Ultracold Quantum Gases

Walter Strunz, Institut für Theoretische Physik, TU Dresden, Sommersemester 2011

Problem set 5

'Black Holes" in Bose-Einstein condensates

In the hydrodynamic limit the solution of the time dependent Gross-Pitaevskii equation with external potential $V(\mathbf{x})$ is written as $\psi(\mathbf{x}, t)=\sqrt{\rho(\mathbf{x}, t)} e^{i \phi(\mathbf{x}, t)}$. Then one derives equations for ρ and ϕ, neglecting gradients of ρ.
a) Linearise these equations around a stationary solution $\psi_{s}(\mathbf{x}, t)=\sqrt{\rho_{s}(\mathbf{x})} e^{i \phi_{s}(\mathbf{x})-i \mu t}$ of the GP equation; i.e. write $\rho=\rho_{s}+\delta \rho$ and $\phi=\phi_{s}+\delta \phi$ with small $\delta \rho$ and $\delta \phi$. Notice that in contrast to the lectures, we here allow for a velocity field $\mathbf{V}(\mathbf{x})=\frac{\hbar}{m} \nabla \phi_{s}(\mathbf{x})$ different from zero.
b) Eliminate $\delta \rho$ to derive of a wave equation for $\delta \phi$. Show that it can be written in the form $\partial_{\mu}\left(\sqrt{-g} g^{\mu \nu} \partial_{\nu} \delta \phi\right)=0\left(\mu, \nu=0, \ldots, 3\right.$ and $\partial_{0}=\partial_{t}, \partial_{1}=\partial_{x}, \ldots$, summation convention $)$. Here, $g_{\mu \nu}$ is the $(4 \times 4)-$ metric tensor

$$
\left(g_{\mu \nu}\right)=c\left(\begin{array}{cc}
-\left(c^{2}-\mathbf{V}^{2}\right) & -\mathbf{V}^{T} \\
-\mathbf{V} & \mathbf{1}
\end{array}\right)
$$

with $c=c(\mathbf{x})=\frac{\hbar}{m} \sqrt{4 \pi a \rho_{s}(\mathbf{x})}$ the local speed of sound and $\mathbf{V}=\mathbf{V}(\mathbf{x})=\frac{\hbar}{m} \nabla \phi_{s}(\mathbf{x})$ the local velocity field.
c) Interpret the above result for the dynamics of phase fluctuations $\delta \phi$. Draw an analogy to black hole physics.
d) See Garay, Anglin, Cirac, Zoller: Phys. Rev. Lett. 85, 6443 (2000) and Phys. Rev. A 63, 023611 (2001) (find these articles on the materials web page).

Please turn over!

Bogoljubov transformation

In order to discuss excitations from a condensate of an interacting homogenous gas $\left(V=L^{3}\right)$, we write $\hat{\psi}(\vec{r})=\psi_{0}+\hat{\phi}(\vec{r})$, with the condensate $\psi_{0}=\sqrt{n_{0}}$ a real number and n_{0} the condensate density. The total energy is expanded in powers of $\hat{\phi}$. Choose momentum representation and show that the second order contribution H_{2} with the usual interaction parameter $g=\frac{4 \pi \hbar^{2} a}{m}$ reads

$$
H_{2}=\sum_{\vec{k}} \prime\left\{\left(\frac{\hbar^{2} k^{2}}{2 m}+g n_{0}\right) a_{\vec{k}}^{+} a_{\vec{k}}+\frac{g n_{0}}{2}\left(a_{\vec{k}} a_{-\vec{k}}+a_{\vec{k}}^{+} a_{-\vec{k}}^{+}\right)\right\}
$$

Define new Bosonic quasi-particle creation and annihilation operators $\alpha_{\vec{k}}, \alpha_{\vec{k}}^{+}$through the ansatz $a_{\vec{k}}=u_{\vec{k}} \alpha_{\vec{k}}-v_{\vec{k}} \alpha_{-\vec{k}}^{+}$. Determine the coefficients $u_{\vec{k}}, v_{\vec{k}}$ such that H_{2} becomes diagonal $H_{2}=$ $\sum_{\vec{k}}{ }^{\prime} E_{\vec{k}} \alpha_{\vec{k}}^{+} \alpha_{\vec{k}}+\Delta C$ and read off the quasi-particle excitation energies $E_{\vec{k}}$.

Attractive interaction II

Discuss the quasiparticle excitation spectrum above for the case of attractive interaction $a<0$. Consider finite values of N_{0} and V, and also the thermodynamic limit.

