1*: Classical minimal coupling

Study classical minimal coupling by answering the following questions:

a) Under which conditions for the potentials **A** and Φ does the classical Lagrangian

$$L(\dot{\mathbf{r}},\mathbf{r},t) = \frac{m}{2}\dot{\mathbf{r}}^2 - q\Phi(\mathbf{r},t) + q\dot{\mathbf{r}}\cdot\mathbf{A}(\mathbf{r},t)$$

lead to Newton's equations of motion with the Lorentz force?

- b) Give explicit expressions for the canonical momentum $\mathbf{p} = \partial L / \partial \dot{\mathbf{r}}$ and for the mechanical momentum $\mathbf{p}_{\rm m} = m \dot{\mathbf{r}}$.
- c) What is the explicit form of the Hamiltonian $H(\mathbf{p}, \mathbf{r}, t) = \dot{\mathbf{r}} \cdot \mathbf{p} L(\dot{\mathbf{r}}, \mathbf{r}, t)$?

2: Probability current density

Find the modified expression for the probability current density \mathbf{j} in the case of coupling of the motion of a charged particle to an external field. Show that the expression you gained is gauge invariant.

3: Energy operator

Let $\hat{\Theta}(\mathbf{A}, \Phi)$ be an operator that depends on the potentials of the electromagnetic field.

a) Show that for the operator $\hat{\Theta}$ to have a gauge invariant expectation value

$$\mathrm{e}^{\mathrm{i}\frac{q}{\hbar}\chi}\Theta(\mathbf{A},\Phi)\mathrm{e}^{-\mathrm{i}\frac{q}{\hbar}\chi}=\hat{\Theta}(\mathbf{A}',\Phi')$$

has to hold.

b) Show that $\hat{H} = \frac{(\hat{\mathbf{p}} - q\mathbf{A})^2}{2m} + V(\mathbf{r}) + q\Phi$ is not a gauge invariant operator and its expectation value cannot be the energy. Discuss an alternative, that may be considered as the energy operator.

4^{*}: Kramers-Henneberger transformation

Show that the two unitary transformations into the Kramers-Henneberger frame eleminate the terms proportional to \mathbf{A}^2 and \mathbf{A} in the Hamiltonian. Due to the fact that the first transformation is a global phase transformation it just remains to calculate

$$\hat{U}_2 \hat{V} \hat{U}_2^{-1}$$

to prove the shift in the argument of the potential. Hint: Use the operator relation known as Baker-Haussdorff (or Hadamard) lemma $e^{\hat{L}}\hat{M}e^{-\hat{L}} = \sum_{n=0}^{\infty} \frac{1}{n!} [\hat{L}, \hat{M}]_n$, where $[\hat{L}, \hat{M}]_n = [\hat{L}, [\hat{L}, \hat{M}]_{n-1}]$ and $[\hat{L}, \hat{M}]_0 = \hat{M}$.

5*: Magnetic field

Investigate under which conditions the use of the electric field only in field-matter coupling is justified. Delineate regions in frequency intensity parameter space where a treatment of terms

a) proportional to v/c

b) proportional to $(v/c)^2$

becomes necessary

Hint: Use the reference H. R. Reiss, Phys. Rev. A 63, 013409 (2000)

to be discussed on 31.05.2017 exercises with an asterisk may be handed in for examination purposes