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1. Specific heat of a d-wave BCS superconductor 2 points

The electronic specific heat of a superconductor is given by
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with the Fermi-Dirac distribution fx = 1/(exp(Ex/T) + 1),! where we used units such that kg = 1,
and where the second equality follows from the fact that the entropy for a Fermi gas can be written as

S==2 o1 = fi)In(1 = fi) + filn fid].

Let us now consider a d-wave BCS theory in a 2D square lattice. In this case, the energy of the elementary
excitations is given by Ex = /& + Af with & = —2t(cos ky +cosky) —p and Ay = 2A¢(cos ky —cos ky).
The important contributions to the specific heat (namely the ones determining the low temperature
scaling) come from the momentum space region close to so-called nodal points at which the gap closes.
Expanding the energy close to these points, one can approximate Eq. (1) as a simple integral. Use this
to show that Cg ~ T2 in the limit T — 0.

2. A hole in a 2D antiferromagnetic background 6 points

Let us consider the ¢t-J model in a 2D square lattice with N sites. The Hamiltonian can be written as

H = Hy+H,
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Hy = -t Z (¢;,Cjo +h.c) + JZ (Sl- ST — 4J) , (2)
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Here, ¢;, stands for ¢;5(1 — n; _,), c;fg (ciy) creates (annihilates) an electron with spin o =1,J on a
lattice site i, N;, = czocig is the electron density operator, and S is the electron spin operator. J is an

antiferromagnetic exchange coupling, while ¢ is the hopping energy. Assume that we have N —1 electrons,
such that there is one mobile hole in the system. (Note that this exercise uses units such that i = 1).

a) 1 point
Let us first consider only Hy. Assume that the hole is initially at site j. Show that, as the hole moves, a
string of frustrated bonds is generated in the system. Show that for each frustrated bond, the energy of
the system increases by J/2. You may use the schematic pictures as illustrated in Fig. 1.

b) 1 point
Let us make the above discussion more quantitative. Consider the state |4, v, p), which corresponds to a
hole that was initially at site j and has made v hops. p is a label which denotes the geometry of the hole
path. Consider only the Ising part of Hy and show that the following approximation holds

N . J .
H[smg|],l/,p>=5((2—2)1/-5-1—5”,0”],1/,17), (3)
INotice that, in the derivation of the second equality, we neglected the fact that A = A(T). This procedure is justified
in the limit of low T" because the T-dependence of the gap provides subleading corrections to the specific heat in this case.
Note that in the BCS theory A(T) — A(T = 0) ~ T2.
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Figure 1: Schematic representation of the state |7,2,p). The dashed lines stand for frustrated bonds
while the empty circle for the hole.

where z is the number of nearest-neighbor sites. What kind of processes are neglected in Eq. (3)?

c) 1 point
Consider now the following ansatz wavefunction

|¢]>: Z aV|j7V7p>? (4)

v>0,p

which describes a hole bound (confined) to the site j. Demand that Eq. (4) is an eigenvector of Hy with
eigenvalue Ep, and derive the following set of difference equations

—ztap = Fpag,

—tl(z—=1opt1 +ap_1]|=[Eg—Jw(z—2)+1)/2] a. (5)

Notice that the second equation above is a one-dimensional Schrodinger equation with a linearly increasing
(confining) potential.

d) 1 point
Let us now consider the spin-flip term H;. It is possible to show that H; connects two different states
|¢;) and |¢;). Apply Hp to the state |7,2,p) illustrated in Fig. 1, and show that its leading effect is to
reduce the length of the string by 2 sites. Show that (¢;|H|¢;) = (J/2)agae for this particular case.

e) 1 point
The observation of the previous item indicates that the confined hole can tunnel from site j to site .
Therefore, the motion of the hole can be described by an effective tight-binding model. More precisely, we
can consider the ansatz wavefunction for the hole [k) = N~1/2 >_;jexp(—ik - R;)|¢;), where R; denotes
a lattice site. The dispersion relation is simply given by E(k) = (k|H|k)/(k|k). In order to calculate
E(k), it is necessary to determine (¢;|H|¢;).

Generalize the arguments of item (d) for the case v > 2 and show that the effective tight-binding model
is characterized by two hopping matrix elements 79 2 and 7,1, which correspond respectively to hops to
the second, and third nearest neighbor. Show that 71 = 2792 and

To2 = JZ(Z — D", 40. (6)
v>0

Recall that the coefficients ay, are given by the solutions of Egs. (5).

f) 1 point
Diagonalize the effective tight-binding model for a square lattice (with a unity lattice constant), and show
that

E(k) = 47,2 (cos(ks) + cos(ky))2 + const. (7)

Notice that the bandwidth is given by the exchange constant J, and not by the original hopping energy
t. The effective mass of the hole is strongly renormalized due to the interactions. Eq. (7) has a minimum
along the lines |k;| + |ky| = 7. It is possible to show that by including the process neglected in item (b),
the degeneracy is lifted and Eq. (7) has only four minima at k = (£7/2, £7/2).



