

Faculty of Physics

PHYSICS COLLOQUIUM

Speaker: **Prof. Ulrich Kortz** School of Science, Constructor University,

Bremen

Topic:From Polyoxotungstates to Polyoxopalladates: Synthesis, Structure
and Magnetic Properties

Time and
place:Tuesday, January 7, 2025, **2:50 pm** – hybrid eventThe colloquium will be held in REC/C213.
Online participation possible:
Zoom-Meeting: Meeting-ID: 631 3817 8900 / passcode: PC-WiSe24
https://tu-dresden.zoom-x.de/j/63138178900?pwd=E3ujrdyvInABCPexxEhG5XErr7Cv5B.1

Host: Prof. Dmytro Inosov

- Polyoxometalates (POMs) are discrete, anionic metal-oxo clusters with a diverse Abstract: compositional range, enormous structural variety, and a multitude of physicochemical properties including magnetism. Examples of classical POMs are the Keggin (e.g. $[SiMo_{12}O_{40}]^{4-}$) and Dawson ions (e.g. $[P_2W_{18}O_{62}]^{6-}$), but besides polyoxotungstates and molybdates also polyoxovanadates, -niobates and -tantalates (e.g. $[MV_6O_{19}]^{8}$, M = V, Nb, Ta) are known. A few POMs appear in nature as minerals (such as sherwoodite Ca_{4.5}[AlV₁₄O₄₀]), whereas the number of POMs synthesized in the laboratory is enormous. For the Keggin- and Dawson-type polyoxotungstes derivatives can be made by the incorporation of d or f block metal ions, including paramagnetic ones, and thereby engineering magnetic POMs. In fact, it was possible to incorporate up to 20 guest metal ions into the wheel-shaped POM host $\{P_8W_{48}\}$, resulting in $\{Cu_{20}P_8W_{48}\}$ and $\{Fe16P_8W_{48}\}$. The spin-spin coupling of the oxo/hydroxo-bridged magnetic guest ions can be investigated, and in some cases molecular magnetism was observed (e.g. $\{Co_{16}P_8W_{36}\}$). In 2008 the class of polyoxopalladates(II) (POPs) was developed with the discovery of the cube-shaped [Pd₁₃As8O₄₀]₁₄₋, and then developed further systematically, resulting in different structure types such as star, open-shell, bowl, dumbbell, and some derivatives exhibited interesting magnetic properties.
- *Bio:* 1983-1986: Study of Chemistry (B.Sc.), Giessen University, Germany / 1986-1989: Study of Chemical Engineering (M.Sc.), Darmstadt University, Germany (thesis title: Encapsulation of Biologically Active Substances in Polyelectrolyte Microparticles) / 1990-1995: Study of Chemistry (Ph.D.), Georgetown University, USA (thesis title: Diphosphate Complexes of Polyoxotungstates and Polyoxomolybdates) / 1995-1996: Postdoc, Universitá di Firenze, Italy / 1996-1997: Postdoc, Université de Versailles, France / 1997-2001: Assistant Professor, American University of Beirut

(AUB), Lebanon / 2001-2002: Associate Professor, American University of Beirut, Lebanon / 2002-2007: Associate Professor, International University Bremen / (IUB)2007-: Professor, Jacobs University Bremen (formerly IUB).

Get-Together:

The colloquium will be followed directly by a Get-Together with Prof. Ulrich Kortz in REC/B101 (around 4:00 p.m.). All students and staff are invited to talk to the speaker and discuss perspectives on the academic career, work-life balance and the professional life as a scientist.