Quantum Stochastic Processes

Walter Strunz, Institut für Theoretische Physik, TU Dresden, Wintersemester 2009/2010

Problem set 6

to be discussed on Thursday, January 21th, 2010 see http://tu-dresden.de/phvsik/tgo/lehre

Stratonovich stochastic differential equations

For both linear and non-linear Ito stochastic Schrödinger equation of Problem set 5, determine the corresponding Stratonovich version. Show that the nonlinear Stratonovich equation preserves the norm of the state.

Quantum harmonic oscillator

For $H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 q^2$ with $[q, p] = i\hbar$ determine the variances $\langle q^2 \rangle$, $\langle p^2 \rangle$ in the thermal state $\sim e^{-H/kT}$.

Classical oscillator model for Brownian motion

Consider the classical Hamiltonian $H_{tot} = H_{sys} + H_{int} + H_{env}$ with

$$\begin{split} H_{\rm sys} &= H_{\rm sys}(q,p) = \frac{p^2}{2m} + V(q) \\ H_{\rm int} &= H_{\rm int}(q,p,q_{\lambda},p_{\lambda}) = \frac{1}{2} \sum_{\lambda} m_{\lambda} \omega_{\lambda}^2 \left(q_{\lambda} - \frac{g_{\lambda}}{m_{\lambda} \omega_{\lambda}^2} q \right)^2 \\ H_{\rm env} &= H_{\rm env}(p_{\lambda}) = \sum_{\lambda} \left\{ \frac{p_{\lambda}^2}{2m_{\lambda}} \right\}, \end{split}$$

where the g_{λ} are some coupling constants. Show that the model leads to a generalized Langevintype equation

$$m\ddot{q}(t) + \int_0^t ds \,\kappa(t-s)\dot{q}(s) + V'(q(t)) = F(t)$$

for the position q(t) of the Brownian particle (in the derivation, one term is dropped; why?). Next assume a thermal initial state for the environmental degrees of freedom and determine the corresponding averages $\langle F(t) \rangle$, $\langle F(t)F(s) \rangle$.

How do we recover Langevin's original equation?

Quantum noise

Now think of H_{tot} of the last problem to be the Hamiltonian of a quantized system. Along the same lines, derive an expression for the quantized Langevin force $\hat{F}(t)$ and determine $\langle \hat{F}(t) \rangle$, $\langle \hat{F}(t) \hat{F}(s) \rangle$, accordingly.