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1. Poor man’s scaling and the Kondo problem 3 points

In this exercise, we will follow the original formulation of P. W. Anderson, and discuss the Kondo
problem from the simplest renormalization-group (RG) perspective. Our starting point is the generalized
anisotropic Kondo model

Ĥ =
∑

k

ǫkĉ
†
kĉk +

1

2

∑

k,k′

(

J+Ŝ+ĉ†k′,↓ĉk,↑ + J−Ŝ−ĉ†k′,↑ĉk,↓ + JzŜz(ĉ†k′,↑ĉk,↑ − ĉ†k′,↓ĉk,↓)
)

. (1)

The idea is to incorporate the effect of the high-energy degrees of freedom in new effective couplings for
the low-energy theory. We therefore want to integrate out electronic degrees of freedom close to the band
edges at energies ±D (and iterate this procedure consistently).

a) 1 point
Argue that the component of the Hamiltonian scattering a conduction electron into an unoccupied state
close to the upper band edge is given by

ĤD−particle =
1

2

∑

q,k

(

J+Ŝ+ĉ†q,↓ĉk,↑ + J−Ŝ−ĉ†q,↑ĉk,↓ + JzŜz(ĉ†q,↑ĉk,↑ − ĉ†q,↓ĉk,↓)
)

(2)

where D− δD < q < D. In an analogous way, write down ĤD−hole that scatters a conduction electron in
an high-energy hole close to the lower band edge.

b) 1 point
Argue (somewhat similarly to exercise 2 on the last sheet) that the second order diagrams of Fig. 1
renormalize the diagonal coupling constant Jz → Jz + δJz according to

δJz ≈ J+J−ρ0
|δD|

D
(3)

where ρ0 is the density of states per spin (that we assume to be a constant in the interval −D < ǫ < D).
From the diagrams of Fig. 2, derive also the renormalization of the couplings J±.

δJ± ≈ J±Jzρ0
|δD|

D
(4)

The following suggestions may be useful:

• Account for both the processes with a virtual high energy particle and with a virtual high energy
hole.

• Use the identities S+S− = 1/2 + Sz and S−S+ = 1/2− Sz.

• Assume, to simplify your expressions, that D ≫ ǫk is always the largest and the only relevant
energy scale.

c) 1 point
From the above result, and using J+ = J− , read off the RG equations for the coupling constants

dJ±

d lnD
= −ρ0J

zJ± (5)

dJz

d lnD
= −ρ0J

+J−. (6)
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Figure 1: Second-order diagrams which involve either a particle, Fig. 1a, or a hole, Fig. 1b, in an
intermediate state q at a band edge.

Figure 2: Second-order diagrams with spin flip scattering and a particle, Fig. 2a, or a hole, Fig. 2b, in
an intermediate state q at a band edge.

Comment this result in the ferromagnetic and antiferromagnetic case, showing that (Jz)2 − (J+J−)2 is
a RG invariant. Finally, integrate out the scaling equations for the isotropic case.

2. Slave-boson approximation for the Kondo model 8 points

In this exercise, we will study the Kondo model within the so-called slave-boson approximation.
Let us consider the Kondo model Ĥ = Ĥ0 + Ĥ1 with

H0 =
∑

kσ

εkĉ
†
kσ ĉkσ (7)

Ĥ1 = J Ŝ · ŝ0, (8)

where ĉ†kσ (ĉkσ) creates (annihilates) a conduction electron with momentum k and spin σ =↑, ↓, εk is the

fermion dispersion, J is the Kondo coupling, Ŝ is the impurity spin (spin-1/2), and ŝ0 is the conduction
electron spin operator at the impurity site, i.e.,

ŝ0 =
1

2

∑

k,k′

ĉ†kσ τ̂σσ′ ĉk′σ

where τ̂ is the vector of Pauli matrices, and the summation over repeated spin indices is assumed.

a) 1 point

It is convenient to write the impurity spin Ŝ in terms of auxiliary fermion operators f̂σ (the so-called

Abrikosov fermions), i.e., Ŝ = 1
2 f̂

†
σ τ̂σσ′ f̂σ′ . In order to preserve the size of the Hilbert space, we need a

constraint,
∑

σ f̂
†
σf̂σ = 1, which is enforced by the introduction of a Lagrange multiplier λ. Show that,

apart from global shifts of the energy and the chemical potential, Ĥ1 assumes the form

Ĥ1 = −
J

2
f̂ †
σ ĉσ(0)ĉ

†
σ′(0)f̂σ′ , (9)

where ĉσ(0) =
∑

k ĉkσ is the conduction electron operator at the impurity site.

b) 1 point

Decouple the four-fermion term (J/2)f̂ †ĉĉ†f̂ in Eq. (9) by replacing the bosonic operator ĉ†f̂ by its
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average value b (this mean-field approximation is equivalent to the one discussed in the lecture). Show
that, again up to constants, the Hamiltonian assumes the form

H =
∑

kσ

εkĉ
†
kσ ĉkσ − (b f̂ †

σ ĉσ(0) + h.c.) + λ(f̂ †
σ f̂σ − 1), (10)

with

b =
J

2

∑

σ

〈ĉ†σ(0)f̂σ〉. (11)

Notice that b is in general a complex number.

c) 1 point
The Hamiltonian (10) is bilinear in fermion operators and is thus solvable. It is useful to introduce prop-

agators for the f fermions, Gff (τ) = −〈Tτ f̂(τ)f̂
†(0)〉, and a mixed propagator Gfc(τ) = −〈Tτ f̂(τ)ĉ

†(r =
0, 0)〉 as well. Show that

Gff (iωn) =
(

iωn − λ− |b|2G0(r = 0, iωn)
)−1

(12)

and
Gfc(iωn) = −bGff(iωn)G

0(r = 0, iωn) , (13)

where G0(r = 0, iωn) =
∑

k(iωn − εk)
−1 is the local Green’s function for the conduction electrons.

Hint: recall the discussion about the non-interacting Anderson model.

d) 1 point
From now on, let us assume that b is real. The assumption made in item (b), namely that λ is constant,

implies that the constraint
∑

σ f̂
†
σ f̂σ = 1 is fulfilled only on the average, i.e.,

∑

σ

〈f̂ †
σ f̂σ〉 = 1. (14)

Rewrite Eqs.(11) and (14) in terms of the Green’s functions (12) and (13). Notice that the two derived
equations, combined with Eq.(12), form a set of self-consistent equations. Once the density of states of
the conduction electrons ρ0(ω) and J are known, the equations can be solved for a fixed temperature.

e) 1 point
Use the results of the item d), convert the Matsubara sums into integrals over real frequencies, and show
that Eq. (11) can be written as

1

J
= −

∫ ∞

−∞

dω nf (ω)

ρ0(ω)
ω−λ

∣

∣

∣
1− b2G0(ω+iη)

ω−λ

∣

∣

∣

2 +O(b2), (15)

if b 6= 0 and
1

J
= −

∫ ∞

−∞

dω nf (ω)

(

ρ0(ω)

ω − λ
+ReG0(ω + iη)δ(ω − λ)

)

, (16)

if b = 0. Here, the spectral density (density of states) ρ0(ω) = −ImG0(ω+iη)/π and nf (x) = 1/[exp(βx)+
1] is the Fermi function.
Hint: the identity −(1/β)

∑

iωn

G(iωn) =
∫

dωρ(ω)nf (ω), where ρ(ω) is the spectral density related to
G(ω + iη), might be useful [see the discussion below Eq.(3.5.10) of Mahan’s book for details].

f) 1 point
Assume that ρ0(ω) is constant for −D < ω < D, where 2D is the bandwidth of the conduction electrons,
and discuss the solutions of the mean-field equations. Show that it is possible to derive the correct (one-
loop) expression for the Kondo temperature TK from these equations.
Observation: recall the discussion during the lecture about the fact that the slave-boson approximation
introduces an artificial phase transition at TK .

g) 1 point
Assume now that ρ0(ω) ∼ (ω/D)r with r > 0. Discuss the solutions of the mean-field equations for
T = 0.
Observation: the case r = 1 corresponds to graphene.
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h) 1 point
The magnetic response of the impurity to a locally applied field is given by the so-called local susceptibility
χloc. In our mean-field approximation, it is exactly given by the simple bubble diagram,

χloc(T ) = −
1

2

∫ β

0

dτ Gf (τ)Gf (−τ) = −
1

2β

∑

iωn

G2
f (iωn) (17)

Convert the Matsubara summation into real-axis integrals. Discuss χloc(T ) for low and high T . Show
that χloc(T ) = 1/(8kBT ) at high T (where b = 0). Why is this result different from the usual one for
spin 1

2 , i.e., χ(T ) = 1/(4kBT )?
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