## Topological condensed matter physics <br> Problem set 2

## Summer term 2016

## 1. Domain wall bound state in the SSH -model

## 2 Points

a)

## 1 Point

Starting from the time-independent Schrödinger equation of a general second-quantized fermionic $(2 \times 2)$ Hamiltonian,

$$
H=\int d x\left(c_{1}^{\dagger}(x), c_{2}^{\dagger}(x)\right)\left(\begin{array}{ll}
h_{11}(x) & h_{12}(x)  \tag{1}\\
h_{21}(x) & h_{22}(x)
\end{array}\right)\binom{c_{1}(x)}{c_{2}(x)}
$$

where $c_{1,2}(x)$ are annihilation operators, use the ansatz

$$
\begin{equation*}
|\Psi\rangle=\int d x\left(u(x) c_{1}^{\dagger}(x)+v(x) c_{2}^{\dagger}(x)\right)|0\rangle \tag{2}
\end{equation*}
$$

where $|0\rangle$ is the vacuum defined by $c_{1,2}(x)|0\rangle=0$, to obtain a matrix equation for the coefficients $u(x)$ and $v(x)$.

## b)

1 Point
For one spin species, a continuum version of the (infinitely long) SSH model is described by the Hamiltonian

$$
\begin{equation*}
H_{\mathrm{SSH}}=\int d x \Psi^{\dagger}(x)\left(-i v_{F} \partial_{x} \sigma_{x}+m(x) \sigma_{y}\right) \Psi(x) \tag{3}
\end{equation*}
$$

(in the lecture, the Fermi velocity $v_{F}$ and mass $m$ were given by $v_{F}=-t a$ and $\left.m=2 \delta t\right) . \Psi(x)$ is a spinor of two different annihilation operators. Assuming that the mass is a monotonically increasing function with a sign change at $x=0$,

$$
\begin{equation*}
m(x<0)<0 \quad, \quad m(x=0)=0 \quad, \quad m(x>0)>0 \tag{4}
\end{equation*}
$$

find the zero-energy bound state(s) associated with the domain wall. How many are there?

## 2. Time-reversal (TR) symmetry

## 2 Points

## a)

1 Point
Consider a single band for spinless fermions below the Fermi energy with Bloch state $|u(\boldsymbol{k})\rangle$. Show that Hall conductance is zero for the case of TR invariance.
b)

1 Point
Consider the Hamiltonian for spinful fermions $H=\sum_{\boldsymbol{k}, \sigma \sigma^{\prime}} c_{\boldsymbol{k} \sigma}^{\dagger} h_{\sigma \sigma^{\prime}}(\boldsymbol{k}) c_{\boldsymbol{k} \sigma^{\prime}}$. How does the Bloch matrix $h_{\sigma \sigma^{\prime}}(\boldsymbol{k})$ transform if $H$ is TR-invariant, i.e., $H=T H T^{-1}$ ?

## 3. $\pi$-flux bands

Consider a tight-binding model for spinless fermions on a 2 D square lattice subject to a uniform magnetic field. The corresponding vector potential is given by

$$
\boldsymbol{A}(\boldsymbol{x})=\frac{\hbar c}{e} \frac{\pi}{a^{2}} y \hat{\boldsymbol{x}}
$$

The Hamiltonian for such a model governed by

$$
H=\sum_{\langle l m\rangle}\left(t_{l m} c_{l}^{\dagger} c_{m}+\text { h.c. }\right) .
$$

Each pair of nearest neighbor sites $\langle l m\rangle$ in the sum appears only once. The hopping amplitude reads

$$
t_{l m}=t_{0} \exp \left(\frac{i e}{\hbar c} \int_{l}^{m} d \boldsymbol{s} \boldsymbol{A}(\boldsymbol{x})\right)
$$

with $t_{0}$ being constant and $a$ the lattice spacing.
a)

## 1 Point

Show that the magnetic flux per plaquette (square of four adjacent sites) is given by $\Phi_{0} / 2$ where $\Phi_{0}=\frac{h c}{e}$ is the Dirac flux quantum.
b)

2 Points
Sketch the lattice including the phases of the hopping amplitudes $t_{l m}$ of neighboring lattice sites. What is the minimal number of lattice sites in the elementary unit cell? Hint: consider the periodicity of the hopping phases under translations in the different directions.
Now choose a primitive unit cell and draw the corresponding Brillouin zone. How many energy bands do you expect to obtain? And how many allowed values of Bloch momentum $\boldsymbol{q}$ are there for a lattice with $N$ sites (PBCs imposed)?
c)

3 Points
Perform a Fourier transform and show that the Hamiltonian can now be written as

$$
H=\sum_{\boldsymbol{q}}\left(c_{\boldsymbol{q}, 1}^{\dagger}, c_{\boldsymbol{q}, 2}^{\dagger}\right) H_{\boldsymbol{q}}\binom{c_{\boldsymbol{q}, 1}}{c_{\boldsymbol{q}, 2}} .
$$

Determine the matrix elements of $H_{\boldsymbol{q}}$ for this $\pi$-flux lattice.
Show that the coefficients

$$
\boldsymbol{u}_{\boldsymbol{q}}=\binom{u_{\boldsymbol{q}, 1}}{u_{\boldsymbol{q}, 2}} \text { of the eigenstates }\left|\psi_{\boldsymbol{q}}\right\rangle=\left(c_{\boldsymbol{q}, 1}^{\dagger}, c_{\boldsymbol{q}, 2}^{\dagger}\right) \boldsymbol{u}_{\boldsymbol{q}}|0\rangle
$$

are given by the eigenvalue equation $\left(H_{\boldsymbol{q}}-E_{\boldsymbol{q}}\right) \boldsymbol{u}_{\boldsymbol{q}}=0$.
Express $H_{\boldsymbol{q}}$ as a superposition of Pauli matrices and show that the previous eigenvalue equation represents a Dirac equation, i.e., $H_{\boldsymbol{q}}^{2}$ is diagonal. Compute the eigenvalues $E_{\boldsymbol{q}, n}$ and eigenvectors $\boldsymbol{u}_{\boldsymbol{q}, n}$.

Sketch the bandstructure and try to identify degeneracy points in the Brillouin zone. Expand the spectrum around these special points and conjecture about the topological properties of the $\pi$-flux lattice (Berry phase, Hall conductance, etc.).

