Technische Universitat Dresden Dr. S. Rachel
Institut fiir Theoretische Physik Dr. T. Meng

Topological condensed matter physics
Problem set 1

Summer term 2016

1. Tight-binding band structure of the Kagome lattice 2 Points

Investigate the so-called Kagome lattice, a hexagonal, two-dimensional lattice with a three-atomic basis
(“Kagome” originally denotes Japanese bamboo baskets with precisely this pattern).

To calculate the tight-binding band structure of the Kagome lattice, analyze a hopping between nearest
neighbor sites. The associated Hamiltonian is thus of the form Hx =) _; > cgcj + H.c., where < ij >

denotes nearest neighbor sites ¢ and j, while ¢; is the electronic annihilation operator on site i. The
primitive unit vectors are a; = a(1,0) and as = a(1/2,v/3/2), and a is the microscopic lengthscale of the
lattice. The basis is given by the vectors r; = 0 (A, red), 7o = a1/2 (B, green), and r3 = a2/2 (C, blue).
Every small triangle with a tip to the top is thus a unit cell, which can be indexed by (n,m) as indicated
in the figure. To simplify the notation, use operators A B and C,,, to annihilate electrons in the
respective sites of unit cell (n,m) (instead of ¢, ). The Hamiltonian thus takes the form
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Rewrite the Hamiltonian as a (3 x 3)-matrix, and find its eigenvalues by Fourier transformation. Plot
and discuss the resulting energy spectrum.
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2. Berry curvature of a two-band Hamiltonian 4 Points

Consider a Hamiltonian H(R) with eigenstates |[n(R)) of energy E, (R), which depends on a real three-
dimensional vector of parameters R. The Berry curvature pseudovector (effective magnetic field) V,,
associated with |n(R)) is given by
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In the following, we will more specifically analyze the general two-band Hamiltonian
H(R) = a(R)l2x2 + d(R) - o, (3)

where o is the vector of Pauli matrices, and where the scalar a(R) and vector d(R) are both real functions
of R.
a) 1 Point

Why can you calculate the Berry curvature associated with eigenstates of H(R) (with d(R) # 0) also
from the Hamiltonian

HR)=d(R) o (4)
with d(R) = d(R)/|d(R)|?

b) 1 Point

Show that the i*" component of the Berry curvature pseudovector associated with |n(R)) can also be
calculated as
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c) 1 Point

Use 04008 = lax20a8 + t€agy0y to show that the Berry curvature associated with |—(R)), the eigenstate
of the the lower band, can be obtained from
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Vi = J6ijk €apy (Vi, da(R)) (Vi, ds(R)) Re (—(R)| 0, [~ (R)). (6)
d) 1 Point
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Parametrizing d(R) = | sin(f)sin(¢) |, where ¢ and 6 are functions of R, the analogy to eigenstates of
cos(0)
the spin operator along some general direction implies |—(R)) = sin (6/2) You may use the
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addition theorems 2sin(z) cos(z) = sin(2x) and cos?(x) — sin®(x) = cos(2z) to show that
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3. Domain wall bound state in the SSH-model 2 Points

a) 1 Point
Starting from the time-independent Schrédinger equation of a general second-quantized fermionic (2 x 2)-
Hamiltonian,
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where ¢; 2(x) are annihilation operators, use the ansatz

W) = [ do (u@)cl (@) + v@h(@) o). (9)

where |0) is the vacuum defined by ¢;1 2(x)|0) = 0, to obtain a matrix equation for the coefficients u(z)
and v(x).
b) 1 Point

For one spin species, a continuum version of the (infinitely long) SSH model is described by the Hamil-
tonian

Hgsy = /dx Ul (2)(—ivpdpo, +m(z)o,)¥(z) (10)

(in the lecture, the Fermi velocity v and mass m were given by vp = —ta and m = 26t). ¥(x) is a spinor
of two different annihilation operators. Assuming that the mass is a monotonically increasing function
with a sign change at x =0,

m(z<0)<0 , mx=0)=0 , mx>0)>0, (11)

find the zero-energy bound state(s) associated with the domain wall. How many are there?



