Strongly Correlated Electrons
 6. Übung

Sommersemester 2015

1. Correlation functions of 1 D fermions

5 points

As discussed in the lecture, the dispersion of one-dimensional (1D) fermions can be linearized close to the Fermi points at momentum $|k| \approx k_{F}$, where the electrons have a velocity v_{F}. The fermionic field $\Psi(x)$ can be decomposed as

$$
\begin{equation*}
\Psi(x) \approx e^{i k_{F} x} \Psi_{+}(x)+e^{-i k_{F} x} \Psi_{-}(x) \tag{1}
\end{equation*}
$$

where we have introduced two independent species of fermions, the left $(-)$ and right $(+)$ movers. In this exercise, you will calculate the imaginary time density-density correlation function

$$
\begin{equation*}
C(x, \tau)=\left\langle T_{\tau}\left(\Psi_{+}^{\dagger} \Psi_{-}\right)(x, \tau)\left(\Psi_{-}^{\dagger} \Psi_{+}\right)(0,0)\right\rangle \tag{2}
\end{equation*}
$$

independently using both the fermionic and the bosonic language. This procedure allows to determine the parameters of the bosonic theory. The first unknown parameter is the prefactor Γ in the bosonization formula

$$
\begin{equation*}
\Psi_{s}^{\dagger}(x)=\Gamma e^{i s \phi(x)} e^{-i \theta(x)} \tag{3}
\end{equation*}
$$

where $s= \pm$ denotes the direction of motion, while $\phi(x)$ is the bosonic field associated with density fluctuations of the electron gas, : $\rho(x):=-\frac{1}{\pi} \partial_{x} \phi$ (where : ...: denotes normal ordering with respect to the non-interacting vacuum), and $\theta(x)$ is its dual field. These obey $\left[\phi(x), \theta\left(x^{\prime}\right)\right]=i \pi \operatorname{sgn}\left(x^{\prime}-x\right) / 2$. The second free parameter is the coupling constant c which appears in the bosonic action below.
a)

1 point
Given that the fields $\Psi_{s}(x)$ are described by the Hamiltonian

$$
\begin{equation*}
\mathcal{H}=-i v_{F} \int d x\left(\Psi_{+}^{\dagger}(x) \partial_{x} \Psi_{+}(x)-\Psi_{-}^{\dagger}(x) \partial_{x} \Psi_{-}(x)\right) \tag{4}
\end{equation*}
$$

calculate the correlation function in Eq. (2).
(Hint : the left and right contributions factorize.)
b)

1 point
In the absence of interactions, an equivalent Hamiltonian to the one given in Eq. (4) is given by

$$
\begin{equation*}
\mathcal{H}^{\prime}=\frac{1}{2 c} \int d x\left[\left(\partial_{x} \phi(x)\right)^{2}+\left(\partial_{x} \theta(x)\right)^{2}\right] \tag{5}
\end{equation*}
$$

Calculate the correlation functions $\left\langle T_{\tau}(\phi(x, \tau)-\phi(0,0))^{2}\right\rangle,\left\langle T_{\tau}(\theta(x, \tau)-\theta(0,0))^{2}\right\rangle$ and $\left\langle T_{\tau} \theta(x, \tau) \phi(0,0)\right\rangle$. (Hint : you can for instance use the equation of motion approach to calculate the Green's functions of ϕ and θ. These obey a 2D Poisson equation. During the evaluation of momentum sums, you may find the introduction of a high-momentum cutoff α^{-1} helpful, where α is some small length that is taken to zero at the end of the calculation.)
c)

1 point
Using the results you have just obtained, calculate $C(x, \tau)$ in the bosonic language.
(Hint : you may use the identity $\langle 0| e^{A}|0\rangle=e^{\langle 0| \frac{A^{2}}{2}|0\rangle}$.)
d)

1 point

Assuming that both c and Γ are positive real numbers, deduce their values from the comparison of the bosonic and the fermionic calculation. Check that the value of Γ is consistent with the anticommutation relation $\left\{\Psi_{s}^{\dagger}(x), \Psi_{s}\left(x^{\prime}\right)\right\}=\delta\left(x-x^{\prime}\right)$.

In the presence of interactions between fermions, the bosonic Hamiltonian is generalized to

$$
\begin{equation*}
\mathcal{H}=\frac{1}{2 c} \int d x\left[\frac{1}{K}\left(\partial_{x} \phi(x)\right)^{2}+K\left(\partial_{x} \theta(x)\right)^{2}\right], \tag{6}
\end{equation*}
$$

where K is a real, and positive number. Recalculate the correlation function $C(x, \tau)$ in the interacting case using a rescaling of the fields θ and ϕ that preserves the commutation relation. (NB: the limit $\alpha \rightarrow 0$ is now singular, which is an artifact of not having properly taking into account the finite range of interactions.)

