ULTRAKALTE GASE ALS QUANTENSIMULATOREN

Christoph Berke

Prof. Matthias Vojta

02.07.2014

Ultrakalte Gase als Quantensimulatoren - Übersicht

- 1 Einleitung
- ② BEISPIELE Eindimensionale Ising-Spin-Kette
 - Der Hofstadter-Butterfly
- S FAZIT
- **4** Anhang

MOTIVATION

ZIEL

Vielteilchen-System simulieren/berechnen

klassische Computer ungeeignet

• Speicherplatz $\propto e^N$

BEISPIEL

- Wellenfunktion eines N₂-Moleküls speichern
- 2 Kerne, 14 Elektronen, 2 Spinzustände pro Elektron
- 3 Raumdimensionen, 100 Punkte pro Raumrichtung
- Anzahl der komplexen Zahlen, die abgespeichert werden müssen: $2^{14} \cdot 100^{3(14+2)} \approx 10^{100}$
- Alle Zahlen auf handelsüblichen 1 TB-Festplatten abspeichern

MOTIVATION

ZIEL

Vielteilchen-System simulieren/berechnen

klassische Computer ungeeignet

• Speicherplatz $\propto e^N$

BEISPIEL

- Wellenfunktion eines N₂-Moleküls speichern
- 2 Kerne, 14 Elektronen, 2 Spinzustände pro Elektron
- 3 Raumdimensionen, 100 Punkte pro Raumrichtung
- Anzahl der komplexen Zahlen, die abgespeichert werden müssen: $2^{14} \cdot 100^{3(14+2)} \approx 10^{100}$
- Alle Zahlen auf handelsüblichen 1 TB-Festplatten abspeichern
- Würfellänge: 10¹⁰ Lichtjahre

möglicher Ausweg:

QUANTENSIMULATOR

Kontrollierbares Quantensystem, das genutzt wird, um ein anderes Quantensystem nachzuahmen

- $|\psi(0)\rangle$ preparieren
- Zeitentwicklung durchführen
- $|\psi(t)\rangle$ messen
- Zusammenhang zwischen $|\psi\rangle$ und $|\phi\rangle$

DIGITALE UND ANALOGE QUANTENSIMULATION

Digitale Quantensimulation (DQS)

- Idee: Zeitentwicklung des Systems in Folge von 1und 2-qubit-Gates zerlegen
- diskrete Zeitentwicklung
- universeller als AQS
- Langfristiges Ziel

DIGITALE UND ANALOGE QUANTENSIMULATION

Digitale Quantensimulation (DQS)

- Idee: Zeitentwicklung des Systems in Folge von 1und 2-qubit-Gates zerlegen
- diskrete Zeitentwicklung
- universeller als AQS
- Langfristiges Ziel

Analoge Quantensimulation (AQS)

- kontrollierbares Quantensystem
- "...there is to be an exact simulation, that the computer will do exactly the same as nature "(R. Feynman)
- $\mathcal{H}_{\mathsf{Sys}} \leftrightarrow \mathcal{H}_{\mathsf{Sim}}$
- Prominentes Beispiel: Bose-Hubbard-Hamiltonian mit Atomen im Gitter

ZIEL

System mit Hamiltonian $\mathcal{H}_{\mathsf{Sim}}$ "bauen"

Beispiel (Gerritsma et al. (2011))

- ullet Dirac-Gleichung für Spin- $rac{1}{2}$ -Teilchen: i $\hbarrac{\partial\phi}{\partial t}=(cp\sigma_{\!\scriptscriptstyle X}+mc^2\sigma_{\!\scriptscriptstyle Z})\phi$
- Experimente mit gefangenen Ionen und bichromatischen Lichtquellen: $\mathcal{H}_I=\alpha\sigma_{\rm X}p+\beta\sigma_{\rm Z}$
- Was kann als Simulator dienen?
 - Rydberg-Atome, Ionen, Photonen....
 - ultrakalte Gase
- Was kann simuliert werden?
 - Anwendung in allen Bereichen der Physik
 - Hubbard-Modell, Spin-Modelle, Quantenphasenübergänge, Frustrierte Systeme, Supraleiter, BEC-BCS-Crossover, fraktionaler Quanten-Hall-Effekt . . .
 - exotisch: Ausdehnung des Universums nach dem Urknall mit 2-komponentigem BEC (Fischer, Schützold, 2004)

- Quantensimulatoren nützlich wenn
 - Problem über klassische Computer nicht zugänglich
 - System experimentell nicht zugänglich
- Quantensimulatoren können physikalische Modelle testen

• Beispiel: Hochtemperatursupraleiter, Neutronenstern

ULTRAKALTE GASE IN OPTISCHEN GITTERN ALS QUANTENSIMULATOREN

- Kontrolle vieler Teilchen gleichzeitig
- Kontrollierbar sind zum Beispiel...
 - Gittergeometrie und Dimensionalität
 - Tunnelprozesse
 - ullet on-site Wechselwirkungen o Feshbach-Resonanzen
 - Nächste-Nachbar-Wechselwirkungen
 - Drei-Teilchen-Wechselwirkungen
 - langreichweitige Wechselwirkungen
 - externe Potentiale
 - Rabi-Übergänge
 - Temperatur

 \Longrightarrow sehr viele verschiedene \mathcal{H} modellierbar

- EINLEITUNG
- BEISPIELE Eindimensionale Ising-Spin-Kette Der Hofstadter-Butterfly
- S FAZIT
- 4 Anhang

1. Beispiel - Ising-Modell mit Magnetfeld

- $\mathcal{H}_{\text{Ising}} = J \sum_{i} S_z^i S_z^{i+1} h_z^i S_z^i h_x^i S_x^i$
- 1D-Kette wechselwirkender Spins in Magnetfeld durch Bose-Gas aus Rubidium-Atomen simulieren
- Speziell: Phasenübergang zwischen para- und antiferromagnetischem Grundzustand nachstellen

ABBILDUNG: Phasendiagramm des Spin-Modells

ZIEL (SACHDEV et al. 2002)

$$\mathcal{H}_{\mathsf{Ising}} \overset{?}{\Longleftrightarrow} \mathcal{H}_{\mathsf{Lat}}$$

 Ausgangspunkt: 1-dimensionaler Bose-Hubbard-Hamiltonian in einem verkippten Gitter:

$$\mathcal{H}_{\mathsf{Lat}} = -t \sum_{j} \left(a_{j}^{\dagger} a_{j+1} + a_{j} a_{j+1}^{\dagger}
ight) + rac{U}{2} \sum_{j} n_{j} (n_{j}-1) - E \sum_{j} j n_{j}$$

- *U* = on-site-Teilchenwechselwirkung
- \bullet E = Potentialunterschied zwischen nächster-Nachbar-Potentialmulden
- t = Tunnelenergie

ABBILDUNG: Ausgangssituation: Mott-Isolator mit $n_0 = 2$

• Experiment: $E = 0 \dots U$, $t \ll U$

Welche Zustände können auf experimentellen Zeitskalen erreicht werden? \longrightarrow Zustände mit gleicher Energie, wenn $E \approx U$. (Resonante Kopplung an Mott-Zustand)

ABBILDUNG: Zwei resonant an Mott-Isolator gekoppelte Zustände (Dipole) ($\propto t$).

ABBILDUNG: Zustände, die nicht resonant an Mott-Isolator gekoppelt sind $(\propto t^2/U)$.

• Experiment: $E = 0 \dots U$, $t \ll U$

Welche Zustände können auf experimentellen Zeitskalen erreicht werden? \longrightarrow Zustände mit gleicher Energie, wenn $E\approx U$. (Resonante Kopplung an Mott-Zustand)

ABBILDUNG: Zwei resonant an Mott-Isolator gekoppelte Zustände (Dipole) ($\propto t$).

ABBILDUNG: Zustände, die nicht resonant an Mott-Isolator gekoppelt sind $(\propto t^2/U)$.

ABBILDUNG: Überblick

sinnvolle Definitionen:

- Dipol-Vakuum: $|0\rangle = |Mn_0\rangle$
- Dipol-Erzeuger: $d_I^\dagger\ket{0}=rac{1}{\sqrt{n_0(n_0+1)}}b_Ib_{I+1}^\dagger\ket{Mn_0}$
- ullet Nebenbedingungen: $d_I^\dagger d_I \leq 1$ und $d_I^\dagger d_I d_{I+1}^\dagger d_{I+1} = 0$

Dipol-Hamiltonian:

$$\mathcal{H}_{d} = -t\sqrt{n_{0}(n_{0}+1)}\sum_{l}(d_{l}+d_{l}^{\dagger})+(U-E)\sum_{l}d_{l}^{\dagger}d_{l}$$

Zusammenhang zur Spinkette:

- ullet Dipol an Platz $I\equiv {\sf Down ext{-}Spin}\ S^z_I$
- ullet kein Dipol an Platz $I\equiv ext{Up-Spin}'S_I^z$

$$\longrightarrow$$
 $S_z^j = rac{1}{2} - d_j^\dagger d_j$ und $S_x^j = rac{1}{2} (d_j^\dagger + d_j)$

Nebenbedingung implementieren:

$$\mathcal{H}_{\text{Ising}} = \mathcal{H}_d + J d_l^{\dagger} d_l d_{l+1}^{\dagger} d_{l+1}$$

$$= \mathcal{H}_d + J (S_z^{j+1} - \frac{1}{2}) (S_z^j - \frac{1}{2})$$

$$\mathcal{H}_{\text{Ising}} = \sum_j (J S_z^j S_z^{j+1} - 2^{\frac{3}{2}} t S_x^j - (J - (E - U)) S_z^j)$$

$$= J \sum_j (S_z^j S_z^{j+1} - h_x S_x^j - h_z S_z^j)$$

Terme aus Nebenbedingung

DAS EXPERIMENT (SIMON et al. 2011)

- unabhängige Ketten in x-Richtung
- Magnetischer Potentialgradient zur Verkippung des Gitters
- E = 0,7U....1,2U
- in situ-Messung \rightarrow Quanten-Gas-Mikroskop
 - 1 Atom ≡ hell
 - 0 Atome oder 2 Atome ≡ dunkel

2. Beispiel - Künstliche Magnetfelder

Ausgangsfrage

Kann man mit ultrakalten Atomen geladenen Vielteilchen-Systeme simulieren?

- interessant z.B. für Elektronen in einem äußeren Magnetfeld
 - \longrightarrow Quanten-Hall-Effekt
- speziell: Hofstadter-Butterfly (Jaksch, Zoller, 2003)
 - Elektronen im tight-binding-Modell im homogenen Magnetfeld
 - quadratisches 2 dimensionales Gitter

ABBILDUNG: Hofstadter-Butterfly

ZIEL

$$\mathcal{H}_{\mathsf{B}} \stackrel{?}{\Longleftrightarrow} \mathcal{H}_{\mathsf{Lat}}$$

- Bloch-Energie: $W(\vec{k}) = -2t(\cos(k_x a) + \cos(k_y a))$
- Peierls-Substitution: $\hbar \vec{k} \rightarrow \vec{p} \frac{e}{c\hbar} \vec{A}$ mit $\vec{A} = (By, 0, 0)$
- In zweiter Quantisierung: $\mathcal{H}_{\rm B} = -t \sum_{m,n} (e^{2\pi i \alpha m} a^{\dagger}_{n+1,m} a_{n,m} + a^{\dagger}_{n,m} a_{n,m+1} + h.c.)$
- $\alpha = \frac{a^2 eB}{2\pi\hbar}$ Fluss durch die Einheitszelle

ABBILDUNG: Das Hofstadter-Modell

- Zwei-Niveau-Atome, Grundzustand g, angeregter Zustand e
- "state-dependent lattice "
 - magische Wellenlängen in y-Richtung
 - antimagische Wellenlänge in x-Richtung

ABBILDUNG: state-dependent lattice

- "normales " Tunneln in y-Richtung
- Laser-induziertes Tunneln in x-Richtung
- Resonanter Laser: $\Omega e^{i\vec{k}\vec{r}}$
- Hopping-Matrix-Element: $g, \vec{r}^{(g)} = (2n, m) \rightarrow e, \vec{r}^{(e)} = \vec{r}^{(g)} + \vec{b} = (2n + 1, m)$:

$$J = \frac{1}{2} \Omega e^{i\vec{k}\vec{r}^{(g)}} \int w^{(e)} (\vec{r} - \vec{b})^* w^{(g)} (\vec{r}) e^{i\vec{k}\vec{r}} d^2 r$$

• Für Laser in yz-Ebene: $J=J_{eff}e^{2\pi i \alpha m}$ mit $\alpha=rac{k_y a}{2\pi}$

BEISPIEL

- Betrachte untere Einheitszelle: $\phi = 0 + k_y(m+1)a + 0 k_y ma = k_y a$
- Betrachtete obere Einheitszelle:

$$\phi = 0 - k_y(m+1)a + 0 + k_y ma = -k_y a$$

- alternierendes Magnetfeld
- \(\) (zu Hoffstadter-Modell)

- Ausweg: Übergänge $2n \leftrightarrow 2n+1$ und $2n-1 \leftrightarrow 2n$ unabhängig machen
- ullet linearer Potentialgradient: Benachbarte Potentialmulden mit Energieunterschied Δ

- Ω_2 induziert Übergang e \leftrightarrow g Detuning: $-\Delta$
- Ω_1 induziert Übergang g \leftrightarrow e Detuning: $+\Delta$
- $\Omega_{1/2} = \Omega e^{\pm i k_y y}$
- Resultat: Das "-" vom Übergang e \rightarrow g und das "-" vom Laser $\propto e^{-ik_yy}$ kompensieren sich

ABBILDUNG: Neue Potentiallandschaft

- Vernachlässige alle Wechselwirkungsterme
- $J_{eff} = J_y = J$

$$\mathcal{H}_{\mathsf{Lat}} = J \sum_{m,n} \left(e^{2\pi i \alpha m} a^{\dagger}_{n+1,m} a_{n,m} + a^{\dagger}_{n,m} a_{n,m+1} + h.c. \right)$$

- $\alpha = \frac{k_y a}{2\pi}$ variierbar über
 - Gitterlänge a
 - Winkel von \vec{k} relativ zur z-Achse
 - einen Bereich von $B_{\rm eff} = 0, \dots, 10^4 \text{ T!}$
- einfache Erweiterung, z.B. zusätzliche E-Felder
- experimentelle Realisierung: Aidelsburger et al. 2013

Symmetriebrechung und Magnetfelder

- Magnetfeld B bricht Zeitumkehrinvarianz
- Ursprüngliche Konfiguration bricht diese Symmetrie nicht:
 - Laser propagiert in andere Richtung: $e^{i\vec{k}\vec{r}} \rightarrow e^{-i\vec{k}\vec{r}}$
 - Translation in x-Richtung eine Gitterkonstante
 - → ursprüngliches System
- Deshalb: Zusätzlicher Term benötigt um Translationssymmetrie zu brechen

FAZIT

- Quantengase zur Simulation anderer Systeme sehr gut geeignet
- nächste Etappe: über proof-of-principle-Experimente hinausgehen
- teilweise schon erreicht
 - Beispiel: I.Bloch et al. 2011

Danke für die Aufmerksamkeit!

QUELLEN

- I. M. Georgescu, S. Ashab, and F. Nori, Quantum Simulation, http://arxiv.org/abs/1308.6253
- I. Buluta, F. Nori, Quantum Simulators, Science, 326 (2009)
- I. Bloch, J.Dallibard, S. Nascimbène, Quantum simulation with ultracold quantum gases, Nature Physics, 8
 (2012)
- J. Cirac, P. Zoller, Goals and opportunities in quantum simulation
- M. Lewenstein et al., Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond, http://arxiv.org/abs/cond-mat/0606771
- S. Sachdev, K. Sengupta, S.M. Girvin, Mott insulators in strong electric fields, http://arxiv.org/abs/cond-mat/0205169
- J. Simon et al., Quantum simulation of antiferromagnetic spin chains in an optical lattice, Nature, 472 (2011)
- D. Jaksch, P. Zoller, Creation of effective magnetic fields in optical lattices: The Hoffstadter butterfly for cold neutral atoms, http://arxiv.org/pdf/quant-ph/0304038.pdf
- N. Goldman et al., Review: Light-induced gauge fields for ultracold atoms, http://homepages.ulb.ac.bengoldman/
- J. Dalibard et al., Colloquium: Artificial gauge potentials for neutral atoms, http://arxiv.org/pdf/1008.5378.pdf

DAS EXPERIMENT (SIMON et al. 2011)

- 2D-Mott-Isolator aus ⁸⁷Rb-Atomen
- Gitterplatzabstand 680 nm, Potentialtiefe 35E_r
- Gitter verkippen: 0,7U (magn. Feldgradienten)
- Potentialtiefe entlang der Kette: 14E_r
- ullet Potentialtiefe transversal zur Kette: 45 $E_r
 ightarrow$ unabhängige Ketten
- lineare Steigerung der Gradientenstärke bis 1,2 U innerhalb von 250 ms
- in situ-Messung möglich → Quanten-Gas-Mikroskop
 - 1 Atom \equiv hell

Zusammenhang zwischen $\langle S_z^i \rangle$ und Wahrscheinlichkeit, eine ungerade Anzahl Atome zu finden:

$$\overline{\langle S_z^i \rangle} = \frac{1}{2} p_{odd} \tag{1}$$

• Hamiltonoperator des Lasers:

$$\mathcal{H}_{\mathsf{Las}} = \sum_{m,n \text{ even}} \underbrace{J_{m,n}}_{\int \dots e^{+ik_{y}y} \dots} \dots + \sum_{m,n \text{ odd}} \underbrace{J_{m,n}}_{\int \dots \left(e^{-ik_{y}y}\right)^{*} \dots} \dots + \mathcal{H}_{\mathsf{d}}$$

$$= \sum_{m,n} \left(J_{\mathsf{eff}} e^{2\pi i \alpha m} a^{\dagger}_{n+1,m} a_{n,m} + h.c. \right) + \mathcal{H}_{\mathsf{d}}$$

• \mathcal{H}_d beschriebt Detuning:

$$\mathcal{H}_{\mathsf{d}} = -\Delta \sum_{n,m} n \mathsf{a}_{n,m}^{\dagger} \mathsf{a}_{n,m}$$

- $\mathcal{H}_{acc} = \Delta \sum_{n,m} n a_{n,m}^{\dagger} a_{n,m}$
- Vernachlässige alle Wechselwirkungsterme, $J_{eff} = J_v = J$:

$$\mathcal{H}_{\mathsf{Lat}} = \mathcal{H}_{\mathsf{Las}} + \mathcal{H}_{\mathsf{acc}} + \sum_{n,m} J a_{n,m}^{\dagger} a_{n,m+1} + h.c.$$

$$= J \sum_{m,n} \left(e^{2\pi i \alpha m} a_{n+1,m}^{\dagger} a_{n,m} + a_{n,m}^{\dagger} a_{n,m+1} + h.c. \right)$$