Topological condensed matter physics
 Problem set 5

Summer term 2016

1. Four ways to solve the Kitaev chain

4 Points

Consider a simple version of the Kitaev chain with only two sites, and described by the Hamiltonian

$$
\begin{equation*}
H=\epsilon_{1} c_{1}^{\dagger} c_{1}+\epsilon_{2} c_{2}^{\dagger} c_{2}-t\left(c_{1}^{\dagger} c_{2}+c_{2}^{\dagger} c_{1}\right)+\Delta\left(c_{1}^{\dagger} c_{2}^{\dagger}+c_{2} c_{1}\right) \tag{1}
\end{equation*}
$$

where c_{i} annihilates an electron on site $i=1,2$, the on-site energy is $\epsilon_{i}, t>0$ is the hopping between the two sites, and $\Delta>0$ is the superconducting order parameter.
a)

1 Point
Find the eigenenergies of the Hamiltonian by considering matrix-elements of H using the basis states

$$
\begin{equation*}
|00\rangle=|0\rangle \quad, \quad|10\rangle=c_{1}^{\dagger}|0\rangle \quad, \quad|01\rangle=c_{2}^{\dagger}|0\rangle \quad, \quad|11\rangle=c_{1}^{\dagger} c_{2}^{\dagger}|0\rangle \tag{2}
\end{equation*}
$$

where the vacuum $|0\rangle$ satisfies $c_{1,2}|0\rangle=0$. What distinguishes the two sectors that the Hamiltonian can be decomposed into? Which states span the ground state manifold at the sweet spot $\epsilon_{1}=\epsilon_{2}=0, t=\Delta$, and which states are then excited states?
b)

1 Point
Next, find the Bogoliubov-de Gennes Hamiltonian associated with H, and relate its eigenvalues to the energies found in a).
c)

1 Point
For $t=0$, you can alternatively rewrite the Hamiltonian with a Nambu spinor as

$$
\begin{equation*}
H=\left(c_{1}^{\dagger}, c_{2}\right) \mathcal{H}\binom{c_{1}}{c_{2}^{\dagger}}+E_{0} \tag{3}
\end{equation*}
$$

What is the vacuum associated with this form of the Hamiltonian? Find \mathcal{H} and E_{0}, calculate the spectrum of H, and relate the results to part a).
d)

1 Point
Finally, introduce Majorana fermions $\gamma_{j}^{(1,2)}$ as

$$
\begin{equation*}
c_{j}=\left(\gamma_{j}^{(1)}+i \gamma_{j}^{(2)}\right) / 2 \tag{4}
\end{equation*}
$$

Rewrite the Hamiltonian in the Majorana language. What happens at the sweet spot $\epsilon_{1}=\epsilon_{2}=0$ and $t=\Delta(>0)$? Define a complex fermionic zero-mode, and re-express the associated annihilation and creation operator in terms of the original c_{j}-operators. Compare with the results of part a).

2. Braiding of Majorana zero modes

Besides being topological zero energy bound states, the Majorana zero modes in the Kitaev chain are interesting because they show non-Abelian braiding. In short, this means that when a Majorana is braided around another, the state of the system can change. To illustrate this concept, consider a system that combines four such Majorana zero modes on some sort of "tracks" allowing to exchange two neighboring Majoranas in the following way:

a)

1 Point
While particle number is not conserved in a Majorana system, the fermionic parity is a good quantum number (even or odd number of fermions in the system correspond to parity eigenvalues +1 and -1 , respectively). To define the parity, however, one needs proper fermionic states. Using $c=\left(\gamma_{1}+i \gamma_{2}\right) / 2$ and $d=\left(\gamma_{3}+i \gamma_{4}\right) / 2$, what is the total parity of system?
b)

1 Point

Without being specific about the details of the process, the exchange of Majoranas 2 and 3 can be understood as an adiabatic evolution of the system upon changing some microscopic parameters, and is hence represented by a unitary matrix U_{23}. Considering furthermore that different Majoranas do not interact, the evolution operator U_{23} can only involve the Majorana fermion operators γ_{2} and γ_{3} since only these Majoranas are affected by the braiding. Based on these remarks, show that the most general form of U_{23} is

$$
\begin{equation*}
U_{23}=e^{i \varphi}\left(\sin (x)+\cos (x) \gamma_{2} \gamma_{3}\right) \tag{5}
\end{equation*}
$$

with real numbers φ and x (Hint: you may assume that the adiabatic evolution does not affect the parity of the system).
c)

1 Point
Why is a reasonable choice for x is given by $x= \pm \pi / 4$? How can you interpret the two signs of x ?
d)

1 Point
Now consider a full circular braiding of γ_{2} once around γ_{3}. What is the operator corresponding to this braiding? How does it affect the parity of the c-mode, the parity of the d-mode, and the total parity? What does this mean if the two parities are used as logical states for qubits?

