Dr. S. Rachel Dr. T. Meng

Topological condensed matter physics Problem set 5

Summer term 2016

1. Four ways to solve the Kitaev chain

Consider a simple version of the Kitaev chain with only two sites, and described by the Hamiltonian

$$H = \epsilon_1 c_1^{\dagger} c_1 + \epsilon_2 c_2^{\dagger} c_2 - t(c_1^{\dagger} c_2 + c_2^{\dagger} c_1) + \Delta(c_1^{\dagger} c_2^{\dagger} + c_2 c_1)$$
(1)

where c_i annihilates an electron on site i = 1, 2, the on-site energy is $\epsilon_i, t > 0$ is the hopping between the two sites, and $\Delta > 0$ is the superconducting order parameter.

a)

b)

Find the eigenenergies of the Hamiltonian by considering matrix-elements of H using the basis states

$$|00\rangle = |0\rangle \quad , \quad |10\rangle = c_1^{\dagger}|0\rangle \quad , \quad |01\rangle = c_2^{\dagger}|0\rangle \quad , \quad |11\rangle = c_1^{\dagger}c_2^{\dagger}|0\rangle \quad , \tag{2}$$

where the vacuum $|0\rangle$ satisfies $c_{1,2}|0\rangle = 0$. What distinguishes the two sectors that the Hamiltonian can be decomposed into? Which states span the ground state manifold at the sweet spot $\epsilon_1 = \epsilon_2 = 0, t = \Delta$, and which states are then excited states?

Next, find the Bogoliubov-de Gennes Hamiltonian associated with H, and relate its eigenvalues to the energies found in a).

For t = 0, you can alternatively rewrite the Hamiltonian with a Nambu spinor as

$$H = (c_1^{\dagger}, c_2) \mathcal{H} \begin{pmatrix} c_1 \\ c_2^{\dagger} \end{pmatrix} + E_0.$$
(3)

What is the vacuum associated with this form of the Hamiltonian? Find \mathcal{H} and E_0 , calculate the spectrum of H, and relate the results to part a).

d)

Finally, introduce Majorana fermions $\gamma_i^{(1,2)}$ as

$$c_j = (\gamma_i^{(1)} + i\gamma_i^{(2)})/2.$$
(4)

Rewrite the Hamiltonian in the Majorana language. What happens at the sweet spot $\epsilon_1 = \epsilon_2 = 0$ and $t = \Delta (> 0)$? Define a complex fermionic zero-mode, and re-express the associated annihilation and creation operator in terms of the original c_i -operators. Compare with the results of part a).

1 Point

1 Point

1 Point

4 Points

2. Braiding of Majorana zero modes

Besides being topological zero energy bound states, the Majorana zero modes in the Kitaev chain are interesting because they show non-Abelian braiding. In short, this means that when a Majorana is braided around another, the state of the system can change. To illustrate this concept, consider a system that combines four such Majorana zero modes on some sort of "tracks" allowing to exchange two neighboring Majoranas in the following way:

a)

While particle number is not conserved in a Majorana system, the fermionic parity is a good quantum number (even or odd number of fermions in the system correspond to parity eigenvalues +1 and -1, respectively). To define the parity, however, one needs proper fermionic states. Using $c = (\gamma_1 + i\gamma_2)/2$ and $d = (\gamma_3 + i\gamma_4)/2$, what is the total parity of system?

b)

Without being specific about the details of the process, the exchange of Majoranas 2 and 3 can be understood as an adiabatic evolution of the system upon changing some microscopic parameters, and is hence represented by a unitary matrix U_{23} . Considering furthermore that different Majoranas do not interact, the evolution operator U_{23} can only involve the Majorana fermion operators γ_2 and γ_3 since only these Majoranas are affected by the braiding. Based on these remarks, show that the most general form of U_{23} is

$$U_{23} = e^{i\varphi} \left(\sin(x) + \cos(x)\gamma_2\gamma_3 \right) \tag{5}$$

with real numbers φ and x (Hint: you may assume that the adiabatic evolution does not affect the parity of the system).

1 Point

1 Point

1 Point

Why is a reasonable choice for x is given by $x = \pm \pi/4$? How can you interpret the two signs of x?

d)

c)

Now consider a full circular braiding of γ_2 once around γ_3 . What is the operator corresponding to this braiding? How does it affect the parity of the *c*-mode, the parity of the *d*-mode, and the total parity? What does this mean if the two parities are used as logical states for qubits?

1 Point