# Topological condensed matter physics <br> Problem set 3 

## Summer term 2016

## 1. Ribbon spectra and edge states

## 9 Points

1 Point
Let us consider the tight-binding chain we discussed in the very first lecture, governed by the Hamiltonian

$$
H_{1}=-t \sum_{i} c_{i}^{\dagger} c_{i+1}+\text { h.c. }
$$

for which we computed the energy spectrum (i.e., the bandstructure) using a Fourier transformation. The energy spectrum reads $E_{1}(k)=-2 t \cos (k)$ where we set the lattice spacing to $a \equiv 1$. Now suppose the chain consists of $N=7$ sites and open boundary conditions (OBC) are imposed (i.e., the first and the last sites are not coupled by a hopping $-t$ ). Write down the real-space Hamiltonian for this system and determine the discrete eigenenergies by diagonalizing the real-space hopping matrix. While this can be done analytically you should use a computer program such as mathematica, maple, or a python implementation. Repeat the calculation for $N=8$ and compare both spectra with $E_{1}$. Eventually add to the Hamiltonian the term $-t\left(c_{1}^{\dagger} c_{N}+c_{N}^{\dagger} c_{1}\right)$ in order to restore periodic boundary conditions (PBC). Now consider again the discrete energies for $N=7$ and $N=8$ and compare to $E_{1}$. What do you observe?

## b)

2 Points
We generalize $H_{1}$ to the two-dimensional square lattice case,

$$
H_{2}=-t \sum_{\langle i j\rangle} c_{i}^{\dagger} c_{j}+\text { h.c. }
$$

and $\langle i j\rangle$ denotes all combinations where $j$ is a neighboring site of $i$ (but each pair appears only once). For the case of PBC, perform a Fourier transformation of $H_{2}$ and calculate the energy-momentum relation $E_{2}\left(k_{x}, k_{y}\right)$. In the following, we consider a so-called nanoribbon (a cylinder) which exhibits OBC in the $x$-direction and PBC in the $y$-direction. We denote the position of a lattice site by ( $m, n$ ) corresponding to $\vec{R}_{m n}=m \hat{\vec{e}}_{x}+n \hat{\vec{e}}_{y}$. Along the $y$-direction we can perform a Fourier-transformation while keeping the real-space representation along the $x$-direction:

$$
c_{m, n}^{\dagger}=\frac{1}{N_{y}} \sum_{k_{y}} e^{i k_{y} n} c_{m, k_{y}}^{\dagger}
$$

Determine the Bloch matrix $h_{2}\left(k_{y}\right)$ in this hybrid representation for a ribbon with a width of eight sites. It is again possible to impose PBC. Compute the spectrum $\tilde{E}_{2}\left(k_{y}\right)$ of the ribbon. Check whether you recover the same energies you obtained for the case where you performed a full Fourier transformation. Do you observe a difference in the ribbon spectrum for OBC compared to PBC?

We add to the previously considered square lattice ribbon a uniform magnetic field of strength $\alpha=1 / 3$ piercing through the lattice (i.e., the magnetic field is locally perpendicular to the ribbon). Using the knowledge you gained from the lecture about the Hofstadter butterfly determine the ribbon-Bloch matrix structure. Choose the Landau gauge such that the magnetic unit cell is increased in $x$-direction, the ribbon length must hence be a multiple of three. Do you observe a difference in the ribbon spectrum for OBC compared to PBC? Hint: a ribbon length of six magnetic unit cells is sufficient. It might be wise to think about an implementation where the ribbon width enters as a parameter.
d)

4 Points
Eventually we consider the Hamiltonian $H_{2}$ (without magnetic field) on a honeycomb-lattice nanoribbon (aka "carbon nanotube") with zigzag edges. Now we have two atoms per unit cell, for a ribbon consisting of $N$ unit cells along the $x$ direction we have to deal with a $2 N \times 2 N$ matrix. Try to find the correct ribbon-Bloch matrix. Note that the "path" of $k_{y}$-independent hopping is not a straight line perpendicular to the edge (as it is the case for the square lattice), but a zigzag line instead. Diagonalize it as a function of $k_{y}$ for different ribbon lengths for both PBC and OBC. Eventually add the Semenoff term,

$$
\begin{equation*}
H_{S}=M \sum_{i}(-1)^{\xi} c_{i}^{\dagger} c_{i} \tag{1}
\end{equation*}
$$

where $\xi=1$ on sublattice $A$ and $\xi=0$ on sublattice $B$. The Semenoff mass is nothing than a staggered sublattice potential term. How does $H_{S}$ affect the OBC and PBC spectra?

## Extra problem:

2 Points
Usually a honeycomb ribbon has $A$-sites on one zigzag edge and $B$-sites on the other edge. What happens if you considered a ribbon which has $B$-sites on one edge and $A$-sites on the other edge? What happens, if both zigzag edges consist of $A$ sites? Repeat these considerations with a finite Semenoff mass.

In case of questions or lack of clarity please write us an email for clarification or further advice.

