Consider the Kagome lattice shown below which forms a two-dimensional hexagonal net with a three-atomic unit cell (“kagome” is the Japanese word for a traditional basket with such a pattern).

Compute the bandstructure for a nearest-neighbor tight-binding model for spinless fermions on the Kagome lattice.

Guideline: The Hamiltonian can be written as \(H_K = -t \sum_{\langle ij \rangle} (c_i^\dagger c_j + \text{h.c.}) \). The primitive lattice vectors are given by \(a_1 = a(1,0) \) and \(a_2 = a(1/2, \sqrt{3}/2) \). The basis atoms are located at \(r_1 = 0 \) (A/red), \(r_2 = a_1/2 \) (B/green) and \(r_3 = a_2/2 \) (C/blue). The unit cell is indicated by the yellow rhomboid. In the following, each unit cell will be labeled with \(x \) and \(y \) coordinates \((n,m)\), see above. Instead of \(c_i^\dagger c_j \) we are using the operators \(A_{(n,m)}^\dagger, B_{(n,m)}^\dagger, C_{(n,m)}^\dagger \), which annihilate (create) an electron on the corresponding sublattice \(A, B, C \) within the \((n,m)\)-th unit cell. Thus we can write all nearest-neighbor hopping processes (see purple arrows above plus hermitian conjugation) as

\[
H_K = -t \sum_{n,m} \left[C_{n,m}^\dagger A_{n,m} + B_{n,m}^\dagger C_{n,m} + A_{n,m}^\dagger B_{n,m} + C_{n,m-1}^\dagger A_{n,m} + B_{n-1,m+1}^\dagger C_{n,m} + A_{n+1,m}^\dagger B_{n,m} + \text{h.c.} \right]
\]

The Fourier transform of these terms can be conveniently arranged into a 3x3 matrix, the Bloch matrix, and its eigenvalues are the energy bands. Calculate and sketch these bands in the Brillouin zone.

Hint: Determine the characteristic equation of the 3x3 matrix and use the identity

\[
\cos^2\left(\frac{k \cdot a_1}{2}\right) + \cos^2\left(\frac{k \cdot a_2}{2}\right) + \cos^2\left(\frac{k \cdot (a_1 - a_2)}{2}\right) = 2 \cos\left(\frac{k \cdot a_1}{2}\right) \cos\left(\frac{k \cdot a_2}{2}\right) \cos\left(\frac{k \cdot (a_1 - a_2)}{2}\right) + 1.
\]
2. Strong-Coupling Limit of the Hubbard Model

Consider a real nearest-neighbor hopping on an arbitrary lattice,

\[H_0 = \sum_{\langle ij \rangle} h_{ij} \quad \text{with} \quad h_{ij} = -t \sum_{\sigma=\uparrow,\downarrow} \left(c_{i\sigma}^\dagger c_{j\sigma} + \text{h.c.} \right) \] (2)

If we want to describe the effect of Coulomb repulsion between the electrons, this can be accomplished in the simplest way using the Hubbard interaction,

\[H_I = U \sum_i n_{i\uparrow} n_{i\downarrow}, \] (3)

where \(n_{i\sigma} = c_{i\sigma}^\dagger c_{i\sigma} \) is the number operator. At half filling, i.e., one particle per lattice site, and for strong \(U \) hopping processes of the electrons are suppressed. This is the strong-coupling limit where only the spin degree of freedom of the electrons remains at low energies.

a) 5 Points

Show that, for very large \(U \) at half filling, \(H = H_0 + H_I \) corresponds to the low-energy spin Hamiltonian

\[H_{\text{spin}} = J \sum_{\langle ij \rangle} \left[\frac{1}{2} \left(S_i^+ S_j^- + S_i^- S_j^+ \right) + S_i^z S_j^z - \frac{1}{4} \right] \] (4)

with \(J = (4t^2)/U \). This is the isotropic Heisenberg model.

Guideline: Note that formally one has to perform second-order perturbation theory in \(1/U \), i.e., \(H_{\text{spin}} = -T U^{-1} T^\dagger \) where \(T \) and \(U \) are matrices. Consider two sites for which the low-energy states \(|s\rangle \) at half filling are singly occupied, \(|s\rangle \in \{|\uparrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\downarrow\uparrow\rangle, |\downarrow\downarrow\rangle\} \). Virtual hopping processes result in states \(|d\rangle \in \{|\uparrow\uparrow\rangle, |\downarrow\downarrow\rangle\} \) where one site is empty and the other doubly occupied. Matrix elements of \(T \) are given by \(\langle s| h_{12} |d\rangle \) and of \(U \) by \(\langle d| H_I |d\rangle \). In general, we expect in second-order perturbation theory an effective spin Hamiltonian with matrix elements \(\langle s| J_{\mu\nu} S_\mu^\dagger S_\nu |s'\rangle \) which can be compared with the matrix elements of \(H_{\text{spin}} \). The constant \(c \) sets the energy zero point. The use of ladder operators \(S_\mu^\pm \) might be helpful.

b) 3 Points

How does the resulting spin Hamiltonian change when imaginary, spin-dependent hopping is considered instead of (2)? As a concrete example, consider the spin-orbit type term on the honeycomb lattice

\[H'_0 = i\lambda \sum_{\langle ij \rangle, \mu} \nu_{ij} c_{i\alpha}^\dagger \sigma_{\alpha\beta}^\mu c_{j\beta}. \] (5)

Nearest-neighbor bonds \(\langle ij \rangle_\mu \) differ now by the involved Pauli matrices \(\sigma^\mu \) as indicated in the figure below; \(\nu_{ij} = \pm 1 \) depending on whether hopping is clockwise (\(\nu_{ij} = +1 \)) or counter-clockwise (\(\nu_{ij} = -1 \)).

Perform the calculation for one of the three different bonds (blue, red, or green) and guess the solution of the others.

c) 3 Points

Now repeat the calculation for a Hubbard model with both kinetic terms, i.e., \(\tilde{H} = H_0 + H'_0 + H_I \).