Institut für

Theoretische Physik Prof. Dr. W. Strunz

PD Dr. G. Plunien

Thermodynamik + Statistik WS 10/11

http://tu-dresden.de/physik/tqo/lehre

8. Übung

1. Spins im Magnetfeld:

Gegeben sei ein isoliertes System von N nichtwechselwirkenden, unabhängigen Spins in einem konstanten externen Magnetfeld. Die Energie eines einzelnen Spins \uparrow (bzw. \downarrow) sei $\varepsilon_{\uparrow} = \frac{\varepsilon_0}{2}$ (bzw. $\varepsilon_{\downarrow} = -\frac{\varepsilon_0}{2}$).

- a) Wie groß sind bei vorgegebener Gesamtenergie E die Wahrscheinlichkeiten f_{\uparrow} bzw. f_{\downarrow} für einen einzelnen Spin \uparrow bzw. \downarrow ?
 - Bestimmen Sie die Anzahl $\Omega(E)$ der möglichen Zustände mit Gesamtenergie E innerhalb des Energieintervalls $[E-\delta E, E]$.
- b) Berechnen Sie die Entropie S(E) des Systems. Wie lautet die Entropie als Funktion der Variablen $\frac{E}{E_0}$ mit $E_0 = N\varepsilon_0$?
- c) Im Rahmen der statistischen Deutung der Thermodynamik wird die Temperatur T eines (abgeschlossenen) Systems im thermodynamischen Gleichgewicht über $\frac{1}{T} = \frac{\partial S(E)}{\partial E}$ definiert.
 - Zeigen Sie, daß gilt: $\frac{f_{\uparrow}}{f_{\downarrow}} = e^{-\varepsilon_0/k_BT}$. Wie lauten folglich f_{\uparrow} und f_{\downarrow} in Abhängigkeit von T?
- d) Für ein System von Spin- $\frac{1}{2}$ -Teilchen im Magnetfeld B ist $\varepsilon_0 = g\mu_B B$ gegeben (g gyromagnetischer Faktor, μ_B Bohr'sches Magneton). Berechnen Sie die Magnetisierung (totale magnetische Moment) \mathcal{M} des Systems. Was resultiert im Grenzfall $B \ll \frac{k_B T}{g\mu_B}$?

2. Maxwell-Boltzmann-Verteilung und mikrokanonische Gesamtheit:

Gegeben sei ein isoliertes, klassisches System bestehend aus N unterscheidbaren nichtwechselwirkenden Teilchen $(N\gg 1)$ in einer räumlichen Dimension endlicher Ausdehnung. Bei festem Wert der Gesamtenergie

$$E = \sum_{j=1}^{N} \frac{m_j}{2} v_i^2 = \sum_{j=1}^{N} \tilde{p}_j^2 \equiv \tilde{p}^2 \equiv R^2 \quad \tilde{p}_j = \sqrt{\frac{m}{2}} v_j = \frac{p_j}{\sqrt{2m}}$$
 (1)

werden die möglichen Mikrozustände durch Koordinaten $\{\tilde{p}_j, j=1,2,\ldots,N\}$ im Impulsraum sowie durch entsprechende Koordinaten $\{x_j, j=1,2,\ldots,N\}$ im Ortsraum charakterisiert. Für eine feste Energie $E=R^2$ wird die Zeitevolution des N-Teilchensystems durch eine Trajektorie \tilde{p}^2 auf der Oberfläche einer N-Sphäre \mathbb{S}^N im Impulsraum beschrieben. Die Oberfläche \mathcal{S}_N ist durch den Radius $R=\sqrt{E}$ bestimmt: $\mathcal{S}_N(R)=\frac{2\pi^{\frac{N}{2}}}{\Gamma(\frac{N}{2})}R^{N-1}$.

Unter Bezugnahme auf die Ergodenhypothese nehmen wir an, daß jeder Mikrozustand (Punkt $\vec{p}^2 \in \mathbb{S}^N$) des isolierten N-Teilchensystems – behandelt als mikrokanonisches Ensemble – gleichwahrscheinlich ist. Die Wahrscheinlichkeit $f(\tilde{p}_i) d\tilde{p}_i$ dafür, das i-te Teilchen mit der (Impuls-)Koordinate \tilde{p}_i im Intervall $[\tilde{p}_i, \tilde{p}_i + d\tilde{p}_i]$ zu finden, ist proportional zu der Schnitt-fläche durch die N-Sphäre, als Menge aller Punkte \vec{p}^2 mit Impulskomponente \tilde{p}_i .

a) Zeigen Sie, daß die normierte Wahrscheinlichkeitsverteilung $f(\tilde{p}_i)$ durch die Maxwell-Boltzmann-Verteilung gegeben ist:

$$f(\tilde{p}_i) = \frac{1}{\sqrt{2\pi\epsilon}} e^{-\frac{\tilde{p}_i}{2\epsilon}}, \qquad \int_{-R}^{R} d\tilde{p}_i f(\tilde{p}_i) = 1.$$
 (2)

 $\epsilon = E/N$ ist die mittlere Energie pro Teilchen.

Hinweise:

- Besitzt das *i*-te Teilchen die Impulskoordinate \tilde{p}_i , so teilen sich die übrigen (N-1) Teilchen die Energie $E' \equiv R'^2 = R^2 \tilde{p}_i^2$.
- Die Menge aller Mikrozustände des (N-1)-Teilchensystems liegt auf der Oberfläche der (N-1)-Sphäre charakterisiert durch $\mathcal{S}_{N-1}(R')$.
- Bezugnehmend auf die hypersphärischen Koordinaten lässt sich die (Kartesische) Koordinate $\tilde{p}_i \in [-R, R]$ als ein weiterer (Polar-)Winkel θ beschreiben, der definiert ist über:

$$R^2 \cos^2 \theta = R^2 - \tilde{p}_i^2 \quad \text{mit} \quad \theta \in [-\frac{\pi}{2}, \frac{\pi}{2}].$$

• Zeigen Sie, daß gilt:

$$S_N(R) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \, R \, S_{N-1}(R \cos \theta) \,. \tag{3}$$

Um dies zu zeigen, verwenden Sie möglicherweise die Substitution $\xi = \sin \theta = \frac{\tilde{p}_i}{R}$, um das

Integral $\int_0^1 d\xi \, (1-\xi^2)^{\frac{N-1}{2}-1}$ auf die berühmte Euler'sche Beta-Funktion zurückzuführen:

$$B(\alpha, \beta) = \int_{0}^{1} dx \, x^{\alpha - 1} (1 - x)^{\beta - 1} = \frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha + \beta)}.$$

• Identifizieren Sie mittels Gl. (3) und (2) zunächst die normierte Verteilung

$$f_N(\tilde{p}_i) = \frac{C_N}{R} \left(1 - \frac{\tilde{p}_i^2}{R^2}\right)^{\frac{N-3}{2}} \quad \text{mit} \quad C_N = \frac{1}{\sqrt{\pi}} \frac{\Gamma(\frac{N}{2})}{\Gamma(\frac{N-1}{2})}$$

und überführen Sie diese im Grenzfall $N \to \infty$ in die Maxwell-Verteilung (2).

b) Berechnen Sie die Entropie $S=-Nk_B\int dp\,f(p)\,\ln(f(p))$ sowie die Temperatur T um letztlich die übliche Form für die Maxwell'sche Geschwindigkeitsverteilung (in einer Dimension) zu erhalten:

$$g(v) = \sqrt{\frac{m}{2\pi \, k_B T}} \, e^{-\frac{m \, v^2}{2 \, k_B T}} \, . \label{eq:gv}$$

(Literaturhinweis: R. López-Ruiz, X. Calbet, American Journal of Physics, **75** (8), 752 (2007))