

Garton, Tomkins, Astrophys. J. 158, 839 (1969)

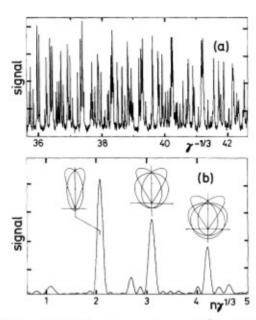


FIG. 1. (a) Scaled-energy spectrum at $\tilde{E} = -0.45$ as a function of $\gamma^{-1/3}$. Range of excitation energy -77.7 cm $^{-1} \leq E \leq -54.3$ cm $^{-1}$ and field strength $5.19 \geq B \geq 3.03$ T. (b) Fourier-transformed action spectrum of (a); closed orbits correlated to respective resonances in (ρ,z) projection; z coordinate vertically.

VOLUME 61 NUMBER 2

PHYSICAL REVIEW LETTERS

11 JULY 1988

Quasi-Landau Spectrum of the Chaotic Diamagnetic Hydrogen Atom

A. Holle, J. Main, G. Wiebusch, H. Rottke, and K. H. Welge Fakultät für Physik, Universität Bielefeld, D-4800 Bielefeld 1, Federal Republic of Germany (Received 28 Sentember 1987)

By the employment of "constant-scaled-energy spectroscopy" as a novel spectroscopic technique, the quasi-Landau resonance system of the diamagnetic H atom in even-paritity m = 0 magnetic final states is observed for the first time in its entirety from the regular I/n into the chaotic quasi-Landau regime. It evolves, fully unexpectedly, into a systematically structured hierarchy of generations of resonances, correlated to three physically different tyees of closed classical orbits.

PACS numbers: 32.80.-t, 05.45.+b, 32.60.+i

The physics of the highly excited diamagnetic hydrogen atom has recently attracted much attention.\(^{18}\) largely because this simple nonseparable quantum system turns classically chaotic as it approaches the ionization limit.\(^{30}\) In this context the quasi-Landau (QL) oscillations and their correlation to classical periodic orbits are of particular interest.\(^{10}\) Until recently, it was accepted that only one QL resonance type, discovered by Garton and Tomkins.\(^{11}\) exists. Experiments with the \(^{11}\) atomics and theoretical studies\(^{18}\).\(^{12.13}\) have uncovered further, basically new resonances correlated with three-dimensional orbits. Nevertheless, the central question as to the entire set of QL resonances resulting from final states with a given m quantum number and parity evolving from the regular into the chaotic QL regime has remained open.

We have addressed this basic problem and studied the H-atom Balmer spectrum with even-parity m=0 magnetic final states as a function of both the excitation energy E and the magnetic field B, employing for the first time "constant-scaled-energy spectroscopy." Different from previous experiments at constant B_s^{3-5} this technique makes a systematic search for, in principal, all possible QL resonances associated with closed classical orbits. 12 In analogy to theoretical work, it is based on the scaling property of the classical Hamiltonian 14 :

$$H(\mathbf{r},\mathbf{p};\gamma) = \gamma^{2/3}\tilde{H}(\tilde{\mathbf{r}},\tilde{\mathbf{p}};\gamma=1),$$

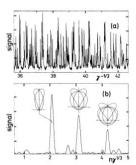
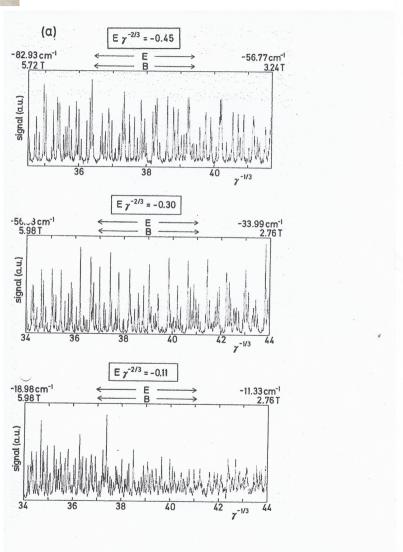
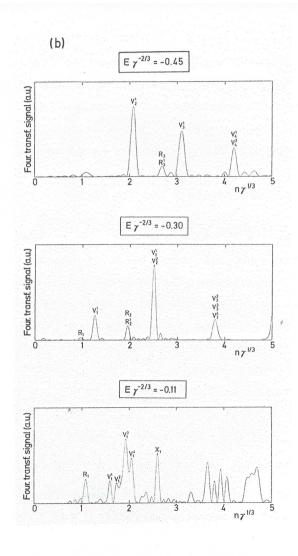
where scaled variables are defined by $\bar{\bf r} = \gamma^{3/3}$, $\bar{\bf p} = \gamma^{-1/3}{\bf p}$, and $\gamma = B/(2.35 \times 10^5~{\rm T})$. The semiclassical Bohr-Sommerfeld quantization condition 1s for the two nonseparable coordinates ρ,z (cylindrical coordinates) is transformed accordingly to scaled form!

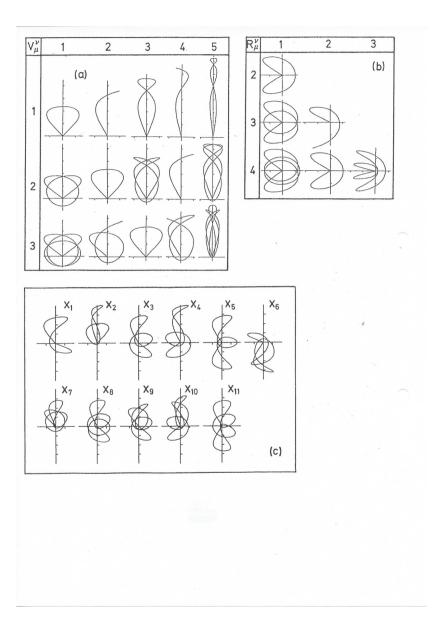
$$(2\pi)^{-1} \oint_{C} (\tilde{p}_{p} d\tilde{p} + \tilde{p}_{z} d\tilde{z}) = n\gamma^{1/3} = C_{i},$$
 (1)

where *i* denotes a closed classical orbit. Since the scaled action C depends on the scaled energy $E = E\gamma^{-2/3}$ only, it has a constant value C_i for E eronst and a given i. In this case, $C_i = n\gamma^{1/3}$ describes a spectrum of equidistant lines on a scale $\gamma^{-1/3}$, the Fourier transform of which in the conjugate coordinate, $n\gamma^{1/3}$, consists of one resonance

for each i, to which is correlated the respective orbit i. By application of these theoretical concepts to experiment, constant-scaled-energy spectra have been taken accordingly to our scanning the field strength linearly with $\gamma^{-1/2}$, simultaneously adjusting E (via the laser wavelength) such that $\vec{E} = E \gamma^{-2/2} = \text{const}$ was obeyed. Apart from this novel spectroscopic procedure the experiments have been carried out as previously.

Figure 1(a) shows, as a typical example, a $\gamma^{-1/3}$ spectrum at $\bar{E} = -0.45$, and Fig. 1(b) the corresponding Fourier-transform $\gamma_F^{1/3}$ action spectrum. The orbits shown correlate to the respective resonances, and have been obtained by classical trajectory calculation. ^{4,13} Such action spectra have been taken (physically with a


FIG. 1. (a) Scaled-energy spectrum at $\vec{E} = -0.45$ as a function of $\gamma^{-1/3}$. Range of excitation energy -77.7 cm⁻¹ $\leq E \leq -54.3$ cm⁻¹ and field strength $5.19 \geq B \geq 3.03$ T. (b) Fourier-transformed action spectrum of (a); closed orbits correlated to respective resonances in (ρ, z) projection; z coordinate vertically

