Institut für Theoretische Physik Prof. Dr. W. Strunz PD Dr. G. Plunien

## Quantentheorie II SS 2009



http://tu-dresden.de/physik/tqo/lehre

## 5. Übung

## 1. Streuung am Atomkern:

Das Streupotential  $V(\vec{r})$  werde durch eine Dichteverteilung  $\rho(\vec{r}) = A\eta(\vec{r})$  eines Atomkerns aus A Nukleonen erzeugt (Normierung:  $\int d^3r \, \eta(\vec{r}) = 1$ ) und sei Lösung der Feldgleichung  $(\Delta - \mu^2) \, V(\vec{r}) = -4\pi \, \kappa \, \rho(\vec{r})$  (dimensionsbehafteter Faktor  $\kappa$ ). Die Streuamplitude lautet wiederum in 1. Bornscher Näherung:

$$f(\vec{q}) = -\frac{2M}{4\pi \, \hbar^2} \int_0^\infty d^3r \, V(\vec{r}) \, e^{i\vec{q}\cdot\vec{r}}, \qquad \vec{q} = \vec{k} - \vec{k}' = k(\vec{e}_z - \vec{e}_r) \, .$$

- a) Leiten Sie einen Zusammenhang zwischen der Streuamplitude  $f(\vec{q})$ , dem Formfaktor  $F(\vec{q})$  und der Dichteverteilung  $\eta(\vec{r})$  her. (Hinweis: Verwenden Sie die Identität  $(q^2 + \mu^2)^{-1}(\Delta - \mu^2) e^{i\vec{q}\cdot\vec{r}} = -e^{i\vec{q}\cdot\vec{r}}$ ).
- b) Zeigen Sie, dass für  $\eta(\vec{r}) = \delta(\vec{r}) \to F(\vec{q}) = 1$ .
- c) Wie vereinfacht sich der Zusammenhang zwischen Formfaktor und Dichte im Fall kugelsymmetrischer Verteilungen  $\eta(r)$ ?
- d) Der mittlere quadratische Radius ist definiert als  $\langle r^2 \rangle = 4\pi \int\limits_0^\infty dr \, r^4 \eta(r)$ . Zeigen Sie den Zusammenhang:  $\langle r^2 \rangle = -6 \left. \frac{dF(q^2)}{d(q^2)} \right|_{q^2=0}$ .

## 2. Eigenfunktionsdarstellung der retardierten Greenschen Funktion:

Der retardierte Greensche Operator (Propagator)  $\hat{G}^+(t)$  (mit  $\hat{G}^+(t) = 0$  für t < 0) zur zeitabhängigen Schrödinger Gleichung ist definiert über

$$\left(i\hbar \frac{\partial}{\partial t} - \widehat{H}\right) \widehat{G}^{+}(t) = \delta(t) \widehat{\mathbf{1}}. \tag{1}$$

Der zeitunabhängige Hamiltonoperator  $\widehat{H}$  besitzt das Spektrum  $\widehat{H}|n\rangle = E_n|n\rangle$ , wobei n abkürzend für einen Satz von Quantenzahlen steht. Im Fall des Hamiltonoperators  $\widehat{H}_0 = \widehat{T}$  für ein freies Teilchen steht n für die Impulsquantenzahlen  $\vec{k}$ , somit  $|n\rangle$  für die Impulseigenzustände  $|\vec{k}\rangle$  und  $E_n$  für die Eigenenergien  $E_{\vec{k}} = \frac{\hbar^2}{2m} \vec{k}^2$ . Die Wellenfunktionen  $\Phi_n(\vec{r}) = \langle \vec{r} | n \rangle$  bzw.  $\Phi_n^*(\vec{r}) = \langle n | \vec{r} \rangle$  bilden ein vollständiges Orthonormalsystem.

a) Zeigen Sie, dass der bezüglich der Zeit t Fourier-transformierte Propagator  $\widehat{G}^+(E)$ , welcher die Operatorgleichung  $\left(E-\widehat{H}\right)$   $\widehat{G}^+(E)=\widehat{\mathbf{1}}$  erfüllt, die (abstrakte) Spektraldarstellung

$$\widehat{G}^{+}(E) = \sum_{n} \frac{|n\rangle\langle n|}{E - E_n + i\epsilon}$$

besitzt, wobei die  $i\epsilon$ -Vorschrift die Kausalitätsforderung gewährleistet. Überzeugen Sie sich auch von der Gültigkeit der Integraldarstellung der  $\Theta$ -Funktion

$$\Theta(t) = \lim_{\epsilon \to 0} -\frac{1}{2\pi i} \int_{-\infty}^{+\infty} d\omega' \, \frac{e^{-i\omega' t}}{\omega' + i\epsilon} \, .$$

b) Zeigen Sie, dass die zeitabhängige, retardierte Greensche Funktion zur Schrödinger Gleichung (1) in Ortsdarstellung durch

$$G^{+}(\vec{r}, \vec{r}'; t) = \langle \vec{r} | \widehat{G}^{+}(t) | \vec{r}' \rangle = -\frac{i}{\hbar} \Theta(t) \sum_{n} e^{-\frac{i}{\hbar} E_{n} t} \Phi_{n}(\vec{r}) \Phi_{n}^{*}(\vec{r}')$$

gegeben ist.

c) Betrachten Sie (in Anlehnung an die Vorlesung) nun konkret den Fall der freien Schrödinger-Gleichung und leiten Sie die retardierte Greensche Funktion  $G_0^+(\vec{r}-\vec{r}';t)$  durch Auswerten der (Fourier-)Rücktransformation her:

$$G_0^+(\vec{r} - \vec{r}';t) = \int_{-\infty}^{+\infty} \frac{dE}{2\pi} e^{-\frac{i}{\hbar}Et} \langle \vec{r} | \hat{G}_0^+(E) | \vec{r}' \rangle = \int_{-\infty}^{+\infty} \frac{dE}{2\pi} e^{-\frac{i}{\hbar}Et} \int d^3k \, \frac{\Phi_{\vec{k}}(\vec{r}')\Phi_{\vec{k}}^*(\vec{r}'')}{E - E_{\vec{k}} + i\epsilon} \,,$$

wobei  $\Phi_{\vec{k}}(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}/(2\pi)^{3/2}$ .