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1. Non-magnetic states I: Majumdar–Ghosh 6 Points

One way to construct non-magnetic states is by binding spins pairwise into singlets,

1√
2
|↑i↓j − ↓i↑j〉 ≡ | c c

i j
〉 . (1)

With such singlet bonds any lattice can be easily covered, thus resulting in a state with total S = 0. A
priori it is not clear, however, if such a singlet state is the ground state of a local Hamiltonian.

In one spatial dimension, we consider a spin S = 1/2 chain of length N = even (we impose periodic
boundary conditions, i.e., lattice site i+N ≡ i) and the two dimer states∣∣ψeven〉 = | c c c c c c

i i+1
〉 and

∣∣ψodd〉 = | c c c c c c
i i+1

〉 . (2)

Find a Hamiltonian containing Heisenberg-type spin exchange for which
∣∣ψeven〉 and

∣∣ψodd〉 are the ground
states. What is the corresponding ground–state energy?

Hint: Compare the content of irreducible spin representations for three coupled spins 1/2 and for three
consecutive sites of the states

∣∣ψeven〉 and
∣∣ψodd〉. Use the resulting insight to construct an operator which

annihilates three neighboring sites of
∣∣ψeven〉 and

∣∣ψodd〉.

2. Non-magnetic states II: AKLT 6 Points

The Affleck–Kennedy–Lieb–Tasaki (AKLT) chain is a paradigm for a spin-1 chain, as it is known to
behave qualitatively similar to the spin-1 Heisenberg chain. [F. D. M. Haldane conjectured in 1983 that
integer-spin Heisenberg chains are fundamentally different from half-odd integer spin chains because their
excitation spectrum is gapped. Partly because of this conjecture, Haldane was awarded the 2016 Nobel
prize in physics.]

The idea of AKLT is the following: each spin 1 on a given site can be thought of as two “virtual” spins
1/2 which are symmetrically coupled (remember, that 1

2
⊗ 1

2
= 0 ⊕ 1, where the singlet 0 is a totally

antisymmetric and the triplet 1 a totally symmetric representation). Virtual spins 1/2 on neighboring
sites can now be antisymmetrically coupled into singlet bonds. We can visualize this as

|AKLT〉 =
∣∣ c c c c cc c c c cm m m m m

projection onto spin 1
i i + 1

〉
(3)

where the large circles are lattice sites and the small dots are the virtual spins 1/2. Note that |AKLT〉 is
translationally invariant, while the |ψ〉 states from Problem 1. are not.
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a) 3 Points
Construct a Hamiltonian for which |AKLT〉 is the ground state.

Hint: Compare again the content of irreducible spin representations of two adjacent sites of |AKLT〉 with
that of two coupled spin-1 representations and find an operator which annihilates two neighboring sites
of |AKLT〉.

b) 1 Point
Consider the Majumdar–Ghosh states |ψ〉 (from Problem 1.) and the state |AKLT〉. What could be the
elementary excitations? (You may present them as drawings.) Use the constructed “parent” Hamiltonians
to retrieve a major difference between these excitations.

c) 2 Points
Generalize the AKLT idea to two spatial dimensions and draw a non-magnetic, translationally invariant
state on the honeycomb lattice. Find the corresponding parent Hamiltonian.

3. Non-magnetic states III: Shastry–Sutherland 6 Points

JD

J

J

The graph shown in the figure is a variant of the square lattice
and called “Shastry–Sutherland lattice“. We consider the S =
1/2 Heisenberg Hamiltonian

H = J
∑
〈ij〉�

~Si · ~Sj + JD
∑
〈ij〉D

~Si · ~Sj (4)

where the first term describes spin exchange on horizontal and
vertical bonds, while the second term on the diagonal bonds.

Find a spin-singlet state consisting of nearest-neighbor singlet bonds which is the ground state of H.
Which ratio J/JD must be chosen in order to allow for an exact proof? What is the corresponding
ground–state energy?

Hint: Consider first an isolated triangle of the Shastry–Sutherland lattice, described by the Hamiltonian
H∆ = I12

~S1 · ~S2 + I23
~S2 · ~S3 + I31

~S3 · ~S1. Convince yourself that the ground state of H∆ is given by
a singlet bond on two sites of the triangle, and the third site remains “free”. Now cover the full lattice
with such triangles under the constraint that there must be one singlet bond on each triangle. What is
the relation between the Iij and J , JD in this case?
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