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1. Tight-Binding Bands of the Kagome Lattice 7 Points

Consider the Kagome lattice shown below which forms a two-dimensional hexagonal net with a three-
atomic unit cell (“kagome” is the japanese word for a traditional basket with such a pattern).
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Compute the bandstructure for a nearest-neighbor tight-binding model for spinless fermions on the
Kagome lattice.

Guideline: The Hamiltonian can be written as HK = −t
∑

⟨ij⟩(c
†
i cj + h.c.). The primitive lattice vectors

are given by a1 = a(1, 0) and a2 = a(1/2,
√
3/2). The basis atoms are located at r1 = 0 (A/red),

r2 = a1/2 (B/green) und r3 = a2/2 (C/blue). The unit cell is indicated by the yellow rhomboid. In the

following, each unit cell will be labeled with x and y coordinates (n,m), see above. Instead of c
(†)
j we

are using the operators A
(†)
(n,m), B

(†)
(n,m), C

(†)
(n,m), which annihilate (create) an electron on the correspond-

ing sublattice A, B, C within the (n,m)-th unit cell. Thus we can write all nearest-neighbor hopping
processes (see purple arrows above plus hermitian conjugation) as

HK=−t
∑
n,m

[
C†

n,mAn,m+B†
n,mCn,m +A†

n,mBn,m + C†
n,m−1An,m +B†

n−1,m+1Cn,m +A†
n+1,mBn,m + h.c.

]
(1)

The Fourier transform of these terms can be conveniently arranged into a 3×3 matrix, the Bloch matrix,
and its eigenvalues are the energy bands. Calculate and sketch these bands in the Brillouin zone.

Hint: Determine the characteristic equation of the 3× 3 matrix and use the identity

cos2
(
k·a1

2

)
+ cos2

(
k·a2

2

)
+ cos2

(
k·(a1 − a2)

2

)
= 2 cos

(
k·a1

2

)
cos

(
k·a2

2

)
cos

(
k·(a1 − a2)

2

)
+ 1 .

One of the eigenvalues has a simple form which you might guess.
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2. Strong-Coupling Limit of the Hubbard Model 11 Points

Consider a real nearest-neighbor hopping on an arbitrary lattice,

H0 =
∑
⟨ij⟩

hij with hij = −t
∑

σ=↑,↓

(
c†iσcjσ + h.c.

)
(2)

If we want to describe the effect of Coulomb repulsion between the electrons, this can be accomplished
in the simplest way using the Hubbard interaction,

HI = U
∑
i

ni↑ni↓ , (3)

where niσ = c†iσciσ is the number operator. At half filling, i.e., one particle per lattice site, and for strong
U hopping processes of the electrons are suppressed. This is the strong-coupling limit where only the
spin degree of freedom of the electrons remains at low energies.

a) 5 Points

Show that, for very large U at half filling, H = H0 +HI corresponds to the low-energy spin Hamiltonian

Hspin = J
∑
⟨ij⟩

[
1

2

(
S+
i S−

j + S−
i S+

j

)
+ Sz

i S
z
j − 1

4

]
(4)

with J = (4t2)/U . This is the isotropic Heisenberg model.

Guideline: Note that formally one has to perform second-order perturbation theory in 1/U , i.e., Hspin =

−TU−1T † where T and U are matrices. Consider two sites for which the low-energy states |s⟩ at half
filling are singly occupied, |s⟩ ∈ {|↑, ↑⟩ , |↑, ↓⟩ , |↓, ↑⟩ , |↓, ↓⟩}. Virtual hopping processes result in states
|d⟩ ∈ {|↑↓, 0⟩ , |0, ↑↓⟩} where one site is empty and the other doubly occupied. Matrix elements of T are
given by ⟨s|h12 |d⟩ and of U by ⟨d|HI |d⟩. In general, we expect in second-order perturbation theory

an effective spin Hamiltonian with matrix elements ⟨s| Jµµ′
Sµ
1 S

µ′

2 |s′⟩ + c δss′ (µ = x, y, z) which can be
compared with the matrix elements of Hspin. The constant c sets the energy zero point. The use of ladder
operators S±

j = Sx
j ± iSy

j might be helpful.

b) 3 Points
How does the resulting spin Hamiltonian change when imaginary, spin-dependent hopping is considered
instead of (2)? As an concrete example, consider the spin-orbit type term on the honeycomb lattice

H ′
0 = iλ

∑
⟨ij⟩µ

νijc
†
iασ

µ
αβcjβ . (5)

Nearest-neighbor bonds ⟨ij⟩µ differ now by the involved Pauli matrices σµ as indicated in the figure
below; νij = ±1 depending on whether hopping is clockwise (νij = +1) or counter-clockwise (νij = −1).
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Perform the calculation for one of the three different bonds (blue, red, or green) and guess the solution
of the others.

c) 3 Points
Now repeat the calculation for a Hubbard model with both kinetic terms, i.e., H̃ = H0 +H ′

0 +HI .
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