2w

Uy
+ [471'[211(%,2@) — A lz10(vg, vy) + i] Ube}, (6.22)
h2 (11— vﬁ
- N
ﬁvy 27_‘_{ Vo f
+ [47m 11 (vy, vg) — dmI0(vy, v2) + 1] vbe}, (6.23)

where I511(vz, vy) and Ioi9(vs, vy) are functions of the velocities v, and v, alone. They
are defined in Appendix D and and explicit forms are given in Appendix E. In Eqs. (6.22)
and (6.23), the same rescaling of the Yukawa coupling has been employed as stated below
Eq. (6.20). As before, Ny counts the number of four-component Dirac fermions, with
Nt = 4 for the case relevant for the nematic-to-coexistence transition on the honeycomb
bilayer. For generality, a generic number Ny, of boson species has also been introduced,
which allows one to easily adapt the current analysis to Gross—Neveu—Yukawa models
with a different number of order-parameter components. The antiferromagnetic order
parameter discussed in the present setting corresponds to Ny = 3. Note that Eq. (6.23)
can be obtained from Eq. (6.23) by exchanging v, < v, and vice versa.

The constraint v, = vy, =: v defines the rotationally-symmetric subspace, which
is invariant under RG flow for symmetry reasons. The g-function for the rotationally-
invariant Fermi velocity v within this subspace reads explicitly as

h? 1—1)2N+U4+402—5—2(1+2U2)lnv2
= f

bo=sz | 4(1 — v2)2

oIy | - (6.24)

In the vicinity of the relativistic fixed point at v, = 1, the flow of the Fermi velocity can
be expanded as
N h?
By = - (v —1)+ O((v — 1)2). (6.25)

™

Within the rotationally-invariant subspace, the relativistic Gross—Neveu—Heisenberg fixed
point is therefore stable, in agreement with previous results for similar models (Roy,
Jurici¢ & Herbut 2016; Janssen & He 2017).

To study whether the rotationally-invariant subspace is stable or not with respect
to rotational-symmetry-breaking perturbations, it is expedient to set v, = v and v, =
(1 +6)v, and expand s = 3,, — B, to first order in the anisotropy parameter §. For
small § « 1, one thus obtains

h? 1 (1 + 0% + 47}4) Inv? o+ 1002 +1
= — Z ) Ny — N
bo=—on [ (3” v> f ( da =) T aa—oe | W|?

+ 0(6?). (6.26)

Near the relativistic fixed point at v4 = 1, one thus finds

2
B = Z (AN; + No)§ + O(6% 0 — 1), (6.27)

78
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Figure 6.6: RG flow of Fermi velocities v, and v, in units of the boson velocities ¢, and ¢,
for N = 4 and Ny, = 3 at one-loop order. Dark red line represents the rotationally-invariant
subspace v := v, = v,. All points flow ultimately to the relativistic fixed point v, = 1 (dark
red point), even though flow lines initially ‘fan out’ from the v, = v, line for small enough
initial values.

Importantly, a small rotational anisotropy is therefore irrelevant in the sense of the RG.
In the vicinity of the Gross—Neveu—Heisenberg fixed point, the relativistic symmetry
hence remains emergent even when a rotational anisotropy is symmetry-allowed on the
microscopic level. This is illustrated in Fig. 6.6, which shows the RG flow of v, and v,
using the full g-functions of Egs. (6.22) and (6.23). All points flow ultimately to the
relativistic fixed point v, 4+ = vy« = 1, even though flow lines initially ‘fan out’ from
the rotationally-invariant subspace line for small enough initial values. In agreement
with the result from the 2 + ¢ expansion discussed in the previous subsection, we may
thus conclude that the nematic-to-coexistence transition on the honeycomb bilayer
features emergent Lorentz symmetry and is described by a relativistic fixed point of the
Gross—Neveu—Heisenberg family of universality classes.

6.4 Critical exponents

We now proceed to providing estimates for the critical exponents characterizing the
nematic-to-coexistence transition on the honeycomb bilayer, having established above
that it falls into the Gross—Neveu—Heisenberg universality class with Ny = 4 flavours of
four-component Dirac fermions. As a consequence of the emergent Lorentz invariance,
the transition is characterized by a unique dynamical critical exponent

z=1. (6.28)

Let us further discuss the correlation-length exponent v, the order-parameter anoma-
lous dimension 74, and the fermion anomalous dimension 7,,. Higher-order corrections in
perturbation theory are available in the literature for this universality class to fourth order
in the (4 — €) expansion (Zerf et al. 2017) and to second order in the large- Ny expansion,
with the fermion anomalous dimension known up to third order (Gracey 2018, 2021).
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Furthermore, a nonperturbative calculation using functional RG in the improved local
potential approximation is also available Janssen & Herbut (2014). The main aim of this
Section is to perform the necessary post-processing of these previous results to provide
combined theoretical best-guess estimates for the nematic-to-coexistence transition on
the honeycomb bilayer.

First, let us consider the series expansions. In fixed D = 2 + 1 space-time dimensions,
the large- Nt expansions of the exponents are (Gracey 2018)

8 3672 + 416

1/v=1- O(1/N? 6.29
/V Wng"" 37T4Nf2 + ( / f)7 ( )
4(37% +16) 3
=1+ -~ + O(1/N 6.30
me =1+ =5 g T OWND), (6.30)
2 16 378¢(3) — 3672 1n(2) — 4572 — 332 4
= O(1/N, 6.31
" w2 Nt * 371'4Nf2 + 97T6Nf3 +O(1/Nr) ( )

where ((-) denotes the Riemann zeta function and N corresponds to the number of
four-component Dirac fermions. On the other hand, for the case of Ny = 4 relevant here,
the four-loop exponents in D = 4 — € space-time dimensions read in numerical form (Zerf
et al. 2017)

1/v =2 —1.4051¢ + 0.3018€¢% — 0.3032¢> + 0.6725¢* + O(€) (6.32)
s = 0.8889¢ + 0.1310€% + 0.0136€> + 0.0585¢* + O(€®) (6.33)
Ny = 0.1667¢ — 0.0661¢* — 0.0697¢> + 0.0156¢* + O(€°) (6.34)

It is worth emphasizing again at this point that the number of fermion flavours in the
present setting is doubled in comparison with the previously much-studied scenario of
spin-1/2 fermions on the honeycomb monolayer. Since the series expansions are at best
only slowly convergent (if not outright divergent), it is necessary to study their Padé
approximants, which are defined by

ap + a1x + ...+ apx™
14+ bz +...+ by’

[m/n](z) =

(6.35)

where x € {€,1/Ny} for the 4 — € and large-N; expansions, respectively, and m and n
are non-negative integers chosen such that m + n agrees with the order to which a
particular exponent has been calculated. For a given choice of m and n, the coefficients
ag, - --,ay, and by, ..., b, are then determined by imposing the boundary condition that
the approximant [m/n] produces the correct asymptotics for z « 1 in agreement with
the series expansion. Evaluating [m/n] at finite values of z yields resummed values of
the corresponding observable.

The extrapolated values for the present case of Ny = 4 flavours of four-component
Dirac fermions in D = 2 + 1 space-time dimensions are displayed in Tab. 6.1. The spread
of all admissible Padé approximants yields a measure of how close to convergence the
given series happens to be. Some Padé approximants cannot mathematically fulfil all
the boundary conditions imposed by the asymptotic expansions at the origin. On one
hand, this concerns [0/n]-type approximants, which cannot describe exponents for which
the zeroth-order terms vanish in the series expansion. This applies to 7, in both 4 — e
and large-N; expansions and 74 in 4 — € expansion, as in all other Gross-Neveu-type
universality classes (Janssen, Herbut & Scherer 2018). On the other hand, the [1/1]
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Table 6.1: Critical exponents of the Gross—Neveu-Heisenberg universality class for Ny = 4
four-component fermion flavours in D = 2 4+ 1 space-time dimensions, as pertaining to the
nematic-to-coexistence transition on the honeycomb bilayer. Results from four-loop 4 — ¢
expansion (Zerf et al. 2017), second-order 1/N; expansion (third-order for 7,) (Gracey 2018),
and functional RG in the improved local potential approximation (Janssen & Herbut 2014) are
used. In addition to the naive extrapolations of the Taylor series, different Padé approximants
[m/n] of the series expansions are also displayed. Those for which it is mathematically
impossible to match the original series expansion to all available orders are marked ‘n.e.’
A dash (—) in the entry for an approximant signifies either that sufficient terms are not
available in the literature to compute it or that it does not exhaust all the terms available in
the literature. [m/n]s denote two-sided Padé approximants, which take superuniversality
relations (Gehring, Gies & Janssen 2015) into account. Here, approximants that exhibit a
singularity in D € (2,4) are marked with ‘sing.” in lieu of any numerical value. The functional
RG results employ two different regularization schemes, marked as ‘linear’ and ‘sharp’ in the
table.

1/v i s

1/N¢ expansion (Gracey 2018) naive 0.96232  1.03902 —
[1/1] 088829  ne. -
[0/2] 092700  1.04060  n.c.

naive — — 0.05306
[1/2] — — 0.05292
[2/1] — — 0.05329
[0/3] — — n.e.

4 — ¢ expansion (Zerf et al. 2017) naive 1.26604  1.09193  0.04654
[3/1] 0.80250  1.01575  0.04368
[2/2]  0.79277  1.04180  0.06413
[1/3] 0.88152  1.11866  0.07337
[0/4] 0.88841 n.e. n.e.

Two-sided Padé [5/0]2 — 1.04988 —
[4/1]2 — sing. —
[3/2]2 — sing. —
[2/3]2 — sing. —
[1/4]; — 1.06238 -
[0/5]2 — n.e. —
[6/0]2 0.89489 — 0.05906
[5/1]2  0.83956 — sing.
[4/2]2 sing. — 0.05949
[3/3],  sing. — 0.06418
[2/4],  0.84007 — n.e.
[1/5]2  0.86441 — n.e.
[0/6]2 n.e. — n.e.

Functional RG (Janssen & Herbut 2014)  linear ~ 0.87834  1.00929  0.03824
sharp 0.87187 1.01089 0.03567




6.4. Critical exponents 135

approximant cannot satisfy all the boundary conditions for 7,4 in large- Ny expansion,
because its O(1/N¢) correction happens to vanish — a peculiarity of the Gross—Neveu—
Heisenberg universality class. All such non-existent approximants are marked ‘n.e.” in
Tab. 6.1.

For the 4—e¢ expansion, one can refine the extrapolation by exploiting super-universality
relations near the lower critical space-time dimension D)oy, = 2 (Gehring, Gies & Janssen
2015). For Gross—Neveu—type universality classes in 2 < D < 4 space-time dimensions,
one thus has

1/v=(D—2)+O((D —2)?), (6.36)
ne =2+ O(D —2), (6.37)
ny = O((D —2)%), (6.38)

independent of the particular member of the Gross—Neveu family and the number of
fermion flavours N;. These relations can be used to impose additional boundary conditions
at € = 2 on Padé approximants to the 4 — € expansion (Janssen & Herbut 2014; Janssen
& He 2017; Ihrig et al. 2018). Note that for 74, only the zeroth-order coeflicient in D — 2
is superuniversal, in contrast to 1/v and 7. The resulting Padé approximants are also
shown in Tab. 6.1. Here, some Padé approximants develop singularities as a function of
the expansion parameter, and are hence unreliable as extrapolators; these are marked as
‘sing.” in lieu of any actual numerical value. For 7y, various two-sided Padé approximants
turn out to be singular, which may be due to the fact that only the zeroth-order term in
D —2 is available to be included here. The refinement using two-sided Padé approximants
is especially important for 7,, which is a highly non-monotonic function of €, vanishing
at both € = 0 and € = 2 separately. Such behaviour is particularly difficult to capture
with a one-sided Padé approximation. It is satisfying to note that the estimates from
the different two-sided Padé approximations appear overall more stable compared to the
one-sided approximations.

A non-perturbative, and hence complementary, approach to estimating the exponents
for Ny =4 and D = 2 + 1 employs the functional RG (Dupuis et al. 2021). This requires
one to numerically solve the corresponding fixed-point equations in the improved local
potential approximation (Janssen & Herbut 2014) for the present case of Ny = 4. Two
different cut-off schemes are employed in juxtapostion to assess the stability of the numer-
ical results, viz., a linear cut-off (Litim 2001), which satisfies an optimization criterion, as
well as a sharp cutoff (Janssen & Gies 2012) for comparison. The corresponding estimates
for 1/v, n4, and ny, are displayed in the last two rows of Tab. 6.1. In order to arrive at
these estimates, a simple Taylor expansion of the bosonic effective potential up to 16th
order in ¢ for the linear cut-off and 20th order for the sharp cutoff has been used. These
orders are chosen such that the numbers displayed in the table are converged within the
improved local potential approximation up to the fourth digit after the decimal point.

To arrive at final best-guess estimates combining the results of the three comple-
mentary approaches, the two-step averaging procedure outlined in Chap. 3 is employed.
To recapitulate, the first step is to average over all well-behaved approximations within
a given approach. The term well-behaved in this context applies to the existent and
non-singular Padé approximants in the case of the series expansions, and to both reg-
ulators employed in the case of the functional RG calculations. As the results of the
4 — € expansion are included implicitly in the two-sided Padé approximants, one should
not incorporate the single-sided Padé approximants when evaluating the average in the
case of the 4 — e expansion. As for the large- Ny expansion, the naive extrapolation in
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the average is included if it is sandwiched by two well-behaved proper approximants
[m/n] with n > 1. Note in this context that the two-sided approximants [5/0]2 and [6/0]2
are distinct from the untouched series of hypothetical 4 — e expansions of five-loop and
six-loop order, respectively, and hence do not count as naive extrapolations in the above
sense. Having done the ‘internal’ average within each method, the second step is to take
the mean of the three different averages. This finally leads to

1/v = 0.88(6), e = 1.035(23), ny = 0.050(12). (6.39)

In the above, the number in parenthesis is the larger of (i) the spread of the estimates of
the three individual approaches and (ii) the sum of ‘internal’ uncertainties within the
methods. The number can hence be understood as a measure of the degree of consistency
between the different estimates. In the case of 1/v and 7, a particularly good agreement
is found, in the sense that the uncertainty due to lack of consistency among the three
methods is much smaller than the sum of the internal uncertainties. In other words, the
three methods ‘agree within error bars.” It is worth noting here that for the large- N¢
expansion for 7y, the uncertainty in the Padé extrapolation is technically ill-defined, since
there exists only one well-defined nontrivial Padé approximant in this case (and hence
there is no way of building a non-trivial average or sandwiching the naively extrapolated
result). The internal uncertainty of the large- Ny estimate for 7, is hence not included in
the final error estimate in Eq. (6.39). However, given that the spinor-space dimension
4Nt = 16 is quite large and the naively-extrapolated result of the large- Nt expansion lies
quite close to the Padé extrapolated value, the uncertainty due to lack of convergence
of the large- Ny expansion is likely very small in any case. The estimate for 1, has a
larger relative uncertainty, which is likely due to the aforementioned non-monotonous
dependence on the space-time dimension for D € (2,4), as well as the comparatively
small absolute value of the estimate itself.

6.5 Discussion

In this chapter, we have studied the emergence of a Gross—Neveu-Heisenberg quantum
phase transition as a result of competition between nematic and layer-antiferromagnetic
orders on the Bernal-stacked honeycomb bilayer. The two ordered states appear to be the
most promising candidate ground states consistent with experiments in Bernal-stacked
bilayer graphene (BBLG).lO) We saw that these orders generically allow a coexistence
phase characterized by both nematicity and antiferromagnetism. The fact that both signs
of nematic (Mayorov et al. 2011) as well as antiferromagnetic (Velasco Jr. et al. 2012)
orders have been reported in low-temperature experiments on different samples lends
credence to the proposition that the actual ground state of BBLG is potentially not too
far from the coexistence phase, or may even be within that phase. We have mapped out
the phase diagram of an effective model describing the competition between these two
orders and discussed the occurring quantum phase transitions. The transition between
the antiferromagnetic and coexistence orders is weakly first order as a consequence of
a cubic term that is symmetry-allowed in the effective potential. By contrast — and
most significantly for the purposes of this chapter, the transition between the nematic
and coexistence orders turns out to be continuous; we have identified the corresponding
universality class of this quantum critical point and have demonstrated in particular that

19)¢f., e.g., Mayorov et al. (2011); Velasco Jr. et al. (2012); Freitag et al. (2012); Bao et al. (2012); Veligura
et al. (2012)
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in spite of rotational symmetry being spontaneously broken at an intermediate RG stage
as a consequence of the background nematic order, Lorentz symmetry becomes emergent
in the deep infrared at this transition. The transition therefore falls into the Gross—
Neveu—Heisenberg quantum universality class. This universality class has previously been
studied extensively in the context of the semimetal-to-antiferromagnetic transition on
the honeycomb monolayer.'!)

Consequently, the dynamical critical exponent, describing the relative scaling of
time and space in the quantum critical regime, is z = 1 exactly. However, for spin-1/2
fermions on the honeycomb bilayer, the number of Dirac fermion flavours is doubled in
comparison with the spin-1/2 realization on the monolayer. This can be understood as
a consequence of the splitting of each of the two inequivalent quadratic band touching
points in the noninteracting electron spectrum into two mini-Dirac cones in the nematic
state. The universal exponents characterizing the nematic-to-coexistence quantum critical
point on the honeycomb bilayer are therefore generically different from the monolayer
situation. Exploiting previous results that were originally devised in the monolayer
context, we have obtained estimates for the correlation-length exponent v and the boson
and fermion anomalous dimensions 74 and 7, in the present case. In particular, we have
used a four-loop € expansion around the upper critical dimension (Zerf et al. 2017), a
second-order large- Ny expansion (with the fermion anomalous dimension derived at third
order) (Gracey 2018), and a functional RG approach in the improved local potential
approximation (Janssen & Herbut 2014). We have obtained reasonable agreement among
the results of these complementary approaches for all exponents calculated. These
predictions may be tested in future numerical simulations of suitable models that realize
a nematic-to-coexistence quantum critical point.

In BBLG, the nematic and layer-antiferromagnetic states are very close in energy,'?)
and the actual low-temperature ground state appears very sensitive to external perturba-
tions. This suggests the possibility that BBLG could be tuned towards or maybe even
through the nematic-to-coexistence quantum phase transition discussed in this chapter.
The relativistic quantum critical point should then reveal itself in a broad quantum critical
regime at finite temperatures, characterized by non-trivial scaling behaviour of various
observables (Sachdev 2010a). For instance, the real-frequency dynamical spin structure
factor should scale in this regime as S(w, k) o (w? — 2k?)~(=0)/2 with ny ~ 1.04(2).
The electronic specific heat should scale as Co(T) oc T%* with d = 2 and z = 1. Within
the coexistence phase, the system develops a full, but anisotropic gap in the electronic
spectrum. This should have characteristic consequences for transport experiments: Due
to the nematic order in this phase, the electrical conductivity, for instance, should become
anisotropic, with a two-fold oscillation as function of in-plane angle for fixed temperature,
but at the same time also exhibit an activated behaviour as function of temperature,
arising from the spectral gap.

In this work, we have employed a simple effective model that is expected to capture
well the universal aspects of the competition between nematic and antiferromagnetic
orders in BBLG. For the future, it would be desirable to identify a realistic microscopic
model that allows one to study also non-universal aspects of the material. This includes
the question whether signatures of the nematic-to-coexistence quantum critical point

" For instance, see Herbut (2006); Herbut, Juricié & Vafek (2009); Janssen & Herbut (2014); Assaad
& Herbut (2013); Parisen Toldin et al. (2015); Otsuka, Yunoki & Sorella (2016); Buividovich et al.
(2018).

12)¢f., e.g., Jung, Zhang & MacDonald (2011); Vafek & Yang (2010); Lemonik et al. (2010); Vafek (2010);
Cvetkovic, Throckmorton & Vafek (2012); Lemonik et al. (2012)
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should be expected to be readily observable in current experiments. Such an analysis
might also reveal possible external parameters that could drive the system towards
criticality.

A highly tunable and closely related system that has received significant interest
in recent years is twisted bilayer graphene. For certain magic angles between the two
honeycomb layers (Bistritzer & MacDonald 2011), it shows correlated insulating (Cao et
al. 2018a) or unconventional superconducting (Cao et al. 2018b) instabilities, depending on
the electronic filling. Furthermore, intertwined phases featuring nematic order, potentially
also coexisting with superconductivity, have very recently been reported (Cao et al. 2021).
These observations suggest that a scenario similar to the one proposed herein for BBLG
may also be relevant for the twisted bilayer configuration. This represents an excellent
direction for future investigation.



Chapter 7

Higgs Mass in Asymptotically
Safe Gravity with a Dark Portal

Thus far, we have primarily concerned ourselves with systems where quantum scale
symmetry emerges in the deep infrared. In this Chapter, we shall turn our attention to a
scenario which is in some sense the opposite: Quantum scale symmetry that is (badly)
broken in the infrared, but restored at high enough energies. In Sec. 1.1.1, we discussed
how imposing quantum scale invariance in the high-energy limit enables the construction
of a fundamental quantum field theory — i.e., one which does not break down at some
‘new physics’ energy scale — and how it is possible to in this way ‘minimally’ complete
the Standard Model (SM) by including quantum gravity. ‘Minimal’ in this context means
that there is no theoretical need for additional elementary particles beyond the graviton
(as opposed to, e.g., supersymmetry), nor the abandonment of local quantum field theory
as the underlying theoretical framework (as opposed to, e.g., string theory).

Theoretical self-consistency is a necessary condition for a ‘Theory of Everything’,
but it is not sufficient. In particular, no amount of theoretical self-consistency can
preclude the (experimental) discovery of, say, a new species of elementary particles.
Particle accelerators, the most reliable source for new elementary particles in the past
century (but also as late as 2012, in the form of the Higgs boson), have been ostensibly
quiet in recent times. In their stead, astrophysical observations may provide indications
towards the need for extensions of the SM. For instance, one may study the velocity
profile of stars within a galaxy (Persic, Salucci & Stel 1996): Assuming a spherical mass
distribution and Newtonian gravity, one can use the measured radial velocity to infer the
enclosed mass. The rotational velocity has been observed to be approximately constant
for radii larger than that of the optically observable disc (cf., e.g., Lisanti 2016). This
implies that outside said region, despite there being practically no visible matter, the
enclosed mass still appears to grow roughly in proportion to the radius. Another source
of observational tension is gravitational lensing (Bartelmann 2010). A large mass (e.g., a
galaxy or a galaxy cluster) bends the light emanating from a background source, such as
a supernova (Umetsu et al. 2016; Caminha et al. 2017). The observed amount of light
bending significantly exceeds that which could be caused by visible matter alone. A
further phenomenon for which the visible matter budget of the universe is insufficient is
the growth of cosmic structure, which can be estimated from the amplitude of cosmic
microwave background fluctuations (Particle Data Group 2020). These — among many
other — observations call for an additional matter component which does not react
electromagnetically, but does interact gravitationally: so-called dark matter. At the time
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of writing, the precise constitution of dark matter is an open question. In this Chapter,
we shall focus on particle dark matter, i.e., where dark matter is an additional elementary
particle beyond the Standard Model (BSM). Scenarios of this kind have been explored
in detail, see Chap. 26 of Particle Data Group (2020) or the lecture notes of Bauer &
Plehn (2019) for a review. The space of all possible particle dark matter extensions to
the SM is large: even for a fixed particle content, there are typically many additional
free parameters from the perspective of effective field theory (EFT). To systematically
explore such large spaces, a theoretical guiding principle is needed. Requiring quantum
scale symmetry be restored in the deep UV — i.e., asymptotic safety — is precisely one
such principle.

For concreteness, we shall consider in this Chapter on one of the most conservative
dark-matter scenarios, namely where the dark sector is an additional Yukawa system (i.e.,
a dark scalar ¢4 and a dark fermion 1)4), coupled to the Standard Model via an operator
of the form \,H TH gz%, a so-called Higgs portal (H is the Higgs field, A, is then called
the portal coupling)l). For reasons of tractability, we shall furthermore replace the full
Standard Model (‘visible sector’) by a Yukawa system representing the top quark and the
radial mode of the Higgs boson. The general fixed-point structure of the RG flow of such
a system (coupled to quantum gravity, which we shall tacitly assume henceforth) has
been considered by Eichhorn & Pauly (2021a), cf. ibid. and Eichhorn & Pauly (2021b)
for details on the computation of the pertinent § functions. Here, we shall take these
flow equations as a given and focus on a concrete phenomenological question: What is
the resulting Higgs mass?

The Higgs mass is an observable with far-reaching physical consequences. The discovery
of the Higgs boson (ATLAS 2012; CMS 2012) with a mass of roughly my ~ 125 GeV
has striking implications: Were it only slightly heavier, a Landau pole well before the
Planck scale would signal the onset of strong coupling or the presence of new degrees of
freedom below the Planck scale Mp); were it only slightly lighter, the electroweak vacuum
inhabited by our universe would be too unstable, thus providing a signal for the presence
of new physics below the Planck scale. For the currently measured Higgs mass, the SM is
self-consistent without need for new physics up to the Planck scale.

The electroweak potential might exhibit more than one local minimum. Depending
on the depth of the additional minima, the SM vacuum at 246 GeV is either stable
or metastable, but its stability is highly sensitive to the mass of the top quark. For a
top quark mass of 172.8 GeV, the electroweak vacuum is metastable, with a life-time
exceeding the age of the universe in the absence of higher-order terms in the microscopic
Higgs potential. However, the top quark mass has not yet been precisely determined;
the precise relation between the experimentally measured and the theoretically relevant
parameter remains uncertain. Consequently, the fate of the SM vacuum remains an open
question.

The asymptotic-safety perspective is in some sense the inverse of the above. Within a
general RG setup, the question of vacuum stability may be formulated in terms of the sign
of the running quartic coupling A(k), by assuming (roughly) that for large enough values
of the Higgs field |H|, the effective potential behaves as Vog(|H|) ~ A(k = |H|) |[H|*. In
the canonical picture, A being dimensionless renders it a free parameter, to be fixed by
measuring the Higgs mass.?) Flowing to the UV, one can then ask whether \ turns negative

b Strictly speaking, a dark sector comprising only a scalar would be even more conservative. We shall see
later that it is insufficient from an asymptotic-safety perspective, because the portal coupling vanishes
in such a scenario.

2 To get a general idea, one may think of the relation m?% =~ )\(km)v?{, where kir is an IR scale (such
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Figure 7.1: (Adapted from Particle Data Group 2002) Higgs mass window between Landau
pole and vacuum instability: If the Higgs is too light, the Higgs potential is not bounded
from below, whilst the Higgs being too heavy leads to a Landau pole (divergence of running
couplings) at a finite scale. The scale k,, represents the ‘new physics’ scale, at which new
degrees of freedom would have to be introduced to cure the relevant issue if the Higgs mass
were to lie outside the window. Note that the Higgs masses are computed with a top mass of
M; = 175 GeV. This is historically accurate, but not in line with current consensus which
places the top mass roughly between 172 and 173 GeV - cf., e.g., Particle Data Group (2020).

before the Planck scale or not (the flow above the Planck scale requires quantum gravity
in any case). Inverting the question, one may then ask what Higgs mass A(k = Mp;) = 0
(stability boundary) translates to. Using three loop SM 3 functions, a top mass of 173 GeV
(and assuming the absence of higher-order interaction), this works out to a stability
boundary of my ~ 129 GeV. By contrast, the measured value mpy =~ 125 GeV leads to a
small but negative value of the Planck-scale quartic coupling.®) In asymptotic safety (AS),
canonical power counting is no longer valid because of quantum corrections to scaling
dimensions at an interacting fixed point. At the fixed point pertinent to quantum gravity
(plus SM matter), it turns out that marginal operators become (weakly) irrelevant, and
are thus predicted at all scales; it has been used to derive AS predictions for the Higgs
mass (Shaposhnikov & Wetterich 2010) and other SM couplings (Harst & Reuter 2011;
Eichhorn & Held 2018a,b; Eichhorn & Versteegen 2018; Alkofer et al. 2020). Vacuum
stability is no longer a problem in AS, because at the Planck scale and higher, the Higgs
quartic coupling is set to its fixed-point value, which is positive (and grows logarithmically
below the Planck scale, as we shall discuss in more detail later). The problem is shifted
instead to a tension between the predicted and measured Higgs mass, with the former
coming out slighty above the stability boundary, and thus a few GeV above the observed
value. The appropriate question for our setup is hence, whether the inclusion of dark
matter will allow one to combine the highly predictive phenomenology of asymptotic
safety with a Higgs mass closer to the measured one.

as the top scale) and vy is the Higgs vev, the latter being fixed by measuring the W and Z boson
masses (cf., e.g., Schwartz 2014).

The difference of about 4 GeV between the measured Higgs mass and the calculated vacuum stability
boundary is significant, in that it is much larger than the difference between the two-loop and three-loop
calculations of the stability boundary. The small distance of the measured Higgs mass to the stability
boundary essentially means that the time needed for our universe to tunnel into the true vacuum is
much larger than the age of the universe itself.

3)
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The remainder of this Chapter is organized as follows: In Sec. 7.1, we shall review
the asymptotic safety scenario for quantum gravity in the presence of matter degrees
of freedom in some more detail. In Sec. 7.2, we shall review the relation between UV
data for couplings and the Higgs mass measured in the IR, before presenting concrete
calculations for our specific toy model in Sec. 7.3. We shall close the Chapter with a brief
summary of our results in Sec. 7.4.

7.1 Review: The asymptotic safety scenario for quantum
gravity and matter

If the asymptotic safety scenario for quantum gravity is realized, the quantum field theory
(QFT) for the metric and the SM can be extended to arbitrarily high energies due to
the presence of an interacting fixed point, see Eichhorn (2018, 2019) and Pawlowski &
Reichert (2020) for recent reviews, and Percacci (2017), Reuter & Saueressig (2019),
Eichhorn (2020), or Reichert (2020) for pedagogical introductions, and Donoghue (2020)
as well as Bonanno et al. (2020) for critical discussions of the current status of the field.
Based on the methodology pioneered by Reuter (1998), evidence for the existence of such
a fixed point has been accumulated in pure gravity using functional RG techniques®. In
addition, lattice techniques (Ambjgrn et al. 2012; Loll 2020; Laiho et al. 2017; Bassler et
al. 2021) and analytical tensor-model techniques (Eichhorn, Koslowski & Pereira 2019)
are used to search for asymptotic safety. A large body of literature indicates the existence
of a fixed point with a finite (and small — typically two to three) number of relevant
directions.

The fixed point persists under the inclusion of certain sets of matter fields. In particular,
there are indications that it supports SM-like matter®. The resulting combined fixed
point has interesting properties, both, in the gravity and the matter sector. In the
gravity sector it is shifted with respect to the one without matter: it appears at different
fixed-point values for the gravitational couplings.

The relevant directions in the gravity sector include the Newton coupling and the
cosmological constant, making the UV fixed point compatible with the measured IR
values. Higher order curvature terms inevitably appear at the fixed point. Their couplings
are canonically irrelevant starting from terms cubic in the curvature, while the terms
quadratic in the curvature are canonically marginal. Various results studying extended
truncations in the gravity sector®) and symmetry identities at the fixed point (Eichhorn
et al. 2018, 2019; Eichhorn, Lippoldt & Schiffer 2019) as well as the existence of a
weak-gravity bound in gravity-matter systems”) suggest that the gravitational fixed point
could be near-perturbative in nature, in the sense that canonically irrelevant couplings
typically remain irrelevant at the interacting gravity-matter fixed point because the

Y ¢f., e.g., Falls et al. (2013, 2016, 2018); Falls, Litim & Schroder (2019); Kluth & Litim (2020); Bendetti,
Machado & Saueressig (2009); Gies et al. (2016); Falls, Ohta & Percacci (2020); Knorr (2021); Donkin
& Pawlowski (2012); Eichhorn et al. (2018); Christiansen et al. (2018b); Denz, Pawlowski & Reichert
(2018); Christiansen et al. (2015, 2014, 2016); Christiansen (2016); Knorr & Lippoldt (2017)

%) ¢f., e.g., Dona, Eichhorn & Percacci (2014); Meibohm, Pawlowski & Reichert (2016); Christiansen et
al. (2018a); Alkofer & Saueressig (2018); Wetterich & Yamada (2019)

6 ¢f., e.g., Falls et al. (2013, 2016, 2018); Falls, Litim & Schroder (2019); Kluth & Litim (2020); Falls,
Ohta & Percacci (2020); Knorr (2021)

7 cf., e.g., Bichhorn, Held & Pawlowski (2016); Christiansen & Eichhorn (2017); Eichhorn & Held (2017);
Eichhorn & Schiffer (2019); de Brito, Eichhorn & dos Santos (2021)
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scaling spectrum is close to canonical scaling. This implies a finite number of relevant
directions and hence predictivity.

In the matter sector, it is impossible to set all interactions to zero, because the
interacting nature of the gravitational fixed point necessarily percolates into the matter
sector. Nevertheless, there may be a choice of distinct universality classes, depending on
the gravitational fixed-point values:

At the maximally symmetric fixed point (Eichhorn & Held 2017), higher-order interactions
are necessarily present (Eichhorn & Gies 2011; Eichhorn 2012), but all canonically
marginal and relevant couplings of the SM may be set to zero. At this fixed point,
the Higgs quartic coupling is irrelevant, resulting in a prediction of the Higgs mass
(Shaposhnikov & Wetterich 2010). All gauge couplings may become asymptotically free
at this fixed point® and Yukawa couplings may be relevant for an appropriate range of
the gravitational couplings (Oda & Yamada 2016; Eichhorn, Held & Pawlowski 2016;
Eichhorn & Held 2017).

At a second fixed point, where shift symmetry in the scalar sector is explicitly broken,
higher-order as well as marginally relevant interactions are non-vanishing. At this fixed
point, some Yukawa couplings may be finite and irrelevant?), the Abelian gauge coupling
may be irrelevant (Harst & Reuter 2011; Eichhorn & Versteegen 2018) and the quartic
Higgs and non-minimal Higgs-curvature couplings may also be irrelevant (Wetterich 2021;
Eichhorn & Pauly 2021b), resulting in very high predictive power of this universality
class.

Similarly, a number of BSM settings with gravity have been studied, with some
indications for enhanced predictive power from asymptotic safety'?).

7.2 Review: Higgs mass, and RG flow in the SM and
beyond

To set the stage for the main analysis, let us first review the Higgs mass in the SM, an
extension of the SM by a portal to a dark scalar as well as the (conjectured) asymptotically
safe versions of both — promising indications for which have been found in the literature,
see the preceding section.

7.2.1 Higgs mass in the SM
In the SM, the Higgs mass is

MH =4/ QAH(kIR)U%{, (71)

where \p is the Higgs quartic coupling evaluated at an IR scale kg (typically chosen
as the top mass scale) and vy ~ 246 GeV is the vacuum expectation value (vev) of the
Higgs field at the electroweak minimum. The Higgs vev is known from the measured
masses of the weak gauge bosons; the Higgs mass measurement then fixes the quartic
coupling at the electroweak scale. This measurement can be used to draw inferences on

8 ¢f., e.g., Daum, Harst & Reuter (2010, 2011); Folkerts, Litim & Pawlowski (2012); Christiansen et al.
(2018a)

9 cf., e.g., Eichhorn & Held (2018a,b); Alkofer et al. (2020)

10¢f., e.g., de Brito et al. (2019); Reichert & Smirnov (2020); Eichhorn & Pauly (2021a); Kowalska, Sessolo
& Yamamoto (2021); Kowalska & Sessolo (2021); Hamada, Tsumura & Yamada (2020); Kwapisz
(2019)
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the microphysics at larger energies, e.g., the Planck scale Mp;. This map between Planck
scale and electroweak scale starts with couplings specified at the Planck scale, and follows
the RG flow in its proper direction to the IR. Applied to different microscopic models,
it allows one to identify those that yield the observed Higgs mass. Within the SM, the
measured Higgs mass is achieved by starting from a near-vanishing value of the quartic
coupling at the Planck scale. In fact, under the assumption of vanishing higher-order
couplings, the measured Higgs mass requires a slightly negative Higgs quartic coupling
at the Planck scale (Bezrukov et al. 2012).

This finding depends on the mass of the top quark: because the top Yukawa contribution
nearly cancels the gauge coupling contribution to the flow of the Higgs quartic coupling,
the Higgs quartic coupling changes very little over a large range of scales. This balance
is highly sensitive to the top Yukawa coupling and thus small changes in the top mass
strongly alter the flow of the quartic coupling (Bezrukov & Shaposhnikov 2015). The
top mass measurement is non-trivial, as is its translation into the parameter that enters
the running (Hoang 2020); thus a significant uncertainty on the top Yukawa coupling
remains. Novel direct measurements of the top pole mass (CMS 2017, 2020; ATLAS 2019)
point to a slightly lower value than the central value recorded by Particle Data Group
(2020). This difference of just 1-2 GeV in the top quark mass is sufficient to shift the
Higgs quartic coupling at the Planck scale from a negative value to zero while keeping
its IR value fixed to the measured one.

Using the running quartic coupling to RG improve the electroweak potential results
in a potential on the boundary of stability and metastability. A metastable electroweak
vacuum, tied to the larger top mass, has a lifetime longer than the age of the universe
(Bezrukov et al. 2012; Degrassi et al. 2012; Butazzo et al. 2013; Bezrukov & Shaposhnikov
2015; Elias-Miro et al. 2012).

Going beyond the SM, one defines a model at some microscopic scale A, e.g., the
Planck scale. Any physically viable model must feature a potential that is bounded from
below at this scale A. Following the RG flow towards lower scales deforms that potential
at field values ¢ < A and can therefore not result in an unstable electroweak potential.
The minimum quartic coupling that is achievable in such a setting translates into a lower
bound on the Higgs mass. The lower bound on the Higgs mass is then a prediction of the
particular model. For instance, within the SM defined at A = Mp, we have checked that
a minimum quartic coupling Ay (Mp)) = 0 results in a Higgs mass of 133 GeV (at one
loop, 128 GeV at two loop)'V).

An asymptotically safe UV completion with gravity extends the theoretical validity of
the quantum field theoretic description to infinite energies, A — 00.In this scenario a UV
fixed point (i) provides a UV completion, (ii) could fix some of the marginal couplings in
the gauge-Yukawa sector and (iii) is expected to predict the Planck-scale value of the
Higgs quartic coupling. This determines the Higgs mass in an asymptotically safe model
as a function of the relevant couplings of that model.

In the following, we shall first recapitulate the Higgs mass in a portal model to dark
scalars in Sec. 7.2.2, and the Higgs mass in the (conjectured) asymptotically safe SM in
Sec. 7.2.3. We shall then go on to combine the two and review the status of asymptotically
safe portal models in Sec. 7.2.4. This provides the basis for new results on Higgs mass
bounds in asymptotically safe portal models in Sec. 7.3.

) These values were obtained with a top mass M; = 172.8GeV, taken from Particle Data Group (2020).
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7.2.2 Higgs mass bounds in bosonic portal models

A gauge singlet ¢4 may constitute dark matter'? and reduce the lower bound on the
Higgs mass'®. The dark scalar ¢4 obeys a discrete ¢y — —dy symmetry to ensure its
stability and is coupled to the Higgs scalar H via a portal operator

Lyp = %PHTH@%. (7.2)
The portal coupling enables thermal production, see Roszkowski, Sessolo & Trojanowski
(2018); Arcadi et al. (2018) for reviews on thermally produced dark matter and Arcadi,
Djouadi & Raidal (2020) for a review of portal dark matter. Through the portal, dark
bosonic fluctuations change the flow of the Higgs quartic coupling, counteracting the effect
of top quark fluctuations and lowering the Higgs mass. Direct and indirect observational
bounds on the value of the portal coupling and the value of the dark scalar mass were
reported by GAMBIT (2017, 2019).

The portal coupling has two distinct effects on the Higgs mass:

First, starting from a fixed value of the Higgs quartic coupling in the UV, the additional
bosonic fluctuations lower the quartic coupling in the IR. This is because the fluctuations
of ¢4 contribute a term CP)\% with ¢p > 0 to 8. The sign of Ap is immaterial for this
effect, as has been discussed by, e.g., Gonderinger et al. (2010), Cline et al. (2013), and
Khoze, McCabe & Ro (2014), as well as with the FRG'Y) by Eichhorn & Scherer (2014).
Second, if the dark scalar also acquires a vacuum expectation value, the resulting mixing
between dark and visible scalar will affect the measured Higgs mass at tree level through
off-diagonal terms in the scalar mass matrix. The physical masses are the eigenvalues of
the mass matrix. Due to the mixing between H and ¢4, the corresponding eigenvalues
repel each other, as one can demonstrate for a potential with real dark scalar coupled to
the radial mode ¢, of the Higgs H of the form

2 Ao A > A
V(du,da) = 000 + Ly + =000 + ldn + Lo (73)

that we shall investigate in Sec. 7.3. In the symmetry-broken regime, it is sometimes
expedient to rewrite the potential in terms of the vacuum expectation values {¢, 4, =
Uv(d)7 to wit:

My (@) N(w) — Mgy AP

2
Vi) = 2 (7.4)
(d) A2p — Ad
The potential can then be written as
)\’U 2 A 2 A
V(6 da) = (60 — i)+ 5 (05— )"+ T (85 —of) (#3—03) . (75)

wherein a constant shift in the potential, being immaterial in the absence of gravity, has
been neglected. In this potential, fluctuations around the minimum are massive with
squared masses

1
Mg/d =3 <)\vvg + Agv3 + \/()\vvg — Av3)? + 4)\Hpvgv§> : (7.6)

12)This idea goes as far back as Silveira & Zee (1985) and McDonald (1994). See the lecture notes of
Bauer & Plehn (2019) for a somewhat more recent review.

1?’)cf., e.g., Eichhorn & Scherer (2014), and ibid. for a more extensive review of — primarily EFT-based —
results on this topic

WFor an FRG study of vacuum stability in the Higgs portal to fermionic dark matter, see Held &
Sondenheimer (2019).
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The repulsion between the two eigenvalues lowers the smaller of the two masses and
increases the larger one. When the dark scalar is heavier than the Higgs this leads to
a decrease of the Higgs mass (Lebedev 2012; Elias-Miro et al. 2012; Falkowski, Gross
& Lebedev 2015). This effect does not vanish even for very large vacuum expectation
values of the dark scalar. To describe the effect of the dark scalar in this limit, one solves
the equation of motion for ¢4 in the limit of slowly varying field in the potential (7.5).
By reinserting the result into (7.5) one obtains a corrected quartic coupling Ao,

2

Ao = Ay — A, (7.7)

Ad
The correction )\%{P)\Jl reduces the Higgs quartic coupling and lowers the Higgs mass. It
remains finite for large v4. Though we have performed the above analysis with A, the
quartic self-coupling of a Zy scalar (~ radial mode of the Higgs), a similar result holds
for the full Higgs self-coupling Ag.

At a first glance, the correction appears to violate decoupling theorems in EFT.
However, a massive degree of freedom only decouples in the limit of infinite mass, if
its coupling to the remaining degrees of freedom is held constant. In the present case,
both the dark scalar’s mass and its coupling to the Higgs increase with 1}3, such that a
contribution from ¢4 to the effective action remains in the limit vy — oo.

The dark scalar ¢4 might play the role of a dark matter candidate. This is only
viable if the discrete Zso symmetry for ¢, is unbroken; otherwise the dark matter decays.
Observationally, this option is only viable for a narrow window of masses close to Miggs/2,
as well as for dark scalar masses My = 10° GeV (GAMBIT 2017; Athron et al. 2018),
where the latter region is associated with fairly large portal couplings Apgp ~ 1. For
unbroken Zs symmetry, only the first of the two discussed effects contributes to the Higgs
mass. This contribution to the flow of Ay can lower the Higgs mass enough to match
observations while maintaining a stable electroweak vacuum, see Athron et al. (2018).

7.2.3 Higgs mass in asymptotic safety

Asymptotically safe gravity-matter models might predict the ratio of the Higgs mass to
the electroweak scale (Shaposhnikov & Wetterich 2010). This prediction relies on the
irrelevance of the Higgs quartic coupling at an asymptotically safe matter-gravity fixed
point.’® At one loop and with the added gravitational contribution, the beta function
for the Higgs quartic coupling Ay reads as

1 3 55\
Bru = kdAer = —fdu + 1o {—6@/? +3 [293 + (g% + 3g%> ”
1

1672

Here f5 is a function of the gravitational couplings that is independent of the internal
indices of the scalar field. It has been computed previously in various approximations'®

3
+ (12y7 — 993 — 5gy) Mg + ﬁﬁ[. (7.8)

15)Here, we solely focus on the case where the Higgs mass parameter remains relevant. The mass
parameter may become irrelevant — cf., e.g., Wetterich & Yamada (2017) — for sufficiently strong
gravity fluctuations. Such strong gravity fluctuations are most likely not compatible with the weak-
gravity bound discovered in several asymptotically safe matter-gravity systems (Eichhorn, Held &
Pawlowski 2016; Christiansen & Eichhorn 2017; Eichhorn & Held 2017; Eichhorn & Schiffer 2019).

1)¢f., e.g., Narain & Percacci (2010); Percacci & Vacca (2015); Eichhorn et al. (2018); Pawlowski et al.
(2019); de Brito, Eichhorn & Pereira (2019); Wetterich & Yamada (2019); Wetterich (2021); Eichhorn
& Pauly (2021b)
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Figure 7.2: Effect of quantum gravity contribution —f,g to the flow of a generic marginally
irrelevant coupling g. For f; > 0 (blue, dashed), g« = 0 becomes UV attractive — i.e., the
fixed point is asymptotically free with respect to the coupling g, which may be the case for
the abelian gauge coupling gy (cf., e.g., Eichhorn & Versteegen 2018). For f; < 0 (red, solid),
there is an IR attractive fixed point with non-vanishing g, — i.e., asymptotic safety. This is
the case for the Higgs self-coupling Ay in the present setting, see discussion in main text
(Mg s = 0 is, however, only a fixed point if all gauge and Yukawa couplings are assumed to
be asymptotically free). The case with no quantum gravity correction f; = 0 is shown as a
dotted blue curve for comparison.

and encodes the gravitational contributions to the beta function. The dependence of f;
on the fixed-point values of the dimensionless Newton coupling G and the dimensionless
cosmological constant A, in the approximation of Eichhorn & Pauly (2021a) is shown
in Fig. 7.3(a). Further contributions to the beta function come from the gauge and
the Yukawa sector, respectively, where we neglect all but the top quark Yukawa in the
latter (gy and g2 are the U(1) and SU(2) gauge couplings respectively, whilst y; is the
top Yukawa coupling). The Yukawa contributions come with the opposite sign to the
gauge contribution due to the fermionic nature of the corresponding fluctuations. In this
chapter, we shall use the convention 8, = kdyg for generic coupling g, as is conventional
in high-energy physics. Note, however, that critical exponents in this convention are
defined as minus the eigenvalues of the fixed-point Jacobian of the system of S functions,
ie., 0 <0 (> 0) still corresponds to (ir-)relevant directions.

For f, < 0, as has been found in several studies!”), there is an IR attractive fixed point
in Ag, as shown schematically in Fig. 7.2. It lies at either a vanishing or a non-vanishing
value of A\py, depending on the fixed-point structure in the gauge-Yukawa sector. The
non-Abelian gauge couplings remain asymptotically free under the impact of quantum
gravity (Daum, Harst & Reuter 2010; Folkerts, Litim & Pawlowski 2012; Christiansen
et al. 2018a), the Abelian gauge coupling may be either asymptotically free or safe
(Harst & Reuter 2011; Eichhorn & Versteegen 2018; Christiansen & Eichhorn 2017), with
indications for an upper bound on its Planck-scale value Eichhorn & Versteegen (2018).
Similarly, the top Yukawa coupling may be asymptotically free or safe, if conditions on
the gravitational fixed-point values are met (Oda & Yamada 2016; Eichhorn, Held &
Pawlowski 2016; Eichhorn & Held 2017).

Let us first assume that Yukawa and gauge couplings become asymptotically free
under the impact of gravity, such that they may be set to zero to analyse the fixed point

1M¢f., e.g., Narain & Percacci (2010); Percacci & Vacca (2015); Eichhorn et al. (2018); Pawlowski et al.
(2019); de Brito, Eichhorn & Pereira (2019); Wetterich & Yamada (2019); Wetterich (2021); Eichhorn
& Pauly (2021b)
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for the quartic coupling. The only fixed point at non-negative values for Ay is
)\H* = Oa HAH = fs < 07 (79)

The quartic coupling Ay vanishes and is irrelevant. Gravitational fluctuations hence
dampen any deviation from the vanishing fixed-point value. Thereby the quartic coupling
(nearly) vanishes at the Planck scale!®). It is regenerated below the Planck scale by the
other SM couplings which grow towards the IR from their asymptotically free fixed-point
values. The resulting IR value for the quartic coupling corresponds to a Higgs mass in
the vicinity of the measured value. In fact, this scenario predicts a Higgs quartic coupling
at the stability bound of the SM (Shaposhnikov & Wetterich 2010).

Let us next consider non-vanishing fixed-point values for Yukawa and Abelian gauge
coupling, i.e., a second potential gravity-matter universality class. This results in a
positive fixed-point value for Ag, given by

i\ 5 o 1, i 1 \/ 2 2 22 4 4
Hx = 90y — 1Y + gfs + = (12y? — 5g3 — 1672 f5)” + 576y — 100gy..  (7.10)

The larger fixed-point value translates into a larger IR value, and hence a larger Higgs
mass. Thus, this universality class appears to be in tension with observations, unless
additional degrees of freedom are added, as we shall do subsequently.

The resulting shift in the Higgs mass depends on the strength of gravitational
corrections. Fig. 7.3 shows the shift computed in a one-loop approximation under the
assumption that the predictions of Abelian gauge coupling and top quark mass from
asymptotic safety match the observed values. To compute the flow, the Planck-scale
values of the SM couplings are required as input. We obtain these by reversing the
direction of the flow and mapping the IR values gy (kigr) = 0.3587, go(kig) = 0.6484,
g3(kr) = 1.1647, y(kr) = 0.9080 at kg = 172.8 GeV 19°20) to their corresponding
Planck-scale values. We use the one-loop beta functions for the top Yukawa coupling
and the Abelian hypercharge gy. Based on this input, we determine Af 4 from Eq. (7.10)
for various values of f;. We assume that Ag . is the Planck-scale value for the quartic
coupling and flow to the IR using the SM one-loop beta function and compute the
resulting Higgs mass. For |fs| » 1 one approaches the limiting case Ay ~ 0. For smaller
values of |f|, the quartic coupling is larger at the Planck scale, translating to higher
Higgs masses in the IR.

Assuming the current central value for the top mass, in both scenarios — i.e., at the
GauBian matter fixed point and at the interacting matter fixed point with dominant
Yukawa contributions — the resulting IR Higgs mass is (slightly) too large. We take this
as a motivation to explore which extensions of the SM could lower the IR Higgs mass

%) Due to the growth of the other SM couplings to non-zero Planck-scale values from their asymptotically
free fixed-point values, the critical value of the Higgs quartic coupling that is reached from its vanishing
fixed-point value is actually nonzero, but very small.

19 These values correspond to a top mass of Miop = 172.8 GeV and are obtained by three-loop QCD
matching and two-loop matching for y: and Ay (Bezrukov et al. 2012; Chetyrkin & Zoller 2012).

20)1n other words, we are using a ‘quenched’ approximation for the asymptotically safe flow, whereby above
the Planck scale, the dimensionless versions of couplings do not flow (which for marginal couplings
such as the quartic self-coupling correspond precisely to the full dimensionful couplings themselves).
At the Planck scale, the metric fluctuations decouple from the matter sector dynamically, and the
standard RG flow (i.e., without quantum gravity corrections) takes over. This decoupling is encoded
in non-trivial threshold functions, and occurs continuously for smooth enough regulators. However,
this takes place over a very small window of scales around the Planck scale, and a step function is a
sufficiently good approximation (Eichhorn & Held 2018a).
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Figure 7.3: Here, the RG flow has been reversed to evolve the IR values for the SM
couplings to the scale Mp) using the SM one-loop beta functions, whereupon the fixed-point
condition (7.10) for Ay is implemented. The Planck-scale Higgs quartic coupling extracted
thus is finally RG-evolved to IR scales. (a) Contours of the quantity f; which encodes the
gravitational contributions to 8y, as a function of gravitational couplings (G, Ay). The
grey region is excluded because it could result in a vanishing top mass, as found within
an approximation by Eichhorn & Held (2018a). (b) Higgs mass as a function of fs. For
|fs| = 1, one approaches the Higgs mass corresponding to the vacuum stability bound with
A (Mp1) = 0 at one loop. (c¢) Ilustration of the flow of SM couplings from the Planck scale
k = Mp; ~ 1.221 x 10'? GeV down to the scale of the top mass k = M; ~ 172.8 GeV, with
the Higgs self-coupling initialized to solve Sy, = 0 for fs = —0.01 [cf. Eq. (7.8)] at the
Planck scale.
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and at the same time are compatible with asymptotically safe quantum gravity. The
question of Higgs vacuum stability in asymptotic safety has previously been investigated
in the context of a model with neutrino masses (Domeénech, Goodsell & Wetterich 2021).

7.2.4 Higgs Portal and Asymptotic Safety

In the previous subsections we have reviewed results on the Higgs mass in the SM and
its asymptotically safe extension with gravity. In the SM, requiring vacuum stability at a
top mass of 173 GeV leads to a Higgs mass a few GeV above the measured values. In the
asymptotically safe SM, two universality classes could be available for a UV completion.
Both predict the Higgs quartic coupling and as a result the Higgs mass. The predictions
lie at least a few GeV above the measured value. In the non-gravitational setting, a
dark scalar coupled to a Higgs portal allows one to reach lower values of the Higgs mass.
This motivates us to investigate whether the same mechanism may be available in an
asymptotically safe extension of the model with gravity.

In the following, we shall review the implications of quantum scale symmetry on the
portal coupling (Eichhorn et al. 2018). Quantum gravity fluctuations only produce a
fixed point which is free in the portal coupling in Eq. (7.2), Ap4 = 0. At this fixed point,
quantum gravity fluctuations render the portal coupling irrelevant, 6y, < 0 (we neglect
operator mixing, since it is numerically very small). The dark scalar mass also features a
vanishing fixed-point value, but remains relevant unless quantum-gravity fluctuations
are very strong. These results hold even if the Higgs quartic coupling takes on a finite
fixed-point value, as reviewed in Sec. 7.2.3. For this fixed-point structure, the portal
coupling must vanish at the Planck scale. As no Yukawa or gauge degrees of freedom
regenerate the coupling below the Planck scale, the portal coupling vanishes in the IR%V.
Thus the scalar ¢4 decouples at all scales, and the Higgs mass stays unchanged at low
energies as a result.

To circumvent this decoupling result, an additional degree of freedom needs to couple
to ¢4 such that its fluctuations generate a non-vanishing portal coupling above or below
the Planck scale. The scalar ¢4 may be chosen to be charged under an additional gauge
symmetry, as has been done, for instance, by Reichert & Smirnov (2020) and Hamada,
Tsumura & Yamada (2020). The corresponding interactions regenerate the portal coupling
below the Planck scale, similar to what happens for the SM Higgs at the fixed point with
vanishing but relevant Yukawa and gauge coupling, see above.

As an alternative, the approach of Eichhorn & Pauly (2021a) is to introduce an
additional dark fermion vy with a Yukawa coupling to the dark scalar that generates an
interacting fixed point for the portal. Here, we shall follow Eichhorn & Pauly (2021a) (see
also Eichhorn & Pauly 2021b), and hence consider the scale-dependent effective action

s 1 - A
T, = FVlSlble I-\dark Jd4 _ 29A — R HP 2,2 711
k k + 1y + x\/§ 167TGN( >+ 4 ¢U¢d ) ( )
with
visible 4 Z¢ Ny 2 My 2
Fk = d x\/§ 2 g au¢vau¢v - §v¢yR + 9 ¢v

2UThere is the possibility for a tiny portal coupling that is generated due to the curvature of the critical
hypersurface: If both scalar masses, which are relevant couplings, are chosen to deviate from their
fixed-point values already above the Planck scale, gravitational fluctuations enforce a tiny non-vanishing
value for the portal coupling. Its value is too small to substantially impact the Higgs sector.
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+ %qbg + iZiﬁ@vW@bv + iyvﬁbvwvwv) , (7'12)

and Fgark follows by the replacement v — d in Eq. (7.12). Here R is the Ricci scalar, A is
the cosmological constant and Gy is the Newton coupling, and G = Gxk? and A = Ak~
are their dimensionless counterpartsThe coupling A, is the representative of the quartic
Higgs coupling A in the SM. The F‘,;iSible part of the action (‘visible sector’) represents
the SM, with ¢, the radial Higgs mode and %, representing the top quark; Fﬁark is the
dark sector.

This opens up a new universality class at which the dark and visible Yukawa couplings,
scalar masses and non-minimal couplings are non-vanishing and in turn generate a
non-vanishing portal coupling. At the same time, all couplings except for the Newton
coupling, cosmological constant and the two mass parameters are irrelevant, endowing
this fixed point with high predictive power. Here, we will investigate the impact of this
extended dark sector on lower bounds on the Higgs mass. Our aim is to discover whether
the single free parameter in the dark sector, namely the dark scalar mass, enables a
lowering of the Higgs mass in an asymptotically safe setting.

7.3 Higgs mass in an asymptotically safe dark portal
model

We are now in a position to investigate whether the presence of a dark scalar can lower
the predicted value of the Higgs mass in asymptotic safety, bringing it into agreement
with observations. In order to generate a non-vanishing Higgs portal coupling, we shall
consider an extended dark sector with a dark scalar and a dark fermion. We shall work
in a toy model for the SM, with a real scalar for the Higgs and a Dirac fermion for the
top quark. The flowing action we consider is given by Eqs. (7.11) and (7.12). The beta
functions have been computed by Gies & Scherer (2010) for the simple Yukawa model
and Eichhorn & Pauly (2021b) for the full gravity-matter system specified in Eqgs. (7.11)
and (7.12).

We shall always use the beta functions of Eichhorn & Pauly (2021b) and treat the fixed-
point values of G, and A, as free parameters, in order to understand the phenomenological
constraints on the gravitational parameter space??). We shall furthermore limit ourselves
to the regime A, < —3.3, that might be reached in the presence of SM matter (Dona,
Eichhorn & Percacci 2014). In this region, f, > 0 holds in the beta function for the
Yukawa couplings ¥,4) (Eichhorn, Held & Pawlowski 2016; Eichhorn & Held 2017, 2018a)

5
By = 16ﬂ2’yg(d) — fyYu(a); (7.13)

where f, encodes the effect of gravitational fluctuations and depends on the gravitational
fixed point couplings A, and Gy.2%)

The beta functions for both Yukawa couplings feature four fixed points: one at which
both Yukawa couplings vanish, two at which one of the two Yukawa couplings has a

22)Many other references (cf., e.g., Eichhorn & Pauly 2021a,b; Eichhorn, Lippoldt & Schiffer 2019;
Eichhorn, Held & Pawlowski 2016) follow the same procedure, i.e. solve the matter beta functions and
vary the gravitational fixed point values as free parameters, but choose to omit the asterisk and just
label the fixed point values with G or Gn and A.

23)There is also a dependence on the non-minimal coupling &,(4) and the mass that we neglect in our
discussion but consider in our numerical results, see Eichhorn & Pauly (2021b) for details.
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non-vanishing value while the other one vanishes, and finally one at which both Yukawa
couplings are non-vanishing. At this fully interacting fixed point, the Yukawa interactions
break shift symmetry in both scalars. As a consequence, all scalar interactions are induced.
This in particular includes the portal coupling. We will focus on this fixed point in the
following.

The fixed point in question is highly predictive (Eichhorn & Pauly 2021a,b): The three
quartics Ay, Aq and Agp, the Yukawa couplings y,,yq and the non-minimal couplings
&y, &g are irrelevant at this fixed point. In the matter sector, the two mass parameters
m?2 and mfl remain as the only relevant couplings.

Our modus operandi for deriving IR predictions will be as follows: The RG flow
to the IR is started at the fixed point. Deviations from quantum scale symmetry can
occur along each of the two relevant directions, mz’ 4~ To mimic the SM Higgs sector,
the UV deviation in m? from its fixed-point value is tuned such that ¢, undergoes
spontaneous symmetry breaking along the RG flow and acquires a vacuum expectation
value of v, &~ 246 GeV in the IR. For m?l, we may adjust the initial conditions such that
¢q either stays in the symmetric phase or undergoes spontaneous symmetry breaking. If
¢4 remained in the symmetric phase, then the massive scalar ¢4 could decay into the
massless fermion 4. This might lead to an over-abundance of relativistic degrees of
freedom and thus contradict observational bounds from Big Bang Nucleosynthesis (BBN).
We hence focus on the case where ¢4 undergoes spontaneous symmetry breaking such that
the dark fermion acquires a mass. We shall work in terms of the reparameterized potential
displayed in Eq. (7.5). In this potential, fluctuations around the minimum (¢, (q)) = vy (q)
have masses M, q given by Eq. (7.6). The value of M, 2 in the IR is adjusted in terms of
the relevant perturbation in m?i in the UV. The visible mass M, can be computed, once
vy ~ 246 GeV is used to fix the second relevant parameter, m?2. The remaining couplings
are all canonically marginal and irrelevant at the fixed point. They are thus fixed at all
scales as a function of M.

If the symmetry ¢q — —¢q is spontaneously broken, then ¢4 particles decay (if they
are heavy enough) into visible scalars and cannot play the role of a dark matter candidate.
At the same time, 14 particles become massive. They are a dark matter candidate in this
scenario. The observational bounds on this scenario have been discussed by Esch, Klasen
& Yaguna (2013) and Bagherian et al. (2014) (and differ from those for a purely scalar
portal discussed in Sec. 7.2.2). They constrain a dark scalar and a dark fermion as an
extension of the SM. Instead of the SM, here we only consider a toy model of the visible
sector. The toy model can indicate the magnitude of different effects but does not allow
for precise quantitative statements. Hence, comparing between the relevant observational
bounds and a more realistic model is left for future work.

The reference point for the visible mass in our toy model is different from the Higgs
mass in the SM due to the absence of gauge field fluctuations. In the SM, gauge field
fluctuations lead to an increase of the top Yukawa coupling towards the IR. In our toy
model, the Yukawa coupling instead decreases towards the IR. The smaller Yukawa
coupling causes a less strong increase of the Higgs quartic coupling towards the IR,
leading to a lower Higgs mass. For fixed point values A, = —6.52 and G, adjusted
such that y, = 0.37 and without a dark sector, we obtain M, ~ 73 GeV. Similarly, the
quantitative amount of shifts in the visible mass that can be achieved due to the dark
sector may differ. We expect that the qualitative (and semi-quantitative) effects of the
dark sector remain the same, and will be our main focus in the following.

The dark sector impacts the visible mass M, through the non-vanishing portal
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Figure 7.4: Schematic depiction of all effects on the visible mass in asymptotic safety.

coupling in five ways. Three of these (UV1, UV2 and UV3) are shifts in the UV initial
conditions for A,. The fourth (F) is a change in the flow of A\, to the IR. The fifth (IR) is
a mixing effect in the IR, see Fig. 7.4 for a schematic depiction of the effects.

(UV1)

(UV?2)

(UV3)

(F)

(IR)

The gravitational fixed-point values are shifted due to quantum fluctuations of
all dark sector fields. In turn, this leads to shifts in the fixed-point values in the
matter sector. Thus, the UV initial conditions for the Higgs quartic coupling with
and without dark sector would shift, even if the dark sector would be completely
decoupled from the visible sector.

The portal coupling contributes directly to 8y, with a term ~ )\IQ{P. This shifts Ay «
to smaller values than in the absence of a portal.

The portal coupling contributes indirectly to ,: The non-minimal coupling, which
enters (), linearly, depends on Agp linearly. Thus A, . can be shifted to larger or
smaller values, depending on the sign of App 4.

The shift of A, « depends on the balance of all three UV effects and does not have
a unique sign across the gravitational parameter space.

The Mp-term in By, changes the flow of A, to the IR. The integrated effect is
negative, i.e., it decreases the quartic coupling in the IR. This decreases the Higgs
mass in the absence of mixing.

The portal coupling causes mixing between ¢, and ¢4. Mixing increases (decreases)
the resulting mass M, for the visible scalar for M, > My (M, < My).

In the following, we shall study each of these effects individually and investigate how they
compare quantitatively. This is achieved by performing two types of parameter scans:

e In a gravitational scan, the gravitational fixed-point values are varied freely to

explore the resulting fixed-point values in the matter sector.

e In a fized- Yukawa scan, A, is varied in the region A, < —3.3 and g, adjusted such

that y, = 0.37 remains constant. These scans follow the contour marked in red in
Fig. 7.5.



154 7. Higgs Mass in Asymptotically Safe Gravity with a Dark Portal

8~ "
6f —0.50

-~ 0.45

* -~ 0.40
o 4 035
0.30

2 0.25
0.20

0 0.15
-10-9 -8 -7 -6 -5 -4 -3 0.10

A

Figure 7.5: Contours of constant fixed-point value for the Yukawa coupling in the (G, Ay)-
plane. Contours without a dark sector are shown in dashed, contours with the dark sector in
continuous lines. The contours at y, = 0.37, which determine G (Ay) for our fized- Yukawa
scan are shown in red lines.

In addition, we shall distinguish between the cases with and without a dark sector.

The study of (UV1) — (UV3) is specific to our setup. The effect on the flow (F)
and the IR mixing (IR) has been discussed before in an EFT context?¥). For a study
employing the FRG in this context, see Eichhorn et al. (2015). The reader is cautioned
that any quantitative comparison should only be viewed as a statement about the relative
size of the different effects in our toy model. Any comparison to the measured Higgs
mass will need to take into account a more elaborate visible sector than the one in the
present toy model.

7.3.1 The UV regime

In the present asymptotically safe toy model, the quartic couplings are predicted at
the Planck scale. The predicted values in turn depend on the fixed-point values of the
gravitational and other matter couplings. We discuss these dependencies separately.
The gravitational fixed-point values depend on the number of matter fields of different
spin (Dona, Eichhorn & Percacci 2014). We shall compute them in the presence of SM
matter with the beta functions reported by Eichhorn & Held (2018a), neglecting the
back-reaction of non-vanishing masses and non-minimal couplings on the gravitational
fixed point values. Due to the smallness of the fixed-point values in the matter sector,
this is a viable approximation. In Fig. 7.6, the fixed-point values (G4, Ay) with and
without a dark sector are indicated by a square and a dot, respectively. The shift in
(G4, Ay) is nearly orthogonal to the contours of constant A, .. The fixed-point value of A,
nearly doubles because of this shift in (G, Ax). The fixed-point values of the gravitional
couplings have systematic uncertainties because the dynamics is truncated. Therefore, the
square and dot in Fig. 7.6 should be understood as coming with significant uncertainties.
These are difficult to estimate, but might even be as large as the difference in values
between square and dot — see, e.g., Eichhorn & Held (2018a) for an estimate. Therefore,
G, and A, will be treated as free parameters in much of the investigation below.

2)cf., e.g., Lebedev (2012); Elias-Miro et al. (2012); Gonderinger et al. (2010); Cline et al. (2013); Khoze,
McCabe & Ro (2014); see also Sec. 7.2.2.
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Figure 7.6: Contours for the fixed-point value A\, (Agp ) of the visible quartic coupling
on the left (right) as a function of the gravitational fixed-point values G, and Ay in a
gravitational scan. The coupling A, is the representative of the quartic Higgs coupling in
our toy model. The dot (square) marks the position of the gravitational fixed point without
(with) a dark sector in an approximation detailed in the main text. In the left plot solid
(dashed) contours mark the value with (without) the contributions from a dark sector.
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Figure 7.7: Difference 6\, = Agv,:“h"““) — )\,(,V:ith) of the quartic coupling A\, without and
with a dark sector for varying fixed-point values of the cosmological constant A, at fixed
Newton coupling G = 4.55, i.e., in a gravitational scan. (a) )\E,V,thhout) is computed by setting
Aup = 0 in By, while all other couplings are set to their Agp-dependent fixed-point values.
The direct contribution ~ A4p lowers Ay, causing A, > 0. (b) Agﬁ“h“t) is computed by

solving the full matter beta functions self-consistently. Negative Agyp < 0 implies negative
OAps < 0.

The fixed-point value of A, depends on Agp s and therefore changes when the dark
sector is included, even when G, and A, are (artificially) held constant. This effect is
quantitatively small, cf. Fig. 7.7, because for most of the parameter space we shall explore,
Avx > Agps. This difference is generated by fermionic fluctuations, because only [,
contains a term ~ y2, while 3 A\pp contains no such term. Fermionic fluctuations induce a
quartic self-coupling but not the portal coupling?. Other contributions to B, and By,

25)This statement is expected to hold at all loop orders /all orders of an FRG approximation, because the
portal coupling breaks shift symmetry in the dark and the visible sector, whereas the Yukawa coupling
only breaks shift symmetry in the visible sector. Thus the portal coupling is symmetry protected even
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Figure 7.8: Diagrams representing different contributions of the portal coupling Agp to
the beta function of the visible quartic self-coupling A,. A solid line represents the visible
scalar, a dashed line the dark scalar, and a wavy line the graviton propagator respectively.
The cross vertex corresponds to a regulator insertion. For each of the diagrams, there are
corresponding diagrams of the same structure with regulator insertions on one of the other
internal lines. (a) Direct contribution ~ Afp from dark scalar loop. (b) Indirect contribution
from graviton triangle which is odd in the non-minimal coupling &, whose beta function in
turn has a contribution (c¢) odd in Agp (the same remark applies, mutatis mutandis, to the
flow of squared scalar masses, but typically m?h ax < &v,dx by roughly an order of magnitude).
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Figure 7.9: Difference )\, = )\v‘zithout) — )\E,‘Zith) of the quartic coupling without and with

a dark sector for constant fixed-point value of Yukawa coupling, i.e., in a fixed-Yukawa scan.
Here )\E,‘f,ilthout) is computed by solving the full matter beta functions self-consistently. For
almost all values of Ay, the inclusion of the dark sector leads to larger values of A, .

are subleading compared to this fermionic contribution. In turn, because of the small
value of Ayp 4, the addition of the dark sector results in a small change in A, .. This is
exemplified by the contours of constant A, with and without portal coupling in the
(G4, Ay) plane in Fig. 7.6. The difference is typically not larger than a few percent.

To further explore the difference, let us first perform a gravitational scan: The shift
Oy = )\gviithout) — /\S,kaith) (at fixed gravitational coupling) arises due to both a direct
contribution ~ A2 in By, as well as indirect contributions. The direct contribution is
even in Agp and thus lowers \,. To isolate the effect of this direct contribution [given
diagrammatically by Fig. 7.8(a)], let us now evaluate Aq()WithOUt) by switching off the
portal contribution in /),. All other couplings are to be determined self-consistently at
finite Agp by solving the corresponding fixed-point conditions. The result is displayed
in Fig. 7.7(a). As expected, the direct contribution )\%{P comes with a positive sign and
lowers the visible quartic self-coupling Ay«. The indirect contribution is odd in Agp and
thus lowers or increases A, x, depending on the sign of Agp. This indirect contribution

at finite Yukawa coupling.



7.8. Higgs mass in an asymptotically safe dark portal model 157

450
400
350
300
250
200
150
100
0 -9 -8 -7 -

1006\, (kr)

0.6

0.4

0.2
[§

0
Figure 7.10: Difference 0\, (kir) = Al(,Withom)(kIR) — )\SJWith) (kmr) in the IR visible self-
coupling between a setup that considers portal terms in the flow of A\, and a setup that
ignores such terms. The UV initial conditions for both cases are the same, and obtained in a
fixed-Yukawa scan.

vq [GeV]

A

[given diagrammatically in Fig. 7.8(b)] turns 6\, negative, when Apgp is negative, see
Fig. 7.7(b).

To keep the IR fermion mass approximately constant, let us also perform a fixed-
Yukawa scan. Fig. 7.9 compares the resulting fixed point values in the case with and
without dark sector; Ay is kept constant and G, varied to obtain a constant Yukawa
coupling. For constant fixed-point values of the Yukawa coupling, the dark sector shifts
Avs towards larger values almost everywhere. For A, > —6.5, the effect described above
applies: the diagrams given in Fig. 7.8 lead to a larger Ays. For A, « —6.5, the shift
in G in the presence of the dark sector (cf. Fig. 7.5) also leads to larger values of A, .
Due to the smallness of Agp « compared to Ay, (as discussed above), the combined effect
of direct and indirect contributions is typically of the order of 1%o. This is very much
subleading compared to the change in A, ;. that occurs due to the shift in the gravitational
fixed-point values in the present truncation.

7.3.2 Flow towards the IR

Starting from the fixed point at the Planck scale, we shall now flow towards the IR. The
flow of the quartic coupling receives an integrated negative contribution from the portal
coupling. This lowers the quartic coupling in the IR. The effect occurs because bosonic
fluctuations enter with a positive sign through a term ~ AIQ{P into the beta function
for the quartic coupling. This effect is small in the present setup, cf. Fig. 7.10, because
)\Hp « 1.

7.3.3 Infrared masses

In the IR, one of two distinct scenarios is realized: either the dark scalar ¢4 undergoes
spontaneous symmetry breaking (SSB) and develops a vacuum expectation value (vev),
or it maintains its Zso symmetry. In the case of unbroken symmetry, the dark sector only
slightly affects the visible mass. In the case of SSB, the dark sector can strongly affect
the visible mass because the mass matrix becomes non-diagonal. Both its eigenvalues
depend on Agp and are therefore shifted compared to the case of unbroken symmetry.
This shift in the eigenvalues of the mass matrix is illustrated in Fig. 7.11. The masses
repel each other due to the non-vanishing portal coupling. This decreases the mass of the
lighter scalar and increases the one of the heavier scalar.
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Figure 7.11: Eigenvalues of the mass matrix as a function of the dark scalar vacuum
expectation value for a fiducial set of IR quartic couplings A\, = A\q = 8.79 x 1072, Agp =
—6.22 x 1073. We choose these values as examples to illustrate the mixing between the two
scalars. The overlap of the mass eigenstate with the dark scalar is colour coded. (The sine of
the mixing angle by convention corresponds to the overlap of the heavier mass eigenstate
with the dark scalar.)

When the visible scalar is the lighter one, M, < My, its mass is lowered further
when the dark vev is lowered. For a shift in the visible mass of the order of 1 GeV, the
corresponding mixing angle is of the order of sin(a) ~ 0.3.

In consequence, the dark vev, which is a free parameter in asymptotic safety, can be
used to dial in the desired value of the visible mass. Consequently, all properties of the
dark sector are fixed.

7.3.4 From the UV to the IR — Contrasting effective field theory and
asymptotic safety

The visible mass in asymptotic safety is predicted as a function of the two vevs. The
predicted value is determined by the five effects (three fixed-point shifts in the UV, change
in the flow to the IR, mass mixing in the IR). We shall now discuss the combination of
the five effects. For each of the three regimes (UV, flow to IR, IR), we shall contrast
effective and asymptotically safe theories. In doing so, we shall illustrate how asymptotic
safety could strongly enhance the predictivity of a given theory.

In an effective perturbative field theory, the quartic couplings in the UV are only
constrained by the two inequalities

Moa >0, Mip — Mg >0, (7.14)

ensuring a stable vacuum and by the requirement \;/(1672) < 1 (or stricter perturbativity
requirements). Therefore, there are UV intervals of finite extent for all three couplings
in an EFT. Each set of values (A, A\g, Agp) is translated to IR masses via the RG flow.
One can adjust a combination of the portal coupling and the Higgs quartic coupling in
the UV to obtain the correct IR Higgs mass even when the UV scale is chosen to be the
Planck scale?5).

The same freedom is absent in asymptotic safety where the quartic couplings are
fixed uniquely because they are irrelevant couplings at an interacting fixed point. This
provides unique initial conditions for the RG flow at the Planck scale. These in turn yield
a highly constrained IR phenomenology. Let us now compare the IR phenomenology to
that of the EFT setting.

20)cf., e.g., Lebedev (2012); Elias-Miro et al. (2012); Gonderinger et al. (2010); Cline et al. (2013); Khoze,
McCabe & Ro (2014)
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Figure 7.12: Change of the mass M, = M{Vthout) _ ar(With) with and without a dark
sector respectively in the case where the dark scalar does not undergo spontaneous symmetry
breaking. The cosmological constant is Ay = —10 (Ay = —6.52) in the left (right) panel,
while the Newton coupling G, is varied such that the Yukawa coupling is fixed at y, 4 =
Yax = Ys = 0.37.
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Figure 7.13: Change of the mass M, = Méwnhout) — Mévmh) with and without a dark
sector in the case where the dark scalar does undergo spontaneous symmetry breaking. The
cosmological constant is set to A, = —10 (left) and A, = —6.52 (right), while the Newton
constant is adjusted so that the visible Yukawa coupling remains fixed at y, = 0.37 (i.e.,
the graph is plotted for a fixed-Yukawa scan). The mixing angle is colour-coded; the dashed
line demarcates the region satisfying sin(a) < 0.3, which is approximately the experimental
constraint on the mixing of the SM Higgs.

Let us begin by considering the case in which the dark scalar does not undergo
spontaneous symmetry breaking. As apparent from Fig. 7.12, the modifications are tiny.
The dark sector does not change the Higgs mass substantially. This is a direct consequence
of the magnitude of the portal coupling, Agp ~ 1073. The small value follows from the
requirement of an asymptotically safe UV completion of our toy model. Assuming that
these results carry over to the full SM setting, this would exclude large modifications to
the Higgs mass due to the dark scalar without spontaneous symmetry breaking. This
is different to the EFT case, where a sizeable portal coupling can be chosen [without
violating the inequality (7.14), that is].

Second, let us consider the case where ¢, undergoes spontaneous symmetry breaking
and acquires a vacuum expectation value. As apparent from Fig. 7.13 the modifications
of the visible mass can be sizeable. Out of the various effects altering the mass, the IR
mixing effect is dominant. For vg > v,, this allows one to lower the visible mass M,. A
lowering of about ~ 7GeV (~ 1 GeV) implies a mixing angle sin(«) ~ 0.3 for A, = —10
(A« = —6.5). Note that these numbers are obtained in the present toy model; we may
expect, however, that similar-sized effects can be achieved if an extension of our toy
model to the full SM is asymptotically safe.
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Assuming that an extension to the full SM exists, we make the following observations:

The Higgs mass might be lower in the presence of a portal coupling to a dark scalar. This
could reconcile the Higgs mass predicted from asymptotic safety with observations??.
The results derived here indicate that to achieve a sufficiently large impact on the Higgs
mass, the dark scalar needs to undergo spontaneous symmetry breaking and should be
heavier than the Higgs particle.
A sizeable portal coupling requires the presence of additional dark degrees of freedom
beyond the dark scalar. We have focused on a dark fermion, because a dark gauge field
may not yield a symmetric phase for the dark scalar in the UV, cf. Eichhorn, Held &
Wetterich (2020) and Wetterich (2021). The dark fermion 4 becomes massive once the
dark scalar undergoes SSB. In the IR, no relativistic degree of freedom beyond those of
the SM remain. Interestingly, this is compatible with bounds on additional relativistic
degrees of freedom that arise from Big Bang Nucleosynthesis (Cyburt et al. 2016; Pitrou
et al. 2018).

Similar models have been studied in an effective field theory context as dark matter
candidates (Esch, Klasen & Yaguna 2013; Bagherian et al. 2014; Krnjaic 2016). Asymptotic
safety constrains the parameter space of these models and is therefore not guaranteed to
result in a viable dark-matter phenomenology. According to the preliminary study by
Eichhorn & Pauly (2021a), the dark fermion might be available as a viable dark matter
candidate. Taken together with the results in the present chapter, this strongly motivates
a study of the SM together with a dark sector as considered here.

7.4 Discussion

There are promising indications that asymptotically safe quantum gravity could enhance
the predictive power within the SM and some of its extensions. This could allow to
compute the Higgs mass in (extensions of) the SM from first principles. Our focus here
was on a toy model that features a real scalar and a fermion as the SM Higgs and top
respectively. We postulated a dark sector containing a dark scalar and a dark fermion
coupled through a Yukawa coupling to each other and a portal coupling to the SM. In
addition to lowering the Higgs mass compared to the pure SM case, the dark sector might
simultaneously provide a dark-matter candidate.

The dark sector, which contains several canonically marginal or relevant couplings m?l,
&dy A, Aup, yq (i.e., five free parameters according to canonical power counting) contains
a single relevant coupling m?l at an asymptotically safe fixed point found within the
approximation of Eichhorn & Pauly (2021a). This free parameter can be used to vary
the Higgs mass. We found that unless the dark scalar undergoes spontaneous symmetry
breaking, the resulting modifications of the Higgs mass are small. If the dark scalar
undergoes spontaneous symmetry breaking, then the resulting modifications can become
sizeable. The most relevant effect is the tree-level mixing between the dark and the visible
scalar. The various UV effects related to the dark sector are relatively small.

Once the single free parameter is used to obtain the measured Higgs mass, there
is no free parameter left in the dark sector. Accordingly, the dark relic density and

2D We are assuming a top mass of 173 GeV here. If the top quark is lighter, the scenario from Shaposhnikov
& Wetterich (2010) could be viable without a dark sector. If the top quark weighs about 173 GeV,
the present mechanism is applicable for the universality class at which some of the SM couplings are
nonzero at the fixed point, but not in the scenario of Shaposhnikov & Wetterich (2010), where all SM
couplings are zero at the fixed point, resulting in a vanishing portal coupling at all scales.
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the cross-sections relevant for direct dark-matter searches could be predicted from first
principles. If the indications from the present toy model and approximation go through in
more extensive truncations and models with more complete particle content, asymptotic
safety is quite distinct from other approaches to physics beyond the Standard Model
which in general have less predictive power and thus more freedom to match observational
data. For instance, observational data from cosmology constrain the dark sector. First,
the dark fermion may not be massless in order to not violate constraints on the number
of relativistic degrees of freedom at Big Bang Nucleosynthesis (BBN). Second, no field
in the dark sector may be overproduced, so as to not overclose the universe. There are
tentative indications that both constraints might be met: The dark fermion becomes
massive, once the dark scalar acquires a vev, such that BBN constraints hold. The dark
scalar is not stable, and therefore its relic density vanishes. The dark fermion is stable
and has a finite relic density, which, according to estimates of Eichhorn & Pauly (2021a)
is close to critical density.

Overall, the present results serve to showcase the predictive power of asymptotic safety
and how it could constrain the vast parameter space of models beyond the Standard
Model. Combining these theoretical constraints with phenomenological constraints from
particle physics and cosmology turns out to be non-trivial, as we have seen here. One
may therefore hope that the asymptotic-safety paradigm results in a small set of viable
models which make definite predictions for future experiments and observations.






Chapter 8

Conclusions

In this thesis, we have studied five instances of how low-energy physics can be impacted
by quantum scale symmetry. In four of these instances, quantum scale symmetry emerges,
when the system finds itself close to a quantum phase transition, over long length scales
(i.e., in the IR) of the order of the correlation length. In the fifth scenario, quantum scale
symmetry is restored only at very high energies (i.e., in the UV), but constrains the
phenomenology at low energies, where quantum scale symmetry is no longer intact.

In Chapter 3, we have studied the Gross—Neveu SO(3) universality class in D = 3
spacetime dimensions. Generally, such transitions are interesting because they show
similarities in terms of fixed-point structure with asymptotically safe completions of the
Standard Model with quantum gravity, whilst having a simpler field content. Specific to
the SO(3) context, however, is the fact that the model describes the transition from a spin-
orbital liquid to a antiferromagnet. The constituent chiral fermions of the semimetallic
ground state are spinons, which arise due to the fractionalization of local spin-orbital
moments and are hence not directly probable by conventional experimental techniques. On
the other hand, as gapless modes, they leave their imprint on the critical exponents of a
quantum phase transition to a conventional state, such as the antiferromagnet considered
here. The critical exponents themselves are amenable to field-theory techniques developed
originally for calculations in elementary particle physics. Thus, the study furnishes not
only an opportunity to ‘learn about elementary particles by boiling water’, as put by
Polyakov, but also to understand spin-orbital liquids by colliding electrons. To this end,
we employed a three-loop 4 — € expansion, a second-order 1/N expansion, and a functional
renormalization group (FRG) calculation in the improved local potential approximation
(LPA’). The results from the different approaches turned out to be in fair agreement
with each other. However, at the present order of approximation, a quantification of
the error incurred by the respective methods using internal indicators (spread of Padé
approximants in the case of series expansions, regulator-dependence in the case of FRG)
proved difficult. However, having the three complementary methods at our disposal
allows for a rough estimate of the overall error in terms of the deviation among the
three methods, and the unweighted (‘maximum ignorance’) average of the three methods
yielded the best-guess estimates. We thus arrived at 1/v = 1.03(15), 14 = 0.42(7) and
ny = 0.180(10) (with the understanding that v and 74 are predictions for measurements,
whilst 7, is not directly measurable due to the fermion correlator not being gauge
invariant). Going to higher orders in the series expansions is one way to improve accuracy;
it would in particular also yield more well-behaved Padé approximants, whose spread
would represent a more reliable error estimate. For the loop expansion, a complementary
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expansion within the 4-Fermi theory in D = 2 + ¢ dimensions may be instructive. For
the FRG, going to higher orders of derivative expansion (i.e., beyond LPA’) would allow
for an error estimate beyond regulator dependence, namely by extrapolating the finite-
order results to infinite order. Given the difficulty of directly observing fractionalized
excitations, sufficiently accurate theoretical predictions for critical exponents may serve
as a ‘diagnostic toolkit’ for spin-orbital liquids. Sharpening the estimates along the lines
described above — possibly also for other flavour groups and/or different emergent gauge
structures — may hence be a worthwhile subject of future investigation. As a byproduct of
our analysis, we have found indications that a non-perturbative fixed-point collision may
disconnect the Yukawa-type fixed point, which becomes perturbatively renormalizable in
D = 4, from its Hubbard—Stratonovich transformed incarnation, the Gross—Neveu fixed
point which has a perturbatively renormalizable description in terms of a 4-Fermi theory
in D = 2. It would be interesting — albeit from a more academeic perspective — whether
this kind of fixed-point structure may be reproduced within a perturbatively controllable
setting, e.g., for a somewhat artificial combination of flavour numbers and/or flavour
group.

In Chapter 4, we then turned our attention to Luttinger fermions in D = 3 spacetime
dimensions (or equivalently, in d = 2 spatial dimensions, which is an often-used counting
given the lack of Lorentz invariance; recall that in our convention, D always refers to
the topological dimension of spacetime, rather than any ‘effective’ dimension). Luttinger
fermions are the z = 2 analogue of chiral Dirac fermions, in that they have a quadratic
dispersion but no energy gap. As such, they arise in semimetals when two bands touch
quadratically, such as in Bernal-stacked bilayer graphene (within certain approximations),
and in 3D semimetals such as grey tin and mercury telluride. In 2D, Luttinger semimetals
have an instability at zero 4-Fermi interaction; the corresponding field theory is, in
high-energy language, asymptotically free rather than safe. Nevertheless, the Gauflian
fixed point governing the transition is marginal rather than critical, resulting in several
pathologies. We saw how these pathologies may be understood as a collision between the
IR-attractive GauBian fixed point and an IR-repulsive (i.e., critical) fixed point distinct
from the Gauflian one in d = 2+ €. Observables like the order-parameter expectation value
and correlation length develop essential rather than power-law singularities; the exponent,
as we showed by explicit computation for the minimal model of two-component ‘spinors’, is
distinct from the mean-field one. Whilst finite critical exponents often default to canonical
power-counting values, the susceptibility exponent turns out to be one-loop exact, and
in the minimal model we computed explicitly, takes the value v = 2Vyean-field = 2. Such
an exact yet non-mean-field prediction can serve as a useful benchmark for numerical
methods.

In the next two chapters, we considered the scenario where a quadratic band touching
point splits into several Dirac cones. A major obstruction towards the realization of
quantum criticality in (conventional) Dirac semimetals — e.g., graphene — is the fact that
the fixed-point value of the 4-Fermi coupling translates to a large microscopic value of
density-density interactions; in general, the concrete experimentally accessible system
is difficult to tune past the quantum phase transition. If, however, the Dirac semimetal
emerges from a Luttinger semimetal, the microscopic density of states is rather high, such
that a smaller critical interaction strength is sufficient to trigger spontaneous symmetry
breaking. Such a ‘Dirac from Luttinger’ scenario is possible if the rotational symmetry
of the Luttinger semimetal is low enough. This may occur in Bernal-stacked bilayer
graphene (BBLG) both due to explicit and spontaneous breaking of rotational invariance.

In Chapter 5, we considered the explicit breaking of continuous rotational symmetry
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due to the honeycomb structure of the lattice. We demonstrated by an explicit two-loop
calculation, that self-energy effects induce a splitting of each QBT into three Dirac cones.
As a corollary, we found the critical coupling strength when assuming a QBT dispersion
in the UV is significantly lower than if one assumes a linear low-energy dispersion at the
lattice scale. Based on the ordering temperature, we then estimated that the (effective)
coupling strength in BBLG may be close to the critical value.

In Chapter 6, we investigated the consequences of the splitting of a QBT into two
Dirac cones as a consequence of the spontaneous breakdown of rotational symmetry —
i.e., in the presence of nematic order. In particular, we considered the quantum criticality
arising due to the interaction-induced onset of antiferromagnetic order on top of such a
nematic state. Such a co-existence scenario is an appealing one for the ground state of
BBLG, since experiments are still not unequivocal as to whether a fully gapped state
(such as a layer-polarized antiferromagnet) or a gapless one (such as nematic ones) is the
true ground state. Within our mean-field calculation, we found an extended region in
our (simplified phenomenological) theory space featuring coexisting antiferromagnetic
and nematic order, with (pure) nematic order on one side and antiferromagnetic on the
other. It is thus conceivable that, e.g., technical specificities of sample preparation may
drive BBLG into one or the other phase. It also raises the possibility that BBLG may be
tunable through a transition from the nematic phase, featuring gapless linearly dispersion
fermionic excitations, into the coexistence phase where said excitations are gapped out.
We have then demonstrated that this transition falls into the D = 3 chiral Heisenberg
universality class, by showing that not only rotational, but in fact Lorentz invariance is
emergent close to the transition, using a one-loop expansion in the anisotropic versions of
4-Fermi theory in D = 2 4+ ¢ and Yukawa theory in D = 4 — €. As a by-product, we have
constructed the full Fierz-complete basis for Gross—Neveu theory with SU(2) isospin in
D = 3. We have also combined previously published results on four-loop 4 — € expansion,
second-order 1/N expansion and FRG in LPA’ for the chiral Heisenberg universality class
to derive best-guess estimates for the critical exponents of the nematic-to-coexistence
transition in BBLG. Unlike its monolayer graphene counterpart, the increased number of
fermion components leads to an overall lower uncertainty in the exponents.

In Chapter 7, we turned our attention to the problem of the Higgs mass in asymp-
totically safe (AS) quantum gravity (QG) with Standard Model (SM) matter in the
presence of a Higgs portal to dark matter. The UV completion of the SM using ASQG
has many attractive properties: By imposing quantum scale symmetry in the deep UV,
one obtains a drastic reduction in the number of free parameters (even though the
low-energy phenomenology is no longer scale-invariant, as evinced by the plethora of
massive elementary particles). Furthermore, the Higgs self-coupling at the Planck scale
and above is fixed by UV quantum scale symmetry such that the electroweak vacuum is
stable, rather than merely meta-stable as in the vanilla SM. This, however, comes at the
cost of the Higgs mass being a prediction rather than a free parameter — once the Higgs
vacuum expectation value (vev) is fixed by measuring the weak gauge boson masses —
and the ASQG prediction comes out a few GeV above the measured value. We therefore
investigated whether this tension may be alleviated by taking into account the presence
of dark matter (for which there is an abundance of independent experimental indications,
such as gravitational lensing by supernovae), coupled to the SM via a so-called Higgs
portal. For simplicity, we considered a toy SM modelled by a Yukawa system (representing
the top quark and the radial mode of the Higgs boson) and Yukawa dark matter consisting
of a dark scalar and a dark fermion. We found that within this setting and reasonable
approximations (cf. Eichhorn & Pauly 2021a,b), the Higgs mass may be lowered by the
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necessary amount, provided the dark scalar undergoes spontaneous symmetry breaking
and is heavier than the Higgs, as a function of the dark scalar vev. Once the dark scalar
vev is fixed by the Higgs mass, there are no further free parameters, allowing for the
first-principles prediction of observables such as the dark relic density and cross-sections
relevant for direct dark-matter searches. Doing so whilst accounting for a more realistic
SM matter content, though likely more challenging, is hence an excellent direction for
future investigations.

Overall, our studies are witness to the fact that quantum scale symmetry, despite
emerging (or being restored) only in certain limits, is a recurrent theme across many
widely varying settings. From spin liquids to quantum gravity, it may hence serve as
a vehicle that facilitates the systematic transfer of insight from one setting to another,
beyond traditional boundaries of subdisciplines in physics, and generate new insight by
their synthesis and cross-fertilization.



Appendices

A Position-space propagator for Cs3-symmetric QBT

Let us consider here the position-space propagator Go(z) in the presence of (small) explicit
rotational symmetry breaking O(2) — Cs. It is defined by [0; + Ho(—iV)] Go(T,x) =
0(1,x) with Hy given by Eq. (5.18). Translational invariance behooves us to solve this in
Fourier space, to wit:

dwd?p ~
GO(Ta w) _J‘ ((;7_[_)31) el(WT+P'$)GO(w,p>7 (Al)

with Go(w,p) = [iw + Ho(p)] ' Like in Sec. 4.6.3, the basic strategy now is to perform
the Fourier integral in cylindrical coordinates

p=(pcosp,psing); x = (rcostd,rsind); p-x =rpcos(p—1).

For reasons of analytical tractability, we expanded the expression as a multilinear form
in powers of rotational symmetry breaking (f1, f3 for the QBT theory and fs for the
Dirac theory), keeping up to second order corrections, since that is the order to which
functions were computed subsequently. Let us first consider the QBT limit |fi/fa] < 1,
and parameterize the expanded propagator as

~ n [ e - . fi+p2f3)"
Go(w,p) = M% ot ® (03) [Pmm(w, p) cos(me) + Py, (W, p) sm(mgp)] m
(A.2)

where p € {0,1,2}, k,m,n € Nxq, and (¢#) = (12,04,0,). We have also set fo = 1 in
the present QBT limit for convenience. We wish to expand to second order of rotational
symmetry breaking, i.e., n + m < 2. The nonvanishing terms in Go(w, p) are then found
to be:

(w,p) = —iw,
Pfoz(wap) =p = P1502(W7,0)7
Fgis(w, p) = 2iwp®,
151C11(Wap) = WQP = —131511(%/)),
P1615(W7P) = —p° = 151815(‘*’:/’);
Pyo(w, p) =1 (w?p® —wp®),
Poye(w, p) = —2iwp®,
pfm(%ﬂ) = —2%p! = ]51522(w, p);
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]31024(00,0) = —W204 = —]31':24(%0)7
P1C28(W»P) = P8 = P1528(w,p). (A.3)

In the opposite Dirac limit, a similar expansion can be found in powers of fy (now setting
f1 = 1). The momentum space propagator is then parametrized as

Golw,p) = X, 0" ® (0%) " | Qfuun (w1 9) c08(mp) + Qi (w, p) sim(mer)

punm

I3
(w? + p2) "
(A.4)

where the Qﬁﬁm(w, p) again are bivariate polynomials, the nonvanishing ones among
which are given by

o00(w, p) = —iw,

t01(w, p) = p = —Q301(w, p),

§13(w, p) = wp?,

112w, p) = w?p® = QSIZ(va)7

114w, p) = —P4 = —QSQ(%P),

020(w; p) =1 (W3/74 - WPG) )

G2(w, p) = —2iwp®,

fa1(w, p) = —20°p° = = Q3 (w; p),

125w, p) = —w?p® = QS%(W;P),

t27(w, p) = 07 = —@327(0)»,0)' (A.5)

In both cases, the Fourier integral with respect to w is elementary. Now that the
angular dependence resides only in the numerator, the orthogonality relations of cos and
sin in L%([0, 27]), once eikpcos(p — 99) is expanded using the Jacobi-Anger expansion
[see Eq. (4.105)]. The remaining integral over p turns out to be in fact expressible in
terms of elementary functions, whence one obtains explicit expressions for the tree-level
propagator in position space. We abstain from quoting them here in their full splendour
due to their extraordinary length, and because they are not particularly enlightening.

B Two-sided Padé approximants for C3-symmetric QBT's

Let us write the coefficient of m-th order in (f1/f2) in the 8 function of a quantity X
with X € {g, (f1/f2). (fs/f2)} as 8™ defined by

oo BE ™ (Fi/ )™ for fi)fa — 0,

B.1
Ym0 ﬁgg’m)(fl/fz)_m for fi/fo — 0. (B

-]

Egs. (5.39)—(5.41) allow to read off ng’m), while the dual coefficients ng,m) can be read
off from Eqgs. (5.45)—(5.46).
The Padé coefficients defined in Eqs. (5.59)—(5.61) are then given by

,0
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C Corrections to the mean-field nematic order-parameter
effective potential due to explicit symmetry breaking

Here, we shall work out the mean-field nematic order-parameter effective potential, in the
presence of a background antiferromagnetic order, in a quadratic band touching semimetal,
and thence the evolution of the nematic order parameter across the antiferromagnet-to-
coexistence transition. Strictly speaking, this transition falls squarely within the Landau
paradigm, since the antiferromagnetic order parameter gaps out the fermion spectrum
(notation as in Chap. 6):

e50(P) = £Vt + 62 (C.1)

The spontaneous breaking of spatial rotational symmetry is described by fluctuations
of the two-component nematic order parameter n,, a = 1,2, which transforms as a
second-rank tensor under spatial rotations, and acquires a vacuum expectation value
across the transition. However, when modelling the honeycomb bilayer, it is important
to note that the actual point group on the honeycomb bilayer includes only discrete C
rotations by 120° around a lattice site. Accounting for the explicit breaking of rotational
symmetry O(2) — C3 in an exact manner is difficult analytically; however, it is possible
to perform a Taylor expansion in the symmetry-breaking parameter, which affords scope
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for some neat effective field theory (EFT)-type power counting arguments which may be
entertaining, if not instructive.

To this end, let us amend the fermionic Lagrangian (6.1) by the irrelevant (in the
usual power-counting sense) term

Lapr — Lapr + f3910%10,(T, ® 1), (C.2)

where (0,) = (03, —0y), a = 1,2, and T, = (7, ® 12)T',. This term follows naturally from
the next-to-leading order expansion of the tight-binding dispersion near the K points in
the Brillouin zone (Pujari et al. 2017). Identifying for simplicity the ultraviolet momentum
cutoff A with the inverse of the lattice constant ag as A ~ 7/ag, we obtain f3 ~ 7/(24/3A)
in our units (cf. also Sec. 5.1). The term parametrized by f3 is C3 invariant, but not
symmetric under the continuous rotation group in two spatial dimensions. Let us now
consider the mean-field effective potential for small n, < ¢ in a finite antiferromagnetic
background ¢ # 0 and for finite f3 # 0. Since the fermions are already gapped out, we
run into no infrared divergences when Taylor expanding in n,. Using polar coordinates
(ng) = (ncos 29, nsin29), we can write the effective potential for n, at the mean-field
level in the form

0

R, 0) = 14 LS (O (61 f5) cos(2h0) + (65 ) sin(2k) o' 72, (C.3)
k,l=0

with coefficients Cy; + that only depend on ¢ and f3. In Eq. (C.3), we have subtracted
all n-independent offsets compared to Eq. (6.6), which are immaterial to the present
analysis. Following standard practice in Landau theory, we shall now keep all terms up
to and including O(n?) (i.e., the lowest nontrivial order) in the effective potential. The
coefficients Cjy + (¢; f3) can be expanded in f3, which allows us to evaluate all momentum
integrals analytically to leading nontrivial order in f3. This way, we finally arrive at the

explicit result
N¢ 8 1 1 1
Vi (n,9) ~ 16W{[Ng, +3 <1n4¢2 - 2> + 8f§}n2
1 1
+ f3 < + —In ng) n3 cos(619)

3 1
+ (a5 1+ 1358 7' | (C.)

where we have rescaled Vl\(/[(%) /At — MF, ®?/A* — 2, n?/A* — n?, f3A — f3, and have
kept only the leading- and subleading-order terms assuming the hierarchy n « ¢ « 1.
The latter assumption is consistent with small to intermediate g, since (¢) ~ e=27/(9N1) in
mean-field theory (Sun et al. 2009). We note that higher orders in f3 also come with higher
powers of ¢ for dimensional reasons; this defines a posteriori the regime in which the
expansion in fs is justified purely on grounds of its canonical dimension and independently
of its value at the ultraviolet scale. To be more precise, insertions of the f3 term into
the one-loop fermion bubble renders the integral increasingly ultraviolet divergent and
infrared convergent; since finite ¢ is precisely what cures infrared divergences in this
theory, the faster a given loop integrand vanishes in the limit of vanishing loop momenta,
the faster its integral vanishes for ¢ — 0.

The middle term in Eq. (C.4) manifests the explicit symmetry breaking at the level
of the effective potential for n,: cos(6¢) is only invariant under ¥ — O + 7k/3, k € Z.
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Minimizing the potential with respect to ¢, we find that the orientation of the vector
ng locks on to ¥ = 0 at the minimum for sufficiently small ¢, while 9 = /6 for larger
values of ¢. Importantly, the presence of the cubic term renders the antiferromagnetic-
to-coexistence transition first order, with the jump discontinuity at the phase boundary
working out to

3y = 15307 (s = 5 ) + 0 ) (©5)
Note that the above implies the emergence of a hierarchy among the order parameters,
5(n) ~ {p)*In{¢)2? « {¢) in the limit of small interaction strengths. Technically, the
smallness of §(n) justifies expanding its effective potential in powers of n, as well as
treating ¢ as a background field with no backreaction from n, even though the transition
itself is not continuous. Physically, 6(n) measures how badly the transition fails to be
continuous. Since dn — 0 for g — 0, the transition is only weakly first order for small to
intermediate four-fermion coupling.

D Self-energy in anisotropic Yukawa theory

The aim of this appendix is to present details of the derivation of the 8 functions of the
Fermi velocities v, and v, in the Gross-Neveu-Yukawa-Heisenberg model [Eqs. (6.22)
and (6.23)]. As will be manifest shortly, at one loop, the question whether anisotropy
perturbations are relevant or not is independent of the fixed-point values (h2, \.), so the
computation of the Yukawa vertex and quartic self-coupling corrections are immaterial.
At this order, it is therefore sufficient to consider the selfenergy contributions represented
by the diagram in Fig. 6.5. The corresponding loop integrals are

Fig, 6.5a) = ~1* | (Lo, ® )WL~ w)p + ) (Lan, © 73)(Gad)(wp — @) = (),
(D.1)

Fig, 6.5(0) = 2 | t (L2, ® 00)(0)(0) Loy ®92)WDMa + P)] = TP)oos, (D)
q

where ¥(p) and II(p) denote the fermion and boson selfenergies, respectively, with
p = (po,p1,p2) = (w, p) as the in-flowing 3-momentum in D = 2+ 1 space-time dimensions.
In the above a momentum-routing parameter w € [0, 1] has been introduced for the
vacuum polarization, because the limit of standard routing (w — 0 or 1) turns out to be
singular in this case. This is another artefact of the regularization scheme that can be
resolved by a judicious choice of symmetry-restoring counterterms, as shown below. Let
us note in passing that the vacuum polarization II(p) in Eq. (D.2) is well-defined due to
the Pauli matrix relation tr(c,og) = 2043.

As mentioned in the main text, to carry out the loop integrals, the Euclidean time
direction is first extended to a (D — 2)-dimensional plane, where D = 4 — € is the space-
time dimension. The spatial dimension d = 2 is held fixed, which allows one to deal with
the spatial anisotropy in a controlled way. Before performing the (D — 2)-dimensional
frequency integration, let us rescale the momenta as (vyqz,vyqy) — |qo|q, where |go|
denotes the radial component of the (D — 2)-dimensional frequency vector gy. For the
frequency part of the vacuum polarization, this yields

0
ap%

I(p)

B 4N¢h? f [2 (2w2 — 2w+ 1) (v%qg + vgqg) B 3w? —3w+1
q

3 2
p=0  UVxly (4 + v2¢2 +v2q2) (8 + v2q2 + viq?)
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€ w,(2m)2 ) (2n)2 (1+¢2)?° (1+ @2)

€ 4Nth2Ss (1 — w)w

T ANR? S, f g | (2v* —2w+1)@> 3w’ -3w+1
(

_ . D.3
e  (2m)2=¢  dmuguy (D-3)
Analogously, for the momentum part, one finds
0 woe 4th252_ 1o 0 woe 4th252_ 1w
S2lw) = 272_664*43 S2le)| = 272_664**1’- (D.4)
DY =0 e (2m) Uy D5 =0 e (2m) T Vg
To evaluate the fermion selfenergy, it is useful to introduce the ‘master integral’
dzdy (x2)!
I = D.5
(7 8) JRQ (2m)2 (1 + 22 + y2)" (1 + 222 + s2y2)™ (05)

with n,m,[ € IN. In terms of the I-functions, one finds

! t< a2()) Nh2f 243
T YR —&4Ap = Vb 5
AN dipo p=0 0 (6§ + a2 +a3)” (4§ + a202 + 3v2)
_ 1T Nph2Sy f dgydgy, 2
€ (2m)* (2m)% (1 +¢2 + qﬁ)2 (14 q2v2 + q2v2)
p¢ 2N,h2 S5
= T @ 2ol ), (D-6)
1 ( ) 20,43
—trlme— (p)> = Nph f 5
4Ny dip: p=0 0 (@ +q3+a2) (@ +v3g2 +vlq2)
B th252_€ w e (2 )JdQIde QS%
- x
(2m)?c e (2m)% (142 +¢2)% (1 +v2¢2 + v2¢2)
/L_e 2th25’27€
= . vafgn(vx,vy), (D7)

20,2
_ thzf ; . ygy
p=0 0 (@ +@2+¢2) (@ +v22 +v2q2)
,uf6 2th25’2_€

= TT)Q_E'ijzll(Uy,Ux), (DS)

where w = 1 has been set for simplicity, since standard momentum routing is nonsingular
in this case. We have also inserted Ny, as the number of bosonic degrees of freedom, with
Ny, = 3 corresponding to the present Heisenberg case. The above equations are valid for
general Ny, as long as the generators of the symmetry under which ¢, transform as a
vector commute with the Clifford algebra. Besides the chiral Heisenberg example, this
includes the chiral Ising case with IV}, = 1, the chiral XY case with N, = 2, as well as
further members of the Gross—Neveu family with N, > 3 (Janssen, Herbut & Scherer
2018).

Before extracting renormalization constants from the above results, one needs to fix
the symmetry-restoring counterterms in Eq. (6.19). A minimal prescription would be

. 1 0 1 0
Dy= lim [4thr (’Yoaipoz(p)> A (’yoaipoﬁ(p)> p_J , (DY)

p=
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iQH(p)

Dy = Ilim
[ apl

Vg =vy—1

- 7211(19)

p=0 apO

] : (D.10)
p=0

which is precisely what we shall choose for D,;. For the bosonic counterterm, we shall
use a slightly modified prescription
Dy[Eq. (D.10)]

Dy = D.11
¢ Vg ’ ( )

which has the advantage of furthermore cancelling all momentum-routing dependence
at once (rather than, e.g., at the fixed-point level). We can then read off the remaining
renormalization constants in usual manner. Using —ud(p~/€)/dp = p™¢, one then arrives
at the 8 functions quoted in Egs. (6.22) and (6.23).

E Master integrals for anisotropic Yukawa theory

The derivation of the 8 functions of the Fermi velocities v, and v, in the anisotropic
Gross—Neveu-Yukawa-Heisenberg model involves the master integrals I, (vy, vy) defined
in Eq. (D.5), more specifically the two functions I210(vz,vy) and Io11(vg, vy). These can
be evaluated explicitly, and the results are recorded here for completeness. For general
vz, vy > 0, they work out to

1

I10(ve, vy) =

2 1—v2
47 (1 —v2) (UZ — 1) =i
1— 02 v2 —1
X [(”5 — 1) (vgvy — 1) UZ — f{ + (vi + v§ — 21@ 5) arcsin ( vgy— v%)
2, .2 2.2 . vy —1
— (v7 + v — 2v,v;) arcsin | v, 2o )| (E.1)
1
I11(vs, vy) = -
8m (v2 — 1) (v2 — 1) (va + vy) lv
2 02
2 1) 1 T 302 (vg + vy) vy
v v — — 3u,, (vz + vy) arcsin
T 1 x ) 5 _ U2

2 _
+ 2 (v + vy) arcsin (vx i )

2 _ 42
Uy v

— 2
vy — Vg

+ (311; — 2) (vg + vy) arcsin ( 1)232’ ! )] . (E.2)

Whenever the argument of a square root obtains a negative value, it is continued
analytically as v/—a? = ai for a € R>¢. The trigonometric functions are then understood
to be replaced by hyperbolic functions in the usual manner. The limits v, — 1 or v, — 1
are removable singularities,

. 1+ 2v . 1+ 2v
lim I910(vg, vy) = y__. im 111 (vg, vy) Y

=— -9 E.3
vz—1 67 (1 + vy)? vz—1 127(1 + vy)?’ (E-3)
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. 1+ 20, . 1
= "% lim I = E.4
vlylg1 Io1o(vz, vy) 6m(1 + vz)2’ vylgl 211 (Vr, Uy) Am(1 + v,)? (E.4)
In the rotationally-invariant case v = v, = v,, one obtains the limits
1 —v242v%Inv v? —2lnv —1
Is19(v,v) = , Ir11(v,v) = ———————. E5
() == (1 —v2)? n(e,v) =g (1—v2)? (E5)

For v — 1, the singularities are again removable, with the pertinent limits given by

1

lim Iz10(v, v) = lim Io11 (v, v) = Tor’ (E.6)

ga

in agreement with the limits v, — 1 and v, — 1, respectively, of Egs. (E.3) and (E.4).
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