Strongly Correlated Electrons
 1. Übung

Sommersemester 2015

1. Integral representation of the θ-function

1 point
Show the validity of the following integral representation of the θ-function:

$$
\begin{equation*}
\lim _{\eta \rightarrow 0+} \frac{i}{2 \pi} \int_{-\infty}^{+\infty} d x \frac{e^{-i x t}}{x+i \eta}=\theta(t) \tag{1}
\end{equation*}
$$

2. Sum rule

2 points
Prove the following sum rule

$$
\begin{equation*}
\int_{-\infty}^{\infty} d \omega\left[\omega G_{A B}^{r}(\omega)-\left\langle[\hat{A}, \hat{B}]_{-}\right\rangle\right]=\left.\pi\left\langle\left[\partial_{t} \hat{A}(t), \hat{B}(0)\right]_{-}\right\rangle\right|_{t=0} \tag{2}
\end{equation*}
$$

where $G_{A B}^{r}(\omega)$ is the Fourier transform of the retarded Green's function

$$
G_{A B}^{r}(t)=-i \theta(t)\left\langle[\hat{A}(t), \hat{B}(0)]_{-}\right\rangle .
$$

Use Eq. (2) to discuss the high-frequency behavior of $G_{A B}^{r}(\omega)$.
(Hint: Derive an equation of motion for $G_{A B}^{r}(t)$ by considering its time derivative.)

3. Interaction representation

3 points

The aim of this exercise is to verify the following identity

$$
\begin{equation*}
e^{-\beta \hat{H}}=e^{-\beta \hat{H}_{0}} \hat{T} \exp \left(-\int_{0}^{\beta} d \lambda \hat{H}_{I}(-i \lambda)\right) \tag{3}
\end{equation*}
$$

where $\hat{H}=\hat{H}_{0}+\hat{H}_{I}$ is the total Hamiltonian of the system, \hat{H}_{0} is the unperturbed (solvable) part, and \hat{H}_{I} is the interaction term. Finally, \hat{T} is the time-ordering operator (see definition below).
a)

1 point
Start by considering the following operator

$$
\begin{equation*}
\hat{\bar{U}}(t)=e^{i \hat{H}_{0} t} e^{-i \hat{H} t} \tag{4}
\end{equation*}
$$

with $\hat{\bar{U}}(t=0)=1$. Derive the equation of motion (differential equation) for $\hat{\bar{U}}(t)$ and show that it can be written as

$$
\begin{equation*}
\hat{\bar{U}}(t)=1-i \int_{0}^{t} d t_{1} \hat{H}_{I}\left(t_{1}\right) \hat{\bar{U}}\left(t_{1}\right) \tag{5}
\end{equation*}
$$

where $\hat{H}_{I}(t)=e^{i \hat{H}_{0} t} \hat{H}_{I} e^{-i \hat{H}_{0} t}$ is the time evolution of $\hat{H}_{I}(t)$ in the interaction representation.
(Note that $\hat{S}\left(t, t^{\prime}\right)$ given in the lecture is related to $\hat{\bar{U}}(t)$ by $\hat{S}\left(t, t^{\prime}\right)=\hat{\bar{U}}(t) \hat{\bar{U}}^{\dagger}\left(t^{\prime}\right)$.)
b)

2 points
Consider now the time-ordering operator \hat{T}, which chronologically orders a set of time-dependent operators $\hat{A}\left(t_{i}\right)$, for instance,

$$
\begin{equation*}
\hat{T}\left[\hat{A}\left(t_{1}\right) \hat{A}\left(t_{3}\right) \hat{A}\left(t_{4}\right) \hat{A}\left(t_{2}\right)\right]=\hat{A}\left(t_{4}\right) \hat{A}\left(t_{3}\right) \hat{A}\left(t_{2}\right) \hat{A}\left(t_{1}\right) \quad \text { if } \quad t_{4}>t_{3}>t_{2}>t_{1} \tag{6}
\end{equation*}
$$

Show that Eq. (5) can be used to write $\hat{\bar{U}}(t)$ as

$$
\begin{equation*}
\hat{\bar{U}}(t)=\hat{T} \exp \left(-i \int_{0}^{t} d t^{\prime} \hat{H}_{I}\left(t^{\prime}\right)\right) \tag{7}
\end{equation*}
$$

Prove now Eq. (3).

4. Single-site Hubbard model

Consider the single-site "Hubbard model"

$$
\begin{equation*}
\hat{K}=\hat{H}-\mu \hat{N}=U \hat{n}_{\uparrow} \hat{n}_{\downarrow}-\mu \sum_{\sigma=\uparrow, \downarrow} \hat{n}_{\sigma} \tag{8}
\end{equation*}
$$

where $\hat{n}_{\sigma}=\hat{c}_{\sigma}^{\dagger} \hat{c}_{\sigma}$, with $\hat{c}_{\sigma}^{\dagger}\left(\hat{c}_{\sigma}\right)$ creating (annihilating) an electron with spin $\sigma=\uparrow, \downarrow$ on a single site, is the electron density operator, and $U>0$ is the on-site repulsion energy. Notice that U is the amount of energy that should be paid if two electrons with different spin are on the same site.
a)
1 point

Find the eigenstates and the corresponding eigenenergies of the model (8).
b)

2 points

Calculate the Fourier transform in time, $G_{\sigma}^{r}(\omega)$, of the retarded single-particle Green's function $G_{\sigma}^{r}(t)=$ $-i\left\langle\left[\hat{c}_{\sigma}(t), \hat{c}_{\sigma}^{\dagger}(0)\right]_{+}\right\rangle \theta(t)$ at $T=0$ using the Lehmann representation for the three cases i) $\mu<0$, ii) $0<\mu<U$, and iii) $U-\mu<0<\mu$. Compare to the free-fermion result.
c)

1 point
How does the spectral function $A(\omega)=-\frac{1}{\pi} \operatorname{Im} G^{r}(\omega)$ read? Discuss the outcome of possible photoemission and inverse photoemission experiments.
d)

1 point
Calculate the interaction-induced self-energy for the non-trivial case ii).

