Problem set 3

to be discussed at 13:00h on 9th of June, 2011

see http://tu-dresden.de/physik/tqo/lehre

Ideal 1d-Bose-Gas in a harmonic trap (canonical ensemble) I

We denote with $\{n\}_N$ a set of occupation numbers n_ν with $\sum_{\nu=0}^\infty n_\nu = N$ (see the figure: $n_0=2, n_1=1, n_2=0, n_3=3, N=6$). Then the canonical partition function Z_N of N non-interacting Bosons in a one-dimensional harmonic trap (frequency ω) reads $Z_N=\sum_{\{n\}_N} \exp\left(-\beta E_{\{n\}_N}\right)$, where $E_{\{n\}_N}=\hbar\omega\sum_{\nu=0}^\infty n_\nu\nu$. In order to evaluate the partition function we choose a new way of summation: starting with the ground state, we assign an index i to each atom and denote with ν_i the corresponding energy level. For the situation in the figure, $\nu_1=0, \nu_2=0, \nu_3=1, \nu_4=3, \nu_5=3, \nu_6=3$.

- a) Show that $Z_N = \sum_{(\nu)_<} \exp\left(-\beta\hbar\omega\sum_{i=1}^N \nu_i\right)$, where the summation is extended over all ordered N-tuples $(\nu)_< = (\nu_1,\ldots,\nu_N)$ with $0 \le \nu_1 \le \nu_2 \le \ldots \le \nu_N < \infty$.
- b) Use a) to find $Z_N=\Pi_{i=1}^N(1-q^i)^{-1}$ with $q=e^{-\beta\hbar\omega}$.
- c) Determine average energy $\langle E \rangle$ and heat capacity $C = \frac{\partial \langle E \rangle}{\partial T}$ of the gas.
- d) What is the limiting behaviour of $\langle E \rangle$ and C for large temperatures $\frac{k_B T}{\hbar \omega} \gg 1$?

Ideal 1d-Bose-Gas in a harmonic trap (canonical ensemble) II

Here we determine the full distribution $P(N_0)$ of the ground state occupation number (same notations as above).

- a) Confirm that $P(N_0) = \frac{1}{Z_N} \sum_{\{n'\}_{N-N_0}} \exp\left(-\beta \hbar \omega E_{\{n'\}_{N-N_0}}\right)$ where the sum $\{n'\}$ runs over all occupation numbers of *excited* modes $(\nu > 0)$ with constraint $\sum_{\nu=1}^{\infty} n_{\nu} = N N_0$.
- b) Show that the probability $P_>(N_0)$ to find at least N_0 atoms in the ground state is $P_>(N_0)=\frac{Z_{N-N_0}}{Z_N}$. With the help of the results of the first problem find $P(N_0)=q^{N-N_0}\prod_{i=1}^{N_0}\left(1-q^{N-N_0+i}\right)$ (with $q=e^{-\beta\hbar\omega}$).
- c) Now consider low temperatures $\beta\hbar\omega(N-N_0)\gg 1$, and confirm: $\langle N_0\rangle=N-\left(\frac{k_BT}{\hbar\omega}\right)\ln(e^{\beta\hbar\omega}-1); \langle(\Delta N_0)^2\rangle=\left(\frac{k_bT}{\hbar\omega}\right)^2.$
- d) Compare to the corresponding expressions for the grand-canonical ensemble.

Please turn over !!!

Bose-Einstein condensation in a d=3 dimensional box ${\cal V}=L^3$

Below T_c the ground state with energy $\epsilon_0=0$ is macroscopically populated and requires special treatment, for instance $\langle N \rangle = \langle N_0 \rangle + \sum_{\vec{k} \neq 0} \langle n_{\vec{k}} \rangle$. This raises the question whether further lowlying states need special attention, too.

- a) Determine the energy ϵ_1 of the first excited state. How many such states are there?
- b) How does ϵ_1 scale with volume V and thus in the thermodynamic limit $(\frac{\langle N \rangle}{V} = \text{const})$ with particle number $\langle N \rangle$?
- c) Determine the occupation number $\langle n_1 \rangle$ for large $\langle N \rangle$ and confirm that indeed, $\langle n_1 \rangle$ may be neglected with respect to $\langle N_0 \rangle$ in that limit.

Bose gas in d=2 dimensional box $V=L^2$

As shown in the lectures, for a Bose gas in a d-dimensional box and for given $\langle N \rangle$, fugacity $z=e^{\beta\mu}$ is fixed by the equation

$$\frac{\Lambda^d \langle N \rangle}{V} = \frac{\Lambda^d}{V} \frac{z}{1-z} + g_{d/2}(z).$$

Here $\Lambda = \sqrt{2\pi\hbar^2/(mk_BT)}$ is the thermal de Broglie-wave length and $g_{\alpha}(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^{\alpha}}$ the Bose function introduced in the lectures.

- a) Show: there is *no* Bose-Einstein condensation in a box in d=2 dimensions, i.e. $\frac{\langle N_0 \rangle}{V} \to 0$ in the thermodynamic limit.
- b) Determine (for d=2) the ground state occupation number $\langle N_0 \rangle$ (in the thermodynamic limit) for low temperatures $\Lambda^2 \frac{\langle N \rangle}{V} \gg 1$.