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1. Four ways to solve the Kitaev chain 4 Points

Consider a simple version of the Kitaev chain with only two sites, and described by the Hamiltonian
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where ¢; annihilates an electron on site ¢ = 1,2, the on-site energy is ¢;, t > 0 is the hopping between the
two sites, and A > 0 is the superconducting order parameter.

a) 1 Point

Find the eigenenergies of the Hamiltonian by considering matrix-elements of H using the basis states
00)=10) , [10)=c0) . [01)=c}0) . [11)=cichjo), (2)

where the vacuum |0) satisfies ¢1,2|0) = 0. What distinguishes the two sectors that the Hamiltonian can
be decomposed into? Which states span the ground state manifold at the sweet spot €3 = €2 =0, t = A,
and which states are then excited states?

b) 1 Point

Next, find the Bogoliubov-de Gennes Hamiltonian associated with H, and relate its eigenvalues to the
energies found in a).

c) 1 Point
For t = 0, you can alternatively rewrite the Hamiltonian with a Nambu spinor as
_ (A ¢
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What is the vacuum associated with this form of the Hamiltonian? Find H and Fy, calculate the spectrum
of H, and relate the results to part a).

d) 1 Point

Finally, introduce Majorana fermions 7(1,2)

j as

1, . (2
¢j = ()" +in?)/2. (4)
Rewrite the Hamiltonian in the Majorana language. What happens at the sweet spot €¢; = €2 = 0 and
t = A(> 0)? Define a complex fermionic zero-mode, and re-express the associated annihilation and
creation operator in terms of the original c;-operators. Compare with the results of part a).



2. Braiding of Majorana zero modes 4 Points

Besides being topological zero energy bound states, the Majorana zero modes in the Kitaev chain are in-
teresting because they show non-Abelian braiding. In short, this means that when a Majorana is braided
around another, the state of the system can change. To illustrate this concept, consider a system that
combines four such Majorana zero modes on some sort of “tracks” allowing to exchange two neighboring
Majoranas in the following way:

Y1 Y2 Y3 V4
.. o .. s — ~

AN T

a) 1 Point

While particle number is not conserved in a Majorana system, the fermionic parity is a good quantum
number (even or odd number of fermions in the system correspond to parity eigenvalues +1 and -1,
respectively). To define the parity, however, one needs proper fermionic states. Using ¢ = (y1 + i72)/2
and d = (y3 + 774)/2, what is the total parity of system?

b) 1 Point

Without being specific about the details of the process, the exchange of Majoranas 2 and 3 can be
understood as an adiabatic evolution of the system upon changing some microscopic parameters, and is
hence represented by a unitary matrix Uss. Considering furthermore that different Majoranas do not
interact, the evolution operator Uss can only involve the Majorana fermion operators v, and -3 since
only these Majoranas are affected by the braiding. Based on these remarks, show that the most general
form of U23 is

Usz = €' (sin(x) + cos(x)7273) (5)
with real numbers ¢ and z (Hint: you may assume that the adiabatic evolution does not affect the parity
of the system).

c) 1 Point

Why is a reasonable choice for x is given by = +7/4? How can you interpret the two signs of x?

d) 1 Point

Now consider a full circular braiding of v, once around ~3. What is the operator corresponding to this
braiding? How does it affect the parity of the c-mode, the parity of the d-mode, and the total parity?
What does this mean if the two parities are used as logical states for qubits?



