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1. Conductance quantization in Luttinger liquids 7 Points

On the first exercise sheet, we showed that a non-interacting quantum wire with n right-moving and
n left-moving modes has a conductance of G = n e2/h. This simple calculation is in agreement with
experimental observations, even for interacting quantum wires, but was for a long time at odds with
the predictions of Luttinger liquid theory. This discrepancy was only solved in 1995 by three seminal
works of Maslov and Stone, Ponomarenko, and Safi and Schulz, who thus clarified an important aspect
of Luttinger liquid calculations in real systems.

a) 1 Point

The basis for all subsequent calculation is the Kubo formula for the electric conductance, which gives the
current in a quantum wire in linear response to an applied electric field. We thus start by recalling the
general framework of Kubo formulas by considering a 1D system described by an initial Hamiltonian H0,
to which a time-dependent perturbation H1(t) is applied. More precisely, H1(t) describes the coupling
of so-called forces Fj(x, t) (which are simple functions, not operators) to observables Oj(x, t) as

H1(t) =

∫
dx
∑
j

Fj(x, t)Oj(x, t). (1)

Assuming that the perturbation is switched on at a time t0, use the time evolution in the interaction
picture to derive the Kubo formula

〈Ok(x, t)〉 ≈ 〈Ok(x, t)〉0 +

∫ ∞
t0

dt′ (−iθ(t− t′)〈[Ok(x, t), H1(t′)]〉0) , (2)

where 〈 〉0 denotes the expectation value with respect to the unperturbed system.

b) 1 Point

The retarded correlation function of two observables Ok(x, t) and Oj(x′, t′) is defined as

CR
kj(x− x′, t− t′) = −iθ(t− t′)〈[Ok(x, t),Oj(x′, t′)]〉0, (3)

which has the Fourier transform

CR
kj(x− x′, ω) = lim

η→0

∫ ∞
−∞

dt ei(ω+iη)t CR
kj(x− x′, t). (4)

Furthermore, we recall that the Fourier transform of an operator is given by

Ok(x, ω) =

∫
dt eiωtOk(x, t). (5)

Show that for t0 → −∞, in which case the transient behaviour associated with the switching-on of H1(t)
can be neglected, one finds

〈Ok(x, ω)〉 ≈ 〈Ok(x, ω)〉0 +

∫
dx′

∑
j

Fj(x
′, ω)CR

kj(x− x′, ω). (6)
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c) 1 Point

We are now in particular interested to the response of a quantum wire to an applied electric field E(x).
Starting with the Hamiltonian H0 of free, spinless one-dimensional electrons, show that minimal coupling
to external electromagnetic fields amounts to the Hamiltonian H = H0 +HEM with HEM =

∫
dx (ρΦ−

jtotAx), where A is the vector potential, Φ the scalar potential, ρ is the charge density, and where the
current jtot is the sum of a “paramagnetic” contribution j, and 1/2 times a “diamagnetic” current jA

with

j(x) =
e

2mi

(
c†(x)[∂xc(x)]− [∂xc

†(x)]c(x)
)

and jA(x) = −e
2

m
Ax c

†(x)c(x), (7)

where c(x) annihilates an electron at position x. For an applied electric field E that is constant along
the wire, you can use a gauge such that Φ = 0 to show that the linear-response current flowing due to
the applied electric field is given by

jtot(x, ω) = 〈jtot(x, ω)〉0 +

∫
dx′

1

−iω
Ex(x′, ω)CR

jj(x− x′, ω) (8)

where CR
jj(x− x′, ω) denotes the Fourier transform of CR

jj(x− x′, t) = −iθ(t) 〈[j(x, t), j(x′, 0)]〉, and with

Ex(x, ω) =
∫∞
−∞ dt eiωtEx(x, t).

d) 1 Point

Quite generally, the Fourier transform of a retarded correlation function can be found by first calculating
the related Fourier transform of the imaginary time correlator to Matsubara frequencies, and then per-
forming the analytical continuation iωn → ω+ iη with η → 0+. You can thus find the conductance from
the Matsubara frequency expression

Cjj(x− x′, ωn) =

∫
dτeiωnτ (−〈Tτ j(x, τ)j(x′, 0)〉) . (9)

In addition, it is well-known that for a normal state (non-superconducting) system, the diamagnetic
contribution to 〈jtot〉 cancels with part of the paramagnetic term described by Cjj to give a finite total
conductance. This is, however, a statement for a wire with a quadratic dispersion - in systems with a
purely linear dispersion, the case we use for Luttinger liquid calculations, the diamagnetic term does not
even arise in the first place. Use the usual Luttinger liquid definitions and the continuity equation to
show that the current is indeed given by jtot = j = ie∂τφ(x, τ)/π. You can then show that

Cjj(x− x′, ωn) =
e2ω2

n

π2
〈φ(x, ωn)φ(x′,−ωn)〉. (10)

e) 1 Point

Evaluate the function Cjj(x − x′, ωn) for an infinite wire with effective velocity u and Luttinger liquid
parameter K. Show that anaytical contiunation yields

Cjj(x− x′, ω) =
e2K(−iω)

2π
eiω|x−x

′|/u.

Along the way, you may find it helpful to recall the Gaussian integral

〈ui(q1)uj(q2)〉 =

∫
D(u)u∗i (q1)uj(q2) e−

1
2

∑
q,i,j Aij(q)u

∗
i (q)uj(q)∫

D(u) e−
1
2

∑
q,i,j Aij(q)u∗i (q)uj(q)

= δq1,q2 A
−1
ij (q1)

for a vector of fields that satisfies u(q) = u∗(−q).

f) 1 Point

Define the conductance relating the current j and the voltage drop V across the wire as j = GV for
the case of an electric field constant in space and time. Compare this result to the finding of exercise
sheet 1, where a simple calculation for a single channel of non-interacting electrons gave G = e2/h. What
does the observation that all experiments agree with this latter calculation imply for the above Luttinger
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liquid calculation?

g) 1 Point

An argument as to why the Luttinger liquid parameter K is not entering the measured conductances was
already given by Kane and Fisher in 1992. Namely, they argued that any wire is finite, and that the length
of the wire defines an energy scale ωL = vF /L, where vF is the Fermi velocity. What part of the system
should thus set the physics at energies (or frequencies) smaller than ωL, and what does this imply for the
conductance? Why can you model a finite size quantum wire attached to higher-dimensional leads as a 1D
system of infinite size in which only a central part of size L is interacting, while the outer regions (called
the left and right lead) have K = 1 (a sketch of this model system can be found on the following picture)?

In this inhomogenous situation, the calculation of Cjj(x− x′, ωn) follows from the differential equation(
ω2
n

πu(x)K(x)
− ∂x

u(x)

πK(x)
∂x

)
〈φ(x, ωn)φ(x′,−ωn)〉 = δ(x− x′), (11)

which you may solve independently in the different regions, and then find the full solution by appropriate
boundary conditions. What is the value of the conductance in this picture? Hint: you may still assume
the electric field to be constant in time, and constant within the wire region, while it vanishes outside the
wire region. Note that Eq. (8) then implies a restriction for the coordinate x′. Finally, you may assume
that 〈φ(x, ωn)φ(x′,−ωn)〉 → 0 for x→ ±∞.
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