5. Homogenitäts- und Universalitätshypothese

5.1 Homogenitätshypothese und Skalengesetze

Ziel: Wollen beweisen, dass unter Voraussetzung bestimmter Annahmen, die für räumlich homogene Systeme gelten sollen, für die Beziehungen zwischen den kritischen Exponenten (siehe Kapitel 1.6.2) Gleichungen (anstelle von Ungleichungen) gelten.

Annahme:

Der am PÜ-Punkt $\underline{\text{singul\"are}}$ Anteil der freien Enthalpiedichte ist eine $\underline{\text{verallgemeinerte homogene}}$ Funktion der Argumente t und h

$$g(t,h) = \lambda^{-n} g(\lambda^{\Delta_t} t, \lambda^{\Delta_h} h) , \qquad (1)$$

wobei λ ein beliebiger Faktor ist und Δ_t , Δ_h vom konkreten Modell abhängige (noch unbestimmte) Exponenten sind.

Homogenitätshypothese oder auch Skalenhypothese (Widom, 1965)

Zusammenhang zwischen n, Δ_t , Δ_h und den kritischen Exponenten:

(i) Differentiation von (1) nach $h \rightsquigarrow Magnetisierung$ (pro Volumen oder pro Spin)

$$m(t,h) = \lambda^{-n+\Delta_h} \, m\big(\lambda^{\Delta_t} t, \lambda^{\Delta_h} h\big) \tag{2}$$

Für h = 0 und $T \to T_c^-$ folgt mit $m(t,0) \sim (-t)^\beta$: $(-t)^\beta = \lambda^{-n+\Delta_h} (-\lambda^{\Delta_t} t)^\beta$

Da λ beliebig ist, muss gelten

$$\Delta_t \beta = n - \Delta_h \tag{3}$$

Für t=0 (entlang der kritischen Isotherme) folgt aus (2) $m(0,h)=\lambda^{-n+\Delta_h}\,m\big(0,\lambda^{\Delta_h}h\big)$ und unter Berücksichtigung von $h{\sim}m^\delta$: $h^{1/\delta}=\lambda^{-n+\Delta_h}(\lambda^{\Delta_h}h)^{1/\delta}$ Da λ beliebig ist, muss gelten $\Delta_h/\delta=n-\Delta_h$ (4)

(ii) Zweimalige Differentiation von (1) nach $h \rightarrow isotherme Suszeptibilität$

$$\left. \frac{\partial^2 g}{\partial h^2} \right|_t = \lambda^{-n+2\Delta_h} \left. \frac{\partial^2 g(\lambda^{\Delta_t} t, \lambda^{\Delta_h} h)}{\partial (\lambda^{\Delta_h} h)^2} \right. \Rightarrow \chi(t, h) = \lambda^{-n+2\Delta_h} \chi(\lambda^{\Delta_t} t, \lambda^{\Delta_h} h)$$

Für h=0 und $T\to T_c^+$ folgt mit $\chi_T\sim t^{-\gamma}:~\lambda^{n-2\Delta_{\rm h}}t^{-\gamma}=(\lambda^{\Delta_t}t)^{-\gamma}$

Da λ beliebig ist, muss gelten $-\gamma \Delta_t = n - 2\Delta_h$

$$-\gamma \Delta_t = n - 2\Delta_h \tag{5}$$

Analog folgt für
$$T \to T_c^ -\gamma' \Delta_t = n - 2\Delta_h$$
 (5')

(iii) Zweimalige Differentiation von (1) nach $t \rightarrow spezifische Wärmekapazität$

$$\left. \frac{\partial^2 g}{\partial t^2} \right|_h = \lambda^{-n+2\Delta_t} \left. \frac{\partial^2 g(\lambda^{\Delta_t} t, \lambda^{\Delta_h} h)}{\partial (\lambda^{\Delta_t} t)^2} \right. \Rightarrow c_h(t, h) = \lambda^{-n+2\Delta_t} c_h(\lambda^{\Delta_t} t, \lambda^{\Delta_h} h)$$

Für h=0 und $T\to T_c^+$ folgt mit $c_{h=0}\sim t^{-\alpha}:\ t^{-\alpha}=\lambda^{-n+2\Delta_{\rm t}}(\lambda^{\Delta_t}t)^{-\alpha}$

Da λ beliebig ist, muss gelten $-\alpha \Delta_t = n - 2\Delta_t$ (6)

Analog folgt für $T \to T_c^ -\alpha' \Delta_t = n - 2\Delta_t$ (6')

Aus den Gleichungen (3) bis (6) folgt:

lpha=lpha' , $\gamma=\gamma'$, $lpha+\gamma+2eta=2$ (Rushbrooke Identität, vorher aus TD \geq) $\gamma=eta(\delta-1) \quad \text{(Widom Identität, vorher aus TD} \geq\text{)}$

Neben den Beziehungen zwischen den kritischen Exponenten folgen aus der Homogenitätshypothese auch Hinweise auf die Form der Zustandsgleichung:

Allgemein gilt für die (thermische) Zustandsgleichung eines magnetischen Systems

$$h = f(t,m)$$
 (vergl. $p = p(T,V/N)$)

Aus der Homogenitätshypothese folgt (2) $m(\lambda^{\Delta_t}t,\lambda^{\Delta_h}h)=\lambda^{n-\Delta_h}m(t,h)$ und damit

$$\lambda^{\Delta_h}h(t,m) = f(\lambda^{\Delta_t}t,\lambda^{n-\Delta_h}m)$$

 λ ist frei wählbar, mit der speziellen Wahl $\lambda = |t|^{-1/\Delta_t}$ gilt damit

$$h(t,m) = \lambda^{-\Delta_h} f\left(\lambda^{\Delta_t} t, \lambda^{n-\Delta_h} m\right) = |t|^{\frac{\Delta_h}{\Delta_t}} f\left(\frac{t}{|t|}, |t|^{\frac{-(n-\Delta_h)}{\Delta_t}} m\right) = |t|^{\frac{\Delta_h}{\Delta_t}} f\left(\operatorname{sgn}(t), |t|^{\frac{-(n-\Delta_h)}{\Delta_t}} m\right)$$

$$\equiv |t|^{\frac{\Delta_h}{\Delta_t}} f_{\pm} \left(|t|^{\frac{-(n-\Delta_h)}{\Delta_t}} m\right)$$

Ersetzen der Exponenten:

Aus Gleichung (3) folgt
$$\frac{n-\Delta_h}{\Delta_t} = \beta$$
 und aus (3) $-$ (5): $\beta + \gamma = \frac{n-\Delta_h}{\Delta_t} - \frac{n-2\Delta_h}{\Delta_t} = \frac{\Delta_h}{\Delta_t}$.

Damit gilt

$$h = |t|^{\beta + \gamma} f_{\pm} \left(\frac{m}{|t|^{\beta}} \right)$$

Die Magnetisierung geteilt durch $|t|^{\beta}$ ist damit eine Funktion von $h/|t|^{\beta+\gamma}$ und **nicht** eine Funktion von h und t einzeln!

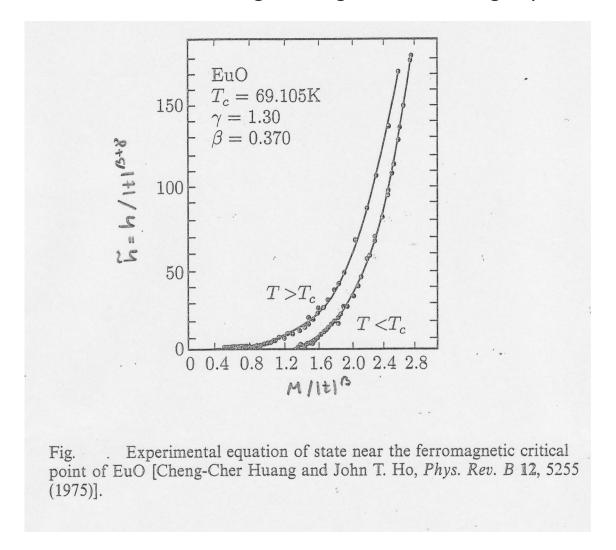
Die Funktion $f\left(\frac{M}{|t|^{\beta}}\right)$ kann verschieden für $t>0 \ ({}^{\frown}f_+) \ \text{und} \ t<0 \ ({}^{\frown}f_-)$ sein.

Analog erhält man

$$h = m|m|^{\delta-1}f\left(\frac{t}{|m|^{1/\beta}}\right)$$

(hier aus Symmetriegründen nur verschiedene Vorzeichen statt f_+)

Das Skalenverhalten der Zustandsgleichung wurde für einige Systeme mit großer Präzision überprüft.



"data collapsing": Statt einer Kurvenschar h(T,M), aufgetragen für viele Werte von T, erhält man oberhalb und unterhalb von T_c nur je eine Kurve, wenn man die Datenpunkte $y \equiv h(T,M)/|t|^{\beta+\gamma}$ über den zugehörigen Variablen $x \equiv M/|t|^{\beta}$ aufträgt.