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1. Four ways to solve the Kitaev chain 4 Points

Consider a simple version of the Kitaev chain with only two sites, and described by the Hamiltonian

H = ε1c
†
1c1 + ε2c

†
2c2 − t(c

†
1c2 + c†2c1) + ∆(c†1c

†
2 + c2c1) (1)

where ci annihilates an electron on site i = 1, 2, the on-site energy is εi, t > 0 is the hopping between the
two sites, and ∆ > 0 is the superconducting order parameter.

a) 1 Point

Find the eigenenergies of the Hamiltonian by considering matrix-elements of H using the basis states

|00〉 = |0〉 , |10〉 = c†1|0〉 , |01〉 = c†2|0〉 , |11〉 = c†1c
†
2|0〉 , (2)

where the vacuum |0〉 satisfies c1,2|0〉 = 0. What distinguishes the two sectors that the Hamiltonian can
be decomposed into? Which states span the ground state manifold at the sweet spot ε1 = ε2 = 0, t = ∆,
and which states are then excited states?

b) 1 Point

Next, find the Bogoliubov-de Gennes Hamiltonian associated with H, and relate its eigenvalues to the
energies found in a).

c) 1 Point

For t = 0, you can alternatively rewrite the Hamiltonian with a Nambu spinor as

H = (c†1, c2)H
(
c1
c†2

)
+ E0. (3)

What is the vacuum associated with this form of the Hamiltonian? FindH and E0, calculate the spectrum
of H, and relate the results to part a).

d) 1 Point

Finally, introduce Majorana fermions γ
(1,2)
j as

cj = (γ
(1)
j + iγ

(2)
j )/2. (4)

Rewrite the Hamiltonian in the Majorana language. What happens at the sweet spot ε1 = ε2 = 0 and
t = ∆ (> 0)? Define a complex fermionic zero-mode, and re-express the associated annihilation and
creation operator in terms of the original cj-operators. Compare with the results of part a).
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2. Braiding of Majorana zero modes 4 Points

Besides being topological zero energy bound states, the Majorana zero modes in the Kitaev chain are in-
teresting because they show non-Abelian braiding. In short, this means that when a Majorana is braided
around another, the state of the system can change. To illustrate this concept, consider a system that
combines four such Majorana zero modes on some sort of “tracks” allowing to exchange two neighboring
Majoranas in the following way:

a) 1 Point

While particle number is not conserved in a Majorana system, the fermionic parity is a good quantum
number (even or odd number of fermions in the system correspond to parity eigenvalues +1 and -1,
respectively). To define the parity, however, one needs proper fermionic states. Using c = (γ1 + iγ2)/2
and d = (γ3 + iγ4)/2, what is the total parity of system?

b) 1 Point

Without being specific about the details of the process, the exchange of Majoranas 2 and 3 can be
understood as an adiabatic evolution of the system upon changing some microscopic parameters, and is
hence represented by a unitary matrix U23. Considering furthermore that different Majoranas do not
interact, the evolution operator U23 can only involve the Majorana fermion operators γ2 and γ3 since
only these Majoranas are affected by the braiding. Based on these remarks, show that the most general
form of U23 is

U23 = eiϕ (sin(x) + cos(x)γ2γ3) (5)

with real numbers ϕ and x (Hint: you may assume that the adiabatic evolution does not affect the parity
of the system).

c) 1 Point

Why is a reasonable choice for x is given by x = ±π/4? How can you interpret the two signs of x?

d) 1 Point

Now consider a full circular braiding of γ2 once around γ3. What is the operator corresponding to this
braiding? How does it affect the parity of the c-mode, the parity of the d-mode, and the total parity?
What does this mean if the two parities are used as logical states for qubits?
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