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1. Specific heat of a d-wave BCS superconductor 2 points

The electronic specific heat of a superconductor is given by

CS = T
∂S

∂T
=
∑
kσ

Ek
∂fk
∂T

(1)

with the Fermi-Dirac distribution fk = 1/(exp(Ek/T ) + 1),1 where we used units such that kB = 1,
and where the second equality follows from the fact that the entropy for a Fermi gas can be written as
S = −

∑
kσ [(1− fk) ln(1− fk) + fk ln fk].

Let us now consider a d-wave BCS theory in a 2D square lattice. In this case, the energy of the elementary
excitations is given by Ek =

√
ξ2k + ∆2

k with ξk = −2t(cos kx+cos ky)−µ and ∆k = 2∆0(cos kx−cos ky).
The important contributions to the specific heat (namely the ones determining the low temperature
scaling) come from the momentum space region close to so-called nodal points at which the gap closes.
Expanding the energy close to these points, one can approximate Eq. (1) as a simple integral. Use this
to show that CS ∼ T 2 in the limit T → 0.

2. A hole in a 2D antiferromagnetic background 6 points

Let us consider the t-J model in a 2D square lattice with N sites. The Hamiltonian can be written as

Ĥ = Ĥ0 + Ĥ1,

Ĥ0 = −t
∑
〈ij〉σ

(c̃†i σ c̃j σ + h.c.) + J
∑
〈i,j〉

(
SZi S

Z
j −

n̂in̂j
4

)
, (2)

Ĥ1 =
J

2

∑
〈i,j〉

(
S+
i S
−
j + S−i S

+
j

)
.

Here, c̃i σ stands for ci σ(1 − ni−σ), c†i σ (ci σ) creates (annihilates) an electron with spin σ =↑, ↓ on a

lattice site i, n̂i σ = c†i σci σ is the electron density operator, and S is the electron spin operator. J is an
antiferromagnetic exchange coupling, while t is the hopping energy. Assume that we have N−1 electrons,
such that there is one mobile hole in the system. (Note that this exercise uses units such that ~ = 1).

a) 1 point
Let us first consider only Ĥ0. Assume that the hole is initially at site j. Show that, as the hole moves, a
string of frustrated bonds is generated in the system. Show that for each frustrated bond, the energy of
the system increases by J/2. You may use the schematic pictures as illustrated in Fig. 1.

b) 1 point
Let us make the above discussion more quantitative. Consider the state |j, ν, p〉, which corresponds to a
hole that was initially at site j and has made ν hops. p is a label which denotes the geometry of the hole
path. Consider only the Ising part of Ĥ0 and show that the following approximation holds

ĤIsing|j, ν, p〉 =
J

2
((z − 2)ν + 1− δν,0)|j, ν, p〉, (3)

1Notice that, in the derivation of the second equality, we neglected the fact that ∆ = ∆(T ). This procedure is justified
in the limit of low T because the T -dependence of the gap provides subleading corrections to the specific heat in this case.
Note that in the BCS theory ∆(T ) − ∆(T = 0) ∼ T 2.
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Figure 1: Schematic representation of the state |j, 2, p〉. The dashed lines stand for frustrated bonds
while the empty circle for the hole.

where z is the number of nearest-neighbor sites. What kind of processes are neglected in Eq. (3)?

c) 1 point
Consider now the following ansatz wavefunction

|φj〉 =
∑
ν≥0, p

αν |j, ν, p〉, (4)

which describes a hole bound (confined) to the site j. Demand that Eq. (4) is an eigenvector of Ĥ0 with
eigenvalue EB , and derive the following set of difference equations

−ztα1 = EBα0,

−t [(z − 1)αν+1 + αν−1] = [EB − J(ν(z − 2) + 1)/2]αν . (5)

Notice that the second equation above is a one-dimensional Schrödinger equation with a linearly increasing
(confining) potential.

d) 1 point
Let us now consider the spin-flip term Ĥ1. It is possible to show that Ĥ1 connects two different states
|φi〉 and |φj〉. Apply Ĥ1 to the state |j, 2, p〉 illustrated in Fig. 1, and show that its leading effect is to
reduce the length of the string by 2 sites. Show that 〈φi|H|φj〉 = (J/2)α0α2 for this particular case.

e) 1 point
The observation of the previous item indicates that the confined hole can tunnel from site j to site i.
Therefore, the motion of the hole can be described by an effective tight-binding model. More precisely, we
can consider the ansatz wavefunction for the hole |k〉 = N−1/2

∑
j exp(−ik ·Rj)|φj〉, where Rj denotes

a lattice site. The dispersion relation is simply given by E(k) = 〈k|H|k〉/〈k|k〉. In order to calculate
E(k), it is necessary to determine 〈φi|H|φj〉.
Generalize the arguments of item (d) for the case ν > 2 and show that the effective tight-binding model
is characterized by two hopping matrix elements τ0,2 and τ1,1, which correspond respectively to hops to
the second, and third nearest neighbor. Show that τ1,1 = 2τ0,2 and

τ0,2 = J
∑
ν≥0

(z − 1)ναναν+2. (6)

Recall that the coefficients αν are given by the solutions of Eqs. (5).

f) 1 point
Diagonalize the effective tight-binding model for a square lattice (with a unity lattice constant), and show
that

E(k) = 4τ0,2 (cos(kx) + cos(ky))
2

+ const. (7)

Notice that the bandwidth is given by the exchange constant J , and not by the original hopping energy
t. The effective mass of the hole is strongly renormalized due to the interactions. Eq. (7) has a minimum
along the lines |kx|+ |ky| = π. It is possible to show that by including the process neglected in item (b),
the degeneracy is lifted and Eq. (7) has only four minima at k = (±π/2,±π/2).
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