5 points

Strongly Correlated Electrons 6. Übung

Sommersemester 2015

1. Correlation functions of 1D fermions

As discussed in the lecture, the dispersion of one-dimensional (1D) fermions can be linearized close to the Fermi points at momentum $|k| \approx k_F$, where the electrons have a velocity v_F . The fermionic field $\Psi(x)$ can be decomposed as

$$\Psi(x) \approx e^{ik_F x} \Psi_+(x) + e^{-ik_F x} \Psi_-(x), \tag{1}$$

where we have introduced two independent species of fermions, the left (-) and right (+) movers. In this exercise, you will calculate the imaginary time density-density correlation function

$$C(x,\tau) = \langle T_{\tau}(\Psi_{+}^{\dagger}\Psi_{-})(x,\tau)(\Psi_{-}^{\dagger}\Psi_{+})(0,0)\rangle, \qquad (2)$$

independently using both the fermionic and the bosonic language. This procedure allows to determine the parameters of the bosonic theory. The first unknown parameter is the prefactor Γ in the bosonization formula

$$\Psi_s^{\dagger}(x) = \Gamma e^{is\phi(x)} e^{-i\theta(x)},\tag{3}$$

where $s = \pm$ denotes the direction of motion, while $\phi(x)$ is the bosonic field associated with density fluctuations of the electron gas, : $\rho(x) := -\frac{1}{\pi} \partial_x \phi$ (where : ... : denotes normal ordering with respect to the non-interacting vacuum), and $\theta(x)$ is its dual field. These obey $[\phi(x), \theta(x')] = i\pi \operatorname{sgn}(x' - x)/2$. The second free parameter is the coupling constant c which appears in the bosonic action below.

a)

Given that the fields $\Psi_s(x)$ are described by the Hamiltonian

$$\mathcal{H} = -iv_F \int dx \left(\Psi_+^{\dagger}(x) \partial_x \Psi_+(x) - \Psi_-^{\dagger}(x) \partial_x \Psi_-(x) \right), \tag{4}$$

calculate the correlation function in Eq. (2).

(Hint : the left and right contributions factorize.)

b)

In the absence of interactions, an equivalent Hamiltonian to the one given in Eq. (4) is given by

$$\mathcal{H}' = \frac{1}{2c} \int dx \left[(\partial_x \phi(x))^2 + (\partial_x \theta(x))^2 \right].$$
(5)

Calculate the correlation functions $\langle T_{\tau}(\phi(x,\tau) - \phi(0,0))^2 \rangle$, $\langle T_{\tau}(\theta(x,\tau) - \theta(0,0))^2 \rangle$ and $\langle T_{\tau}\theta(x,\tau)\phi(0,0) \rangle$. (Hint : you can for instance use the equation of motion approach to calculate the Green's functions of ϕ and θ . These obey a 2D Poisson equation. During the evaluation of momentum sums, you may find the introduction of a high-momentum cutoff α^{-1} helpful, where α is some small length that is taken to zero at the end of the calculation.)

c)

Using the results you have just obtained, calculate $C(x, \tau)$ in the bosonic language.

(Hint : you may use the identity $\langle 0|e^A|0\rangle = e^{\langle 0|\frac{A^2}{2}|0\rangle}$.)

d)

1 point

1 point

Assuming that both c and Γ are positive real numbers, deduce their values from the comparison of the bosonic and the fermionic calculation. Check that the value of Γ is consistent with the anticommutation relation $\{\Psi_s^{\dagger}(x), \Psi_s(x')\} = \delta(x - x')$.

1 point

1 point

1 point

In the presence of interactions between fermions, the bosonic Hamiltonian is generalized to

e)

$$\mathcal{H} = \frac{1}{2c} \int dx \left[\frac{1}{K} (\partial_x \phi(x))^2 + K (\partial_x \theta(x))^2 \right], \tag{6}$$

where K is a real, and positive number. Recalculate the correlation function $C(x, \tau)$ in the interacting case using a rescaling of the fields θ and ϕ that preserves the commutation relation. (NB: the limit $\alpha \to 0$ is now singular, which is an artifact of not having properly taking into account the finite range of interactions.)