Theory of Frustrated Magnetism Problem set 1

1. Tight-Binding Bands of the Kagome Lattice

Consider the Kagome lattice shown below which forms a two-dimensional hexagonal net with a threeatomic unit cell ("kagome" is the japanese word for a traditional basket with such a pattern).

Compute the bandstructure for a nearest-neighbor tight-binding model for spinless fermions on the Kagome lattice.
Guideline: The Hamiltonian can be written as $H_{K}=-t \sum_{\langle i j\rangle}\left(c_{i}^{\dagger} c_{j}+\right.$ h.c. $)$. The primitive lattice vectors are given by $\boldsymbol{a}_{1}=a(1,0)$ and $\boldsymbol{a}_{2}=a(1 / 2, \sqrt{3} / 2)$. The basis atoms are located at $\boldsymbol{r}_{1}=0(\mathrm{~A} / \mathrm{red})$, $\boldsymbol{r}_{2}=\boldsymbol{a}_{1} / 2$ (B/green) und $\boldsymbol{r}_{3}=\boldsymbol{a}_{2} / 2$ (C/blue). The unit cell is indicated by the yellow rhomboid. In the following, each unit cell will be labeled with x and y coordinates (n, m), see above. Instead of $c_{j}^{(\dagger)}$ we are using the operators $A_{(n, m)}^{(\dagger)}, B_{(n, m)}^{(\dagger)}, C_{(n, m)}^{(\dagger)}$, which annihilate (create) an electron on the corresponding sublattice A, B, C within the (n, m)-th unit cell. Thus we can write all nearest-neighbor hopping processes (see purple arrows above plus hermitian conjugation) as
$H_{K}=-t \sum_{n, m}\left[C_{n, m}^{\dagger} A_{n, m}+B_{n, m}^{\dagger} C_{n, m}+A_{n, m}^{\dagger} B_{n, m}+C_{n, m-1}^{\dagger} A_{n, m}+B_{n-1, m+1}^{\dagger} C_{n, m}+A_{n+1, m}^{\dagger} B_{n, m}+\right.$ h.c. $]$
The Fourier transform of these terms can be conveniently arranged into a 3×3 matrix, the Bloch matrix, and its eigenvalues are the energy bands. Calculate and sketch these bands in the Brillouin zone.

Hint: Determine the characteristic equation of the 3×3 matrix and use the identity
$\cos ^{2}\left(\frac{\boldsymbol{k} \cdot \boldsymbol{a}_{1}}{2}\right)+\cos ^{2}\left(\frac{\boldsymbol{k} \cdot \boldsymbol{a}_{2}}{2}\right)+\cos ^{2}\left(\frac{\boldsymbol{k} \cdot\left(\boldsymbol{a}_{1}-\boldsymbol{a}_{2}\right)}{2}\right)=2 \cos \left(\frac{\boldsymbol{k} \cdot \boldsymbol{a}_{1}}{2}\right) \cos \left(\frac{\boldsymbol{k} \cdot \boldsymbol{a}_{2}}{2}\right) \cos \left(\frac{\boldsymbol{k} \cdot\left(\boldsymbol{a}_{1}-\boldsymbol{a}_{2}\right)}{2}\right)+1$.
One of the eigenvalues has a simple form which you might guess.

2. Strong-Coupling Limit of the Hubbard Model

Consider a real nearest-neighbor hopping on an arbitrary lattice,

$$
\begin{equation*}
H_{0}=\sum_{\langle i j\rangle} h_{i j} \quad \text { with } \quad h_{i j}=-t \sum_{\sigma=\uparrow, \downarrow}\left(c_{i \sigma}^{\dagger} c_{j \sigma}+\text { h.c. }\right) \tag{2}
\end{equation*}
$$

If we want to describe the effect of Coulomb repulsion between the electrons, this can be accomplished in the simplest way using the Hubbard interaction,

$$
\begin{equation*}
H_{I}=U \sum_{i} n_{i \uparrow} n_{i \downarrow}, \tag{3}
\end{equation*}
$$

where $n_{i \sigma}=c_{i \sigma}^{\dagger} c_{i \sigma}$ is the number operator. At half filling, i.e., one particle per lattice site, and for strong U hopping processes of the electrons are suppressed. This is the strong-coupling limit where only the spin degree of freedom of the electrons remains at low energies.

a)

5 Points
Show that, for very large U at half filling, $H=H_{0}+H_{I}$ corresponds to the low-energy spin Hamiltonian

$$
\begin{equation*}
H_{\mathrm{spin}}=J \sum_{\langle i j\rangle}\left[\frac{1}{2}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)+S_{i}^{z} S_{j}^{z}-\frac{1}{4}\right] \tag{4}
\end{equation*}
$$

with $J=\left(4 t^{2}\right) / U$. This is the isotropic Heisenberg model.
Guideline: Note that formally one has to perform second-order perturbation theory in $1 / U$, i.e., $H_{\text {spin }}=$ $-\boldsymbol{T} \boldsymbol{U}^{-1} \boldsymbol{T}^{\dagger}$ where \boldsymbol{T} and \boldsymbol{U} are matrices. Consider two sites for which the low-energy states $|s\rangle$ at half filling are singly occupied, $|s\rangle \in\{|\uparrow, \uparrow\rangle,|\uparrow, \downarrow\rangle,|\downarrow, \uparrow\rangle,|\downarrow, \downarrow\rangle\}$. Virtual hopping processes result in states $|d\rangle \in\{|\uparrow \downarrow, 0\rangle,|0, \uparrow \downarrow\rangle\}$ where one site is empty and the other doubly occupied. Matrix elements of \boldsymbol{T} are given by $\langle s| h_{12}|d\rangle$ and of \boldsymbol{U} by $\langle d| H_{I}|d\rangle$. In general, we expect in second-order perturbation theory an effective spin Hamiltonian with matrix elements $\langle s| J^{\mu \mu^{\prime}} S_{1}^{\mu} S_{2}^{\mu^{\prime}}\left|s^{\prime}\right\rangle+c \delta_{s s^{\prime}}(\mu=x, y, z)$ which can be compared with the matrix elements of $H_{\text {spin }}$. The constant c sets the energy zero point. The use of ladder operators $S_{j}^{ \pm}=S_{j}^{x} \pm i S_{j}^{y}$ might be helpful.
b)

3 Points
How does the resulting spin Hamiltonian change when imaginary, spin-dependent hopping is considered instead of (2)? As an concrete example, consider the spin-orbit type term on the honeycomb lattice

$$
\begin{equation*}
H_{0}^{\prime}=i \lambda \sum_{\langle i j\rangle_{\mu}} \nu_{i j} c_{i \alpha}^{\dagger} \sigma_{\alpha \beta}^{\mu} c_{j \beta} . \tag{5}
\end{equation*}
$$

Nearest-neighbor bonds $\langle i j\rangle_{\mu}$ differ now by the involved Pauli matrices σ^{μ} as indicated in the figure below; $\nu_{i j}= \pm 1$ depending on whether hopping is clockwise $\left(\nu_{i j}=+1\right)$ or counter-clockwise ($\nu_{i j}=-1$).

Perform the calculation for one of the three different bonds (blue, red, or green) and guess the solution of the others.
c)

3 Points
Now repeat the calculation for a Hubbard model with both kinetic terms, i.e., $\tilde{H}=H_{0}+H_{0}^{\prime}+H_{I}$.

