Ultracold Quantum Gases

Walter Strunz, Institut für Theoretische Physik, TU Dresden, Sommersemester 2011

Problem set 3

Ideal $1 d$-Bose-Gas in a harmonic trap (canonical ensemble) I

We denote with $\{n\}_{N}$ a set of occupation numbers n_{ν} with $\sum_{\nu=0}^{\infty} n_{\nu}=N$ (see the figure: $n_{0}=2, n_{1}=1, n_{2}=0, n_{3}=3, N=6$). Then the canonical partition function Z_{N} of N non-interacting Bosons in a one-dimensional harmonic trap (frequency ω) reads $Z_{N}=$ $\sum_{\{n\}_{N}} \exp \left(-\beta E_{\{n\}_{N}}\right)$, where $E_{\{n\}_{N}}=\hbar \omega \sum_{\nu=0}^{\infty} n_{\nu} \nu$. In order to evaluate the partition function we choose a new way of summation: starting with the ground state, we assign an index i to each atom and denote with ν_{i} the corresponding energy level. For the situation in the figure, $\nu_{1}=0, \nu_{2}=0, \nu_{3}=1, \nu_{4}=3, \nu_{5}=3, \nu_{6}=3$.
a) Show that $Z_{N}=\sum_{(\nu)_{<}} \exp \left(-\beta \hbar \omega \sum_{i=1}^{N} \nu_{i}\right)$, where the summation is extended
 over all ordered N-tuples $(\nu)_{<}=\left(\nu_{1}, \ldots, \nu_{N}\right)$ with $0 \leq \nu_{1} \leq \nu_{2} \leq \ldots \leq \nu_{N}<\infty$.
b) Use a) to find $Z_{N}=\Pi_{i=1}^{N}\left(1-q^{i}\right)^{-1}$ with $q=e^{-\beta \hbar \omega}$.
c) Determine average energy $\langle E\rangle$ and heat capacity $C=\frac{\partial\langle E\rangle}{\partial T}$ of the gas.
d) What is the limiting behaviour of $\langle E\rangle$ and C for large temperatures $\frac{k_{B} T}{\hbar \omega} \gg 1$?

Ideal $1 d$-Bose-Gas in a harmonic trap (canonical ensemble) II

Here we determine the full distribution $P\left(N_{0}\right)$ of the ground state occupation number (same notations as above).
a) Confirm that $P\left(N_{0}\right)=\frac{1}{Z_{N}} \sum_{\left\{n^{\prime}\right\}_{N-N_{0}}} \exp \left(-\beta \hbar \omega E_{\left\{n^{\prime}\right\}_{N-N_{0}}}\right)$ where the sum $\left\{n^{\prime}\right\}$ runs over all occupation numbers of excited modes $(\nu>0)$ with constraint $\sum_{\nu=1}^{\infty} n_{\nu}=N-N_{0}$.
b) Show that the probability $P_{>}\left(N_{0}\right)$ to find at least N_{0} atoms in the ground state is $P_{>}\left(N_{0}\right)=$ $\frac{Z_{N-N_{0}}}{Z_{N}}$. With the help of the results of the first problem find $P\left(N_{0}\right)=q^{N-N_{0}} \Pi_{i=1}^{N_{0}}\left(1-q^{N-N_{0}+i}\right)$ (with $q=e^{-\beta \hbar \omega}$).
c) Now consider low temperatures $\beta \hbar \omega\left(N-N_{0}\right) \gg 1$, and confirm:
$\left\langle N_{0}\right\rangle=N-\left(\frac{k_{B} T}{\hbar \omega}\right) \ln \left(e^{\beta \hbar \omega}-1\right) ;\left\langle\left(\Delta N_{0}\right)^{2}\right\rangle=\left(\frac{k_{b} T}{\hbar \omega}\right)^{2}$.
d) Compare to the corresponding expressions for the grand-canonical ensemble.

Please turn over !!!

Bose-Einstein condensation in a $d=3$ dimensional box $V=L^{3}$

Below T_{c} the ground state with energy $\epsilon_{0}=0$ is macroscopically populated and requires special treatment, for instance $\langle N\rangle=\left\langle N_{0}\right\rangle+\sum_{\vec{k} \neq 0}\left\langle n_{\vec{k}}\right\rangle$. This raises the question whether further lowlying states need special attention, too.
a) Determine the energy ϵ_{1} of the first excited state. How many such states are there?
b) How does ϵ_{1} scale with volume V and thus in the thermodynamic limit ($\frac{\langle N\rangle}{V}=$ const $)$ with particle number $\langle N\rangle$?
c) Determine the occupation number $\left\langle n_{1}\right\rangle$ for large $\langle N\rangle$ and confirm that indeed, $\left\langle n_{1}\right\rangle$ may be neglected with respect to $\left\langle N_{0}\right\rangle$ in that limit.

Bose gas in $d=2$ dimensional box $V=L^{2}$

As shown in the lectures, for a Bose gas in a d-dimensional box and for given $\langle N\rangle$, fugacity $z=e^{\beta \mu}$ is fixed by the equation

$$
\frac{\Lambda^{d}\langle N\rangle}{V}=\frac{\Lambda^{d}}{V} \frac{z}{1-z}+g_{d / 2}(z)
$$

Here $\Lambda=\sqrt{2 \pi \hbar^{2} /\left(m k_{B} T\right)}$ is the thermal de Broglie-wave length and $g_{\alpha}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{\alpha}}$ the Bose function introduced in the lectures.
a) Show: there is no Bose-Einstein condensation in a box in $d=2$ dimensions, i.e. $\frac{\left\langle N_{0}\right\rangle}{V} \rightarrow 0$ in the thermodynamic limit.
b) Determine (for $d=2$) the ground state occupation number $\left\langle N_{0}\right\rangle$ (in the thermodynamic limit) for low temperatures $\Lambda^{2} \frac{\langle N\rangle}{V} \gg 1$.

