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1. The Hubbard model in d =∞ 6 points

In this exercise, we will discuss the properties of the Hubbard model [see Eq.(2), second exercise sheet]
in higher spatial dimensions d.

a) 1 point
Let us consider the Hubbard model on a d-dimensional simple cubic lattice with unit lattice spacing. The
dispersion of tight-binding electrons with hopping of strength t only between nearest neighbor on this
lattice reads

εk = −2t

d∑
n=1

cos(kn), (1)

where the d-dimensional momentum vector reads k = (k1, k2, ..., kd) with −π < kn ≤ π and t is the
hopping energy. The density of states is given by

Dd(ε) =

∫
BZ

ddk

(2π)d
δ(ε− εk) ≡ 〈δ(ε− εk)〉BZ . (2)

Notice that Eq. (2) can also be seen as the average of δ(ε− εk) over the first Brillouin zone (BZ).

Calculate the averages of εk and ε2k over the first Brillouin zone. Use the central limit theorem [see note at
the end of the exercise sheet] and calculate the density of states. Show that one obtains a finite quantity
in the limit d =∞ if the hopping term is rescaled by t→ t/

√
z, where z = 2d is the coordination number

of the d-dimensional cubic lattice. Compare D∞(ε) with Dd(ε) (d = 1, 2, 3).

b) 1 point
Consider now a Hubbard model with the rescaled hopping t/

√
2d. For some randomly chosen k, the

kinetic energy scales as

εk
t
∝ O(

√
d), for d→∞. (3)

Certainly, this is not the case for special values of k as for example k = (0, 0, · · · ). Nevertheless, for the
cubic lattice in infinite dimensions the average kinetic energy of the electrons is a finite quantity since
under the integral the singular points in momentum space have zero measure. For general lattices one
may introduce an artificial finite bandwidth and work with a bounded density of states. We can also
calculate the average kinetic energy from the zero-temperature Green’s function formalism as

〈εk〉BZ = t
∑
<i,j>

∑
σ

∫ ∞
−∞

dω

2πi
Gσ(i, j;ω)eiω0

+

, (4)

where the first sum runs over all nearest neighbor sites.

From the fact that the average kinetic energy is finite for d → ∞ deduce the scaling of the Green’s
function Gσ(i, i+ 1;ω) with d. Generalize the result to arbitrary neighbors Gσ(i, j;ω).

c) 1 point
Let us now consider the on-site interaction term U

∑
i n̂i ↑n̂i ↓. If one treats this term perturbatively, it

is possible to show that remarkable simplifications occur in the many-body diagrammatics in the limit
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d = ∞. In order to exemplify such a statement, let us consider a given diagram (in real space) for the
self-energy [see Fig. below]. The solid lines correspond to free fermion propagators while i and j are
lattice sites. Perform a power counting and show that for i− j = 1 the diagram is suppressed by a factor
of order d−

3
2 . For general lattice sites the diagram is suppressed by a factor of order d−

3
2R for large d

where R = |i−j| is the distance between sites i and j. Consider now a diagram with two internal vertices
which are connected by three or more independent paths which have no line in common. In this case
one needs to sum over the internal lattice sites. Show that such a diagram is suppressed at least by a
factor d−(

3
2−1)R. Which diagrams survive in the limit d =∞? Explain why the single-particle propagator

assumes the following form
G(k, iωn) = 1/ (iωn + µ− εk − Σ(iωn)) , (5)

where µ is the chemical potential.

i j

d) 1 point
We now want to explore the consequences of Eq.(5) at zero temperature, and assuming that the self-
energy Σ(ω) has Fermi-liquid properties. Let us start by looking at the renormalization of the Fermi
surface due to the interactions. Calculate the particle density and show that

n =
2

β

∑
iωn

〈G(k, iωn)eiωn0
+

〉BZ = 2〈Θ(µ− Σ(0)− εk)〉BZ , (6)

where G(k, iωn) is given by Eq.(5), Θ(x) is the step function and the average 〈· · · 〉BZ is defined in Eq.(2).
What can one conclude about the shape of the Fermi surface?
Hint.: perform the Matsubara summation in the usual way using the contour below. The identity
G(k, ω) = d(ln(1/G(k, ω)))/dω + G(k, ω)dΣ/dω might be useful. Recall also that for a Fermi-liquid
ImΣ(ω) = O(ω2) when ω → 0.

X

X

X

X

X

e) 1 point
Consider now, with the same assumptions as in part d), the spectral density ρ(ω) = −Im〈G(k, ω +
iη)〉BZ/π for the interacting system. Write down the form of ρ(ω) and show that the density of states
at the Fermi surface is not renormalized due to the interactions, i.e., ρ(0) = ρ0(0), where ρ0(ω) is the
density of states for non-interacting electrons.
Obs.: This is a strong implication of the fact that the self-energy is momentum-independent. Recall that
a renormalization of ρ(ω) is related to a non-vanishing dΣ/dk.

f) 1 point
The fact that the self-energy is momentum-independent implies that the effective mass m∗ of the quasi-
particles is constant along the Fermi surface. The relation between m∗ and the electronic mass m is given
by the usual formula Z−1 = m∗/m = 1 − (dReΣ/dω)ω=0, where Z is the quasi-particle weight. Show
that this renormalization implies that the slope of the density of states at the Fermi surface increases,
i.e., ρ′(0) = (m∗/m)ρ′0(0).
Obs.: Notice that the results derived in items (c)-(e) are exact.
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Note: The central limit theorem: let x1, x2, ..., xN be a set of N independent random variables which
have an arbitrary probability distribution P (x1, ..., xN ) with mean µi and a finite variance σ2

i . Then

X =

∑N
i=1 xi −

∑N
i=1 µi√∑N

i=1 σ
2
i

has a limiting cumulative distribution function which approaches a normal distribution.
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