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1. Quantum confinement and one-dimensional states 3 Points

Consider free three-dimensional electrons subject to a confining potential

V (r) = Vy Θ(|y| − y0) + Vz Θ(|z| − z0) (1)

with large positive potentials Vy, Vz →∞ and y0, z0 > 0.

a) 1 Point

Give the expression of the real-space Hamiltonian describing this system in second quantization. Why is
the product-state Ansatz

|k,m, n, σ〉 =

∫
d3r fk(x) gm(y)hn(z) c†σ(r) |0〉, (2)

a clever choice if one searches eigenstates of the Hamiltonian (here, c††(r) creates an electron of spin
σ =↑, ↓ at position r, while |0〉 denotes the vacuum satisfying cσ(r)|0〉 = 0)?

b) 1 Point

Using the Ansatz of Eq. (2), find the functions gm(y) and hn(z) such that |k,m, n, σ〉 is an eigenstate
(with k, m, and n labelling different eigenstates). To which form can the Schrödinger equation be reduced
for given functions gm(y) and hn(z)?

c) 1 Point

For z0 � y0 � L, where L is the length of the system along x, only the state with hn(z) corresponding
to the lowest energy along z needs to be retained, which approximately corresponds to the situation
realized in a two-dimensional electron gas. Under which further condition are the eigenstates effectively
one-dimensional? Solve the Schrödinger equation now also along x (with k labelling the different eigen-
states of the x-motion), plot the eigenenergies for the case that z0 � y0, and interpret this spectrum.

2. Conductance and spin-orbit coupling in a 1D chain 3 Points

Consider a tight-binding model for a one-dimensional chain of spinful electrons with lattice spacing a.
The electrons can move between the sites by a spin-conserving real hopping t < 0, and by a spin-flip
hopping that allows the electrons to hop between sites while flippign their spin. This hopping has the
purely imaginary amplitude iγ for motion to the right. Each site furthermore has an on-site energy −µ.
Why is the name “spin-orbit coupling” appropriate for the imaginary hopping?

a) 1 Point

Construct the full tight-binding Hamiltonian, and find the eigenenergies using momentum eigenstates.
To simplify the expressions of the eigenenergies, you may find it helpful to decompose sinus and cosinus
into exponentials. Plot the spectrum.

b) 1 Point

Expand the Hamiltonian for small momenta to order O(k2) and identify the effective mass. Add a
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Zeeman energy EZeeman to the Hamiltonian that splits the energies of the up and down spins. Solve the
approximated Hamiltonian, and plot its spectrum for EZeeman = 0 and finite EZeeman.

c) 1 Point

An experimental way to distinguish whether the chemical potential µ is inside the (partial) gap opened
by the Zeeman term is to measure the electric conductance through the wire. To determine the latter,
assume that all electrons moving to the right are injected from a left electrode, in which all states up to
a chemical potential µL = µ + δµL are filled, while all electrons moving to the left are injected from an
electrode on the right with states filled up to µR = µ+δµR. You can furthermore assume that δµR,L � µ,
and that the injected electrons preserve their respective chemical potential µR,L as they move through
the wire. Calculate the current in the wire as

I = Q̇ =
∑
n

ρn vn, (3)

where n is the sum over all states, ρn is the charge density associated with state n, and vn is the group
velocity of state n (whose sign determines the direction of motion). To identify the conductance G,
which is defined via I = GV where V is the voltage drop across the wire, you can assume that chemical
potential difference δµR − δµl is precisely caused by the voltage drop.

Hint: you may assume the temperature to be zero, while the wire is of length L, and has periodic bound-
ary conditions. Furthermore, you may find it helpful to take the limit L→∞ when explicitly calculating
I (thus converting sums into integrals).
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