Thermodynamik und Statistische Physik — Übung 6 Wintersemester 2018/19

 ${\it Link: } \ {\rm https://tu-dresden.de/mn/physik/itp/tfp/studium/lehre/ws18/tds}$

1. Eigenschaften der Spur (9 Punkte)

Die Spur eines Operators \hat{A} ist mit Hilfe eines vollständigen Orthonormalsystems (VON) $\langle \phi_k | \phi_{k'} \rangle = \delta_{k,k'}$ definiert,

$$\operatorname{Sp}\{\hat{A}\} \equiv \sum_{k} \langle \phi_k | \hat{A} | \phi_k \rangle. \tag{1}$$

Beweisen Sie folgende Eigenschaften der Spur für Operatoren \hat{A}, \hat{B} und \hat{C} und für komplexe Zahlen α und β .

- a) Die Spur eines Operators ist unabhängig von dem zur Berechnung benutzten VON.
- **b)** Ist \hat{U} ein unitärer Operator, so gilt $\operatorname{Sp}\{\hat{U}^{\dagger}\hat{A}\hat{U}\}=\operatorname{Sp}\{\hat{A}\}.$
- c) Sp{ $|\psi\rangle\langle\varphi|$ } = $\langle\varphi|\psi\rangle$
- **d)** (i) $\operatorname{Sp}\{\hat{A}^{\dagger}\} = (\operatorname{Sp}\{\hat{A}\})^*$, (ii) $\operatorname{Sp}\{\alpha \hat{A} + \beta \hat{B}\} = \alpha \operatorname{Sp}\{\hat{A}\} + \beta \operatorname{Sp}\{\hat{B}\}$, (iii) $\operatorname{Sp}\{\hat{A}^{\dagger}\hat{A}\} \ge 0$
- e) $(i) \operatorname{Sp}\{\hat{A}\hat{B}\} = \operatorname{Sp}\{\hat{B}\hat{A}\}, \quad (ii) \operatorname{Sp}\{[\hat{A},\hat{B}]\} = 0$
- $\mathbf{f)} \operatorname{Sp}\{\hat{A}\hat{B}\hat{C}\} = \operatorname{Sp}\{\hat{B}\hat{C}\hat{A}\} = \operatorname{Sp}\{\hat{C}\hat{A}\hat{B}\}$

2. Kanonischer Dichteoperator (5 Punkte)

- a) Wie lauten die allgemeinen Eigenschaften eines Dichteoperators?
- b) Sei \hat{H} ein Hamilton-Operator. Zeigen Sie, dass der Operator $\hat{\varrho} = \frac{e^{-\beta \hat{H}}}{\mathrm{Sp}\{e^{-\beta \hat{H}}\}}$ ein Dichte-operator ist.

3. Dichteoperator eines Spin-1/2-Gemisches (7 Punkte)

Wir betrachten den Dichteoperator $\hat{\varrho}$ eines Spin-1/2-Gemisches. Dieser kann durch eine Linearkombination aus dem Eins-Operator und den Pauli-Matrizen $\hat{\sigma}_i$, mit i = 1, 2, 3,

$$\hat{\varrho} = \frac{1}{2} \{ \mathbb{1} + n_x \, \hat{\sigma}_x + n_y \, \hat{\sigma}_y + n_z \, \hat{\sigma}_z \}$$
 (2)

dargestellt werden.

a) Bestimmen Sie die Eigenschaften des Vektors $\vec{n}^T = (n_x, n_y, n_z)$, so dass $\hat{\varrho}$ die Eigenschaften eines Dichteoperators erfüllt.

- b) Zeigen Sie, dass für die Erwartungswerte der drei Pauli-Matrizen in dem durch $\hat{\varrho}$ beschriebenen Zustand gilt: $\langle \hat{\sigma}_i \rangle = n_i$.
- c) Die Polarisation eines Gemisches von Spin-1/2-Teilchen mit Dichtematrix $\hat{\varrho}$ wird durch

$$\Pi \equiv \frac{\lambda_1 - \lambda_2}{\lambda_1 + \lambda_2} \tag{3}$$

definiert, wobei $\lambda_{1/2}$ die Eigenwerte von $\hat{\varrho}$ sind. Bestimmen Sie den Zusammenhang zwischen der Polarisation Π und den Komponenten des Vektors \vec{n} .

4. Zeitentwicklung des Dichteoperators (8 Punkte)

Betrachten Sie ein freies Teilchen mit Masse m in einer Raumdimension mit dem Ortsoperator \hat{x} , dem Impulsoperator \hat{p} und dem Hamilton-Operator $\hat{H} = \hat{p}^2/(2m)$. Zur Zeit t = 0 sei das System durch den Dichteoperator

$$\hat{\rho}(0) = \frac{1}{\sqrt{2\pi}\sigma V} \exp\{-\hat{x}^2/(2\sigma^2)\}$$
(4)

beschrieben mit $\sigma > 0$. V ist ein Faktor, der die Normierung des Dichteoperators garantiert. Hinweis: $\int_{-\infty}^{\infty} dx e^{-x^2/(2\sigma^2)+ix/x_0} = \sqrt{2\pi}\sigma e^{-\sigma^2/(2x_0^2)}$.

- a) Bestimmen Sie die Matrixelemente von $\hat{\rho}(0)$ sowohl in der Ortsbasis, $\rho_{xx'}(0) = \langle x|\hat{\rho}(0)|x'\rangle$, als auch in der Impulsbasis, $\rho_{pp'}(0) = \langle p|\hat{\rho}(0)|p'\rangle$.
- b) Bestimmen Sie die Zeitentwicklung, $t \geq 0$, des Dichteoperators in der Impulsbasis $\rho_{pp'}(t)$, indem Sie die von-Neumann-Bewegungsgleichung explizit lösen.
- c) Wie lautet der Dichteoperator $\rho_{xx'}(t)$ für t>0 in der Ortsbasis? Wie verhält sich insbesondere $\rho_{xx}(t)$? Hinweis: Führen Sie Relativ- und Schwerpunktskoordinaten ein.