
Technische Universität Dresden Dr. T. Meng
Institut für Theoretische Physik www.quantum-design.org/teaching

One-dimensional physics

Problem set 3

Summer term 2017

In the lecture, we have expressed the creation operators for chiral fermions in a quantum wire as

r†(x) = lim
α→0

U†r√
2πα

eiΦr(x), (1)

where r = R,L denotes the chirality (i.e. direction of motion) of the fermions, 1/α is a large-momentum
cutoff, Ur denotes a Klein factor, and where the bosonized field Φr(x) satisfies the commutator

lim
α→0

[Φr(x),Φr′(x
′)] = lim

α→0
lim
L→∞

δr,r′ ln

(
1− e2π[α+ir̂(x−x′)]/L

1− e2π[α−ir̂(x−x′)]/L

)
= δr,r′ iπr̂ sgn(x− x′) (2)

with R̂ = +1 and L̂ = −1, and where L denotes the length of the wire (which is assumed to be very
large). We furthermore decomposed these fields as

Φr(x) = Φ+
r (x) + Φ−r (x) with [Φ+

r (x),Φ−r′(x
′)] = δr,r′ ln

(
1− e−2π[α+ir̂(x−x′)]/L)

)
, (3)

where Φ+
r (x) contains only bosonic creation operators (for the bosons associated with density waves),

and with Φ−r (x) = [Φ+
r (x)]

†
.

1. Point splitting and the fermionic anticommutator 2 Points

In the fermionic representation, the chiral operators satisfy the canonical anticommutator

{r†(x), r′(x′)} = δr,r′δ(x− x′). (4)

a) 1 Point

Using U†rUr = 1 = UrU
†
r , the fact that Klein factors acting on different species anticommute, and the

fact that the Klein factors and bosonized fields commute with each other, convince yourself that the
anticommutator is satisfied for x 6= x′ by directly using Eq. (1), as well as Eq. (2) in the limit α → 0.
Which problem do you encounter for x = x′, and how can you understand this problem?

b) 1 Point

To calculate the commutator directly, one can instead use a protocol known as “point splitting”, which
can be understood as an operator product expansion (OPE). Considering a general product Oi(x)Oj(x′),
where Ok(x) are operators labelled by an index k and depending on a coordinate x, the OPE extracts
the most singular contribution to the product of operators as x → x′. Technically speaking, this most
singular contribution is the leading term of the Laurent series

Oi(z)Oj(z′) =
∑
k

Cijk
Ok(z′)

(z − z′)∆i+∆j−∆k
, (5)

where Oi,j,k(z) are operators that depend on complex numbers z and z′, while Cijk are complex constants,
and ∆i,j,k are the so-called scaling-dimensions of Oi,j,k(z). In this spirit, the OPE of the anticommutator
can be evaluated by keeping α and (x − x′) finite. More precisely, the anticommutator, expressed in
bosonized fields, can be evaluated for fixed finite α and (x − x′) upon taking the limit L → ∞, and by
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then expanding the bosonized fields Φ in (x− x′) to obtain the leading operator term for the OPE. Why
can this expansion only be done for after normal ordering the expression? Hint: you can use

lim
α→0

1

π

α

α2 + (x− x′)2
= δ(x− x′). (6)

2. Point splitting and the fermionic density 2 Points

Use the same procedure as in the first exercise to calculate the bosonized expression for the density. To
this end, start from the fermionic normal ordered density

∗
∗ρr(x)∗∗ = lim

x′→x

(
r†(x)r(x′)− 〈0|r†(x)r(x′)|0〉

)
, (7)

where |0〉 is the vacuum. Then use the bosonization identity in Eq. (1), Taylor-expand the normal-ordered
bosonized fields to first order in (x − x′), and finally take the limit α → 0 for fixed (x − x′). Hint: re-
membering the definition of Φr(x) in terms of bosonic operators and the average particle number δNr,
you can easily check that 〈0|∂xΦr(x)|0〉 = 0.

3. Point splitting and the kinetic energy 2 Points

As a final application of the point splitting scheme, we now want to analyze the expression of fermionic
normal-ordered Hamiltionian for the kinetic energy, which is given by

Hkin. =

∫
dx
(
R†(x)(−i∂x)R(x)− L†(x)(−i∂x)L(x)− 〈0|R†(x)(−i∂x)R(x)− L†(x)(−i∂x)L(x)|0〉

)
,

(8)

with |0〉 still denoting the vacuum. To find the bosonized expression for the kinetic energy, start from
the point-split expression, and expand the bosonized fields in (x− x′) after their normal ordering. Hint:
you may find it helpful to expand the bosonized fields around (x + x′)/2, and to then expanding the
exponentials to order (x− x′)2. Also, note that the most simple variant of the point splitting procedure
given in exercise two does not give rise to a Hermitian expression, which needs to be corrected in the end.
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