Exercises for "Quantum Phase Transitions" SS 16

Prof.	М.	Vojta
Dr. L. Janssen		

Exercise 1 (for 07.04.16, 11:10)

1. Landau functional for a first-order phase transition

Consider the free-energy density

$$f(\varphi) = f_{\rm n} + f_0 \left[\frac{a}{2} \varphi^2 + \frac{b}{4} \varphi^4 + \frac{c}{6} \varphi^6 \right],\tag{1}$$

which depends on the real order parameter φ , *a* depends on the temperature, *b* and *c* are temperature-independent, and b < 0, c > 0.

- (a) Determine the extrema of the functional (1). List all possibilities and sketch $f(\varphi) f_n$ in each case.
- (b) Calculate the critical value a_c of the parameter a where the position $\varphi_{\min}(a)$ of the global minimum of (1) changes discontinuously.
- (c) Sketch the free energy f(φ_{min}) as a function of the parameter a in the vicinity of the phase transition. Why is it a first-order phase transition?
 Hint: Expand f(φ_{min}) up to first order in δa = a a_c around δa = 0.

2. Two order parameters

Determine the phase diagram of a system with two real order parameters φ_1 und φ_2 , whose free-energy density is given by

$$f(\varphi_1, \varphi_2) = \frac{r}{2} \left(\varphi_1^2 + \varphi_2^2\right) - \frac{g}{2} \left(\varphi_1^2 - \varphi_2^2\right) + \frac{u}{4} \left(\varphi_1^4 + \varphi_2^4\right) + \frac{v}{2} \varphi_1^2 \varphi_2^2, \tag{2}$$

where u, v > 0.

- (a) Start by determining all extrema of the functional (2). Which values are taken by φ_1^2 , φ_2^2 at these extrema?
- (b) Which conditions have to be posed on φ_1^2 and φ_2^2 ? Discuss which phases (i.e., configurations of φ_1 and φ_2) are physically reasonable in which areas of the (r, g) plane.
- (c) In each case, determine the phase with the lowest free energy as function of r and g. Distinguish between $u^2 < v^2$ and $u^2 > v^2$.
- (d) What is the order of the phase transitions?
- (e) Sketch the phase diagram in the (r, g) plane for both $u^2 < v^2$ and $u^2 > v^2$.