Strongly Correlated Electrons 1. Übung

Sommersemester 2015

1. Integral representation of the θ -function 1 point

Show the validity of the following integral representation of the θ -function:

$$\lim_{\eta \to 0+} \frac{i}{2\pi} \int_{-\infty}^{+\infty} dx \frac{e^{-ixt}}{x+i\eta} = \theta(t).$$
(1)

2. Sum rule

Prove the following sum rule

$$\int_{-\infty}^{\infty} d\omega \, \left[\omega G_{AB}^r(\omega) - \langle [\hat{A}, \hat{B}]_- \rangle \right] = \pi \langle [\partial_t \hat{A}(t), \hat{B}(0)]_- \rangle |_{t=0}, \tag{2}$$

where $G_{AB}^{r}(\omega)$ is the Fourier transform of the retarded Green's function

$$G_{AB}^{r}(t) = -i\theta(t)\langle [\hat{A}(t), \hat{B}(0)]_{-} \rangle.$$

Use Eq. (2) to discuss the high-frequency behavior of $G_{AB}^r(\omega)$. (Hint: Derive an equation of motion for $G_{AB}^r(t)$ by considering its time derivative.)

3. Interaction representation

The aim of this exercise is to verify the following identity

$$e^{-\beta\hat{H}} = e^{-\beta\hat{H}_0}\hat{T}\exp\left(-\int_0^\beta d\lambda\,\hat{H}_I(-i\lambda)\right),\tag{3}$$

where $\hat{H} = \hat{H}_0 + \hat{H}_I$ is the total Hamiltonian of the system, \hat{H}_0 is the unperturbed (solvable) part, and \hat{H}_I is the interaction term. Finally, \hat{T} is the time-ordering operator (see definition below).

a)

Start by considering the following operator

$$\hat{U}(t) = e^{i\hat{H}_0 t} e^{-i\hat{H}t},\tag{4}$$

with $\hat{U}(t=0) = 1$. Derive the equation of motion (differential equation) for $\hat{U}(t)$ and show that it can be written as

$$\hat{U}(t) = 1 - i \int_0^t dt_1 \, \hat{H}_I(t_1) \hat{U}(t_1), \tag{5}$$

where $\hat{H}_I(t) = e^{i\hat{H}_0t}\hat{H}_I e^{-i\hat{H}_0t}$ is the time evolution of $\hat{H}_I(t)$ in the interaction representation. (Note that $\hat{S}(t,t')$ given in the lecture is related to $\hat{U}(t)$ by $\hat{S}(t,t') = \hat{U}(t)\hat{U}^{\dagger}(t')$.)

b)

Consider now the time-ordering operator \hat{T} , which chronologically orders a set of time-dependent operators $\hat{A}(t_i)$, for instance,

$$\hat{T}\left[\hat{A}(t_1)\hat{A}(t_3)\hat{A}(t_4)\hat{A}(t_2)\right] = \hat{A}(t_4)\hat{A}(t_3)\hat{A}(t_2)\hat{A}(t_1) \quad \text{if} \quad t_4 > t_3 > t_2 > t_1.$$
(6)

3 points

1 point

2 points

2 points

 $\mathbf{2}$

Show that Eq. (5) can be used to write $\hat{U}(t)$ as

$$\hat{U}(t) = \hat{T} \exp\left(-i \int_0^t dt' \,\hat{H}_I(t')\right). \tag{7}$$

Prove now Eq. (3).

4. Single-site Hubbard model

Consider the single-site "Hubbard model"

$$\hat{K} = \hat{H} - \mu \hat{N} = U \hat{n}_{\uparrow} \hat{n}_{\downarrow} - \mu \sum_{\sigma=\uparrow,\downarrow} \hat{n}_{\sigma}, \qquad (8)$$

where $\hat{n}_{\sigma} = \hat{c}^{\dagger}_{\sigma}\hat{c}_{\sigma}$, with $\hat{c}^{\dagger}_{\sigma}$ (\hat{c}_{σ}) creating (annihilating) an electron with spin $\sigma = \uparrow, \downarrow$ on a single site, is the electron density operator, and U > 0 is the on-site repulsion energy. Notice that U is the amount of energy that should be paid if two electrons with different spin are on the same site.

a)

Find the eigenstates and the corresponding eigenenergies of the model (8).

b)

2 points Calculate the Fourier transform in time, $G_{\sigma}^{r}(\omega)$, of the retarded single-particle Green's function $G_{\sigma}^{r}(t) =$ $-i\langle [\hat{c}_{\sigma}(t), \hat{c}^{\dagger}_{\sigma}(0)]_{+}\rangle \theta(t)$ at T = 0 using the Lehmann representation for the three cases i) $\mu < 0$, ii) $0 < \mu < U$, and iii) $U - \mu < 0 < \mu$. Compare to the free-fermion result.

c)

How does the spectral function $A(\omega) = -\frac{1}{\pi} \text{Im} G^r(\omega)$ read? Discuss the outcome of possible photoemission and inverse photoemission experiments.

d)

Calculate the interaction-induced self-energy for the non-trivial case ii).

5 points

1 point

1 point

1 point