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1. The non-interacting Anderson model 8 points

We consider the Hamiltonian of the non-interacting Anderson model, or resonant level model, for spinless
electrons (in absence of interactions, the spin does not play any role), which reads

Ĥ = Ĥ0 + Ĥimp, (1)

Ĥ0 =
∑

k

ǫkĉ
†
kĉk, (2)

Ĥimp = ǫf f̂
†f̂ +

∑

k

(

Vkf̂
†ĉk + V ∗

k ĉ
†
kf̂

)

. (3)

Here, f̂ † creates a localized electron at the impurity site r = 0, while ĉ†k crates a conduction electron with
momentum k. Using the definition for the retarded Green’s function operator

(ǫ + iδ − Ĥ)Ĝr(ǫ) = 1, (4)

with δ = 0+, do the following:

a) 1 point
By taking the appropriate matrix elements, obtain from Eqn. (4) a closed set of equations for the retarded
Green’ s functions of f -electrons and conduction electrons,

(ǫ− ǫf + iδ)Gr
f,f (ǫ) = 1 +

∑

k

VkG
r
k,f (ǫ), (5)

(ǫ− ǫk + iδ)Gr
k,f (ǫ) = V ∗

kG
r
f,f (ǫ), (6)

(ǫ− ǫk + iδ)Gr
k,k′(ǫ) = δk,k′ + V ∗

kG
r
f,k′(ǫ), (7)

(ǫ− ǫf + iδ)Gr
f,k′(ǫ) =

∑

k

VkG
r
k,k′(ǫ). (8)

Here Gr
α,α′(ǫ) = 〈α|Ĝr(ǫ)|α′〉 = 〈0|cαĜ

r(ǫ)c†α′ |0〉. Notice that the impurity breaks translation invariance.
Momentum is therefore no longer a conserved quantum number.

b) 1 point
Obtain the impurity and electron Green’s functions Gr

f,f (ǫ) and Gr
k,k′(ǫ) by solving the set of equations

Eqns. (5-8).

c) 1 point
The full Green’s function operator is usually expressed in terms of the so-called T̂ matrix which is defined
as follows

Ĝr(ǫ) = Ĝr
0(ǫ) + Ĝr

0(ǫ)T̂ (ǫ+ iδ)Ĝr
0(ǫ). (9)

Here Ĝr
0 indicates the Green’s function operator in the absence of impurities (that is for Ĥ = Ĥ0). Derive

the following relation for the density of states ρ(ǫ)

∆ρ(ǫ) ≡ ρ(ǫ)− ρ0(ǫ) =
1

π

∂η(ǫ)

∂ǫ
(10)

where the densities ρ and ρ0 are related to the Green’s functions G and G0 respectively by the standard
relation

ρ(ǫ) = −
1

π
Im (Tr Ĝr(ǫ)), (11)
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and η(ǫ) = arg (Det (T̂ (ǫ+ iδ))) is the so-called phase shift. To this end, first proof the relation

TrĜr(ǫ) =
∂

∂ǫ
ln(Det (Ĝr(ǫ)) (12)

for single-particle Green’s functions. You may also use that the T̂ matrix obeys

T̂ (ǫ) = Ĥimp(1+ Ĝr
0(ǫ)T̂ (ǫ)). (13)

d) 2 points
Illustrate the above results for the Hamiltonian in Eq. (2), that is using the explicit expressions obtained
in items a) and b), by (i) calculating 〈k|T̂ |k′〉, and by (ii) showing that η(ǫ) is described by

η(ǫ) =
π

2
− arctan

(

ǫf + Λ(ǫ)− ǫ

∆(ǫ)

)

, (14)

where Λ(ǫ) = P
∑

k |Vk|
2/(ǫ − ǫk) and ∆(ǫ) = π

∑

k |Vk|
2δ(ǫ − ǫk). (Hint for the derivation of Eq. (14):

start from the explicit expression of Tr Ĝr(ǫ)).

e) 1 point
Assume that we have a flat conduction band with

ρ0(ǫ) =

{

ρ0, −D < ǫ < D,

0 else,
(15)

while Vk = V . Determine η(ǫ).

f) 1 point
In the case of |ǫf | ≪ D, show that there is a Lorentzian resonance of width πρ0|V |2 in ∆ρ(ǫ) at a
renormalized impurity level ǫ̃f . What is the implicit equation determining ǫ̃f?

g) 1 point
Calculate the impurity spectral density ρimp(ǫ) = − 1

π
Im (Gr

f,f (ǫ)). Compare this result with ∆ρ(ǫ)
obtained in item f). Is this result affected when the bandwidth is decreased such that |ǫf | 6≪ D?

2. Perturbation theory for the Kondo effect 5 points

Experimentally, the resistivity of a metal shows a minimum at low temperatures when a finite concen-
tration of magnetic impurities is present. Via the Drude formula ρ = m/e2nτ (where n is the electron
density), we can characterize the resistivity ρ with the scattering time τ (defined as the time interval
between two scattering events). τ can be conveniently calculated via the T̂ matrix of a single impurity.
In Matsubara frequency space the corresponding operator is

T̂n = Ĥimp + ĤimpG0,nĤimp + ..., (16)

where the G0,n is the n-th Matsubara component of the local single-particle Green’s function of the

conduction electrons. In terms of T̂ it is possible to show that the scattering rate is given by

1

2τ(k, σ)
= Nimpπ

∑

k′,σ′

〈|〈k, σ|T̂ r(ǫk)|k
′, σ′〉|2〉Sδ(ǫk − ǫk′), (17)

where we use |k, σ〉 = c†kσ|0〉, while r indicates the retarded component, meaning the usual replacement

iωn → ω+ iδ. 〈k, σ|T̂ r(ǫk)|k
′, σ′〉 is an operator in the impurity Hilbert space, and 〈〉S indicates the trace

over the possible impurity states. Further, Nimp is the number of impurities. It is assumed that we are
in the dilute regime where the contributions from different impurities simply add up. Notice also that

Im 〈k, σ|T̂ r(ǫ)|k, σ〉 = −π
∑

k′,σ′

|〈k, σ|T̂ r(ǫ)|k′, σ′〉|2δ(ǫ − ǫk′) (18)
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which is known as optical theorem. We now want to use Eq. (17) in the case of magnetic impurities. Let
us consider the minimal Kondo Hamiltonian

Ĥ =
∑

kσ

ǫkĉ
†
kσ ĉkσ +

J

2Ld

∑

kk′σσ′

ĉ†kσ~τσσ′ ĉk′σ′ · Ŝ. (19)

a) 2 points
Show that, in leading order in J , the scattering rate is given by

1

τ(kF )
=

π

4
CimpN0J

2S(S + 1) (20)

where N0 is the density of states per volume at the Fermi energy and Cimp is the concentration of

impurities. One relevant matrix element of T̂ is graphically shown in Fig. 1a. Note that you have to trace
over the impurity spin Hilbert space. For this purpose, you may find the identity 〈〈σ′|(S ·~τ )(S ·~τ )|σ′〉〉S =
S(S + 1) useful.

b) 2 points
Consider the second-order term of the perturbative expansion of the T̂ -matrix

T (2)(ǫ) = Ĥimp(ǫ
+ − Ĥ0)

−1Ĥimp. (21)

Show that, at zero temperature,

Re 〈k′, σ′|T̂ (2)(ǫk)|k, σ〉 =
J2

4L2d

∑

p

1

ǫk − ǫp

[

S(S + 1)δσσ′ − Ŝ · ~τσ′σ(Θ(ǫp)−Θ(ǫ−p))
]

. (22)

Since in second order, the T̂ matrix involves in intermediate propagator (ǫ+ − Ĥ0)
−1, one now has to go

beyond the simple single particle picture with |k, σ〉 = c†kσ|0〉. A simple way of doing so is to replace the
occupation number for electrons (or holes) in the intermediate k states by a Fermi factor nF (ǫk) (and
1− (ǫk) for holes). Remember that, due to the δ-function in Eq. (17), we consider only the case ǫk = ǫ′k.
You may need the following suggestions:

• Taking the real part means simply omitting the infinitesimal imaginary part in the denominator.

• The vacuum contributions should be discarded. The only connected Feynman diagrams are the
ones shown in Fig. 1.

• Make use of the identity (Ŝ · ~τ )2 = Ŝ2 − ~τ · Ŝ.

c) 1 point
In the class we will comment upon the finite temperature case. How would Eq. (22) change? If you
bravely succeeded in all steps so far, you may convince yourself that the singular part of the second-order
contribution at finite temperature can be reabsorbed in a new Jeff in Eq. (20). How does Jeff look like?
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1b) 1c)

1a)

↑ ↓ ↑S− S+

k′ ↑k ↑

k2 ↓

↓ ↑ ↓S+ S−

k′ ↑k ↑

k2 ↓

↓ ↑

k ↑ k′ ↓

S+

Figure 1: A first order (Fig. 1a) and two second order (Fig. 1b and 1c) diagrams contributing to the
matrix element in Eq. (17). The index k2 ↓ indicates an intermediate state in the conduction band.
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