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1 Tasks

To be determined:

1. The horizontal component 𝐻h of the Earth’s magnetic field according to Gauss;

2. the vertical component 𝐻v of the Earth’s magnetic field;

3. the magnetic moment 𝑚* and the polarization 𝐽* of a magnet.

2 General Principles

2.1 Magnetic Moment, Dipole Field, and Gauss Positions

The quotient of the magnetic moment 𝑚⃗* of a permanent magnet and its volume 𝑉 is the polari-
zation 𝐽* = 𝑚⃗*/𝑉 . For high-quality permanent magnets, in weak external magnetic fields (e.g., in
the Earth’s field) and at constant temperature, 𝐽* or 𝑚⃗* can be considered constant.
A small permanent magnet (magnetic moment 𝑚⃗* = 𝑚*𝑒⃗𝑥) is oriented in the east-west direction.
We consider its magnetic field at a greater distance 𝑥 or 𝑦 from the center. If for the bar magnet
𝐿
𝑥 ≪ 1 or 𝐿

𝑦 ≪ 1 (dipole approximation, see Appendix, Fig. 5) holds, then the 𝑥-components of
the magnetic field strength 𝐻⃗ at two specific positions – the axial and equatorial (Gauss) positions
(GP, deutsch: Gaußsche Hauptlage (GHL) Fig. 1) – are given by

Axial GP (1. GHL) : 𝐻(1)
𝑥 =

𝑚*

2 𝜋 𝑥̃3
, or Equatorial GP (2. GHL) : 𝐻(2)

𝑥 = − 𝑚*

4 𝜋 𝑦3
. (1)

2.2 First Experiment: Superposition of Dipole Field and Earth’s Field

A compass needle freely rotatable in the
horizontal (𝑥𝑦) plane aligns itself paral-
lel to the horizontal component 𝐻h of
the Earth’s field in the 𝑦 (north) di-
rection. If the magnet is then placed
horizontally with its magnetic moment
𝑚⃗* parallel to the east-west direction
(𝑚⃗* = 𝑚*𝑒⃗𝑥) at distances 𝑥̃ or 𝑦 from
the center of the compass needle (i.e.,
successively at the axial and equatori-
al GP, see Fig. 1), the needle turns to
align with the resultant of the Earth’s
field (𝐻h) and the dipole field (𝐻(1)

𝑥 or
𝐻

(2)
𝑥 ).

Fig. 1: Arrangement of the bar magnet relative to
the compass needle for the axial and equatorial GP

The needle deflects by the respective angles 𝛿(1) or 𝛿(2) from the N-S direction (Fig. 1). The following
relations apply:

tan 𝛿(1) =
𝐻

(1)
𝑥

𝐻h
(𝑎) ; tan 𝛿(2) =

𝐻
(2)
𝑥

𝐻h
(𝑏) . (2)

Using Eq. (1), one obtains for the quotient of the two unknowns (𝐻h and 𝑚*):
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𝑚*

𝐻h
= 2 𝜋 𝑥̃3 tan 𝛿(1) = 4 𝜋 𝑦3 tan 𝛿(2) . (3)

2.3 Second Experiment: Torsional Oscillations

The same bar magnet is now suspended by a long, thin thread so that it hangs horizontally. If
it is deflected from the north-south direction by a small angle 𝛼 with respect to the horizontal
component of the Earth’s field 𝐻⃗h, a restoring torque 𝑀⃗mech acts on it:

|𝑀⃗mech| = |𝑚⃗* × 𝐵⃗h| = 𝜇0|𝑚⃗* × 𝐻⃗h| = 𝜇0𝑚
*𝐻h sin𝛼 . (4)

After being released, the bar magnet begins to oscillate about the north-south direction. The os-
cillation period 𝑇0 is measured. The equation of motion (5a) simplifies for small deflections (5b for
𝛼̂ < 0.1 ; ≈ 6∘, see Appendix)

𝐽T
d2𝛼

d𝑡2
= −𝜇0𝑚

*𝐻h sin𝛼 (𝑎) ;
d2𝛼

d𝑡2
+ 𝜇0

𝑚*𝐻h

𝐽T
𝛼 ≈ 0 (𝑏) . (5)

With 𝐽T as the moment of inertia with respect to the axis of rotation, the solution of Eq. (5b)
(harmonic oscillation) is 𝛼(𝑡) = 𝛼̂ cos𝜔0 𝑡 , where

𝜔2
0 =

4𝜋2

𝑇 2
0

=
𝜇0𝑚

*𝐻h

𝐽T
(𝑎) or 𝑇0 = 2𝜋

√︃
𝐽T

𝜇0𝑚*𝐻h
(𝑏) . (6)

2.4 Horizontal Component

From Eq. (6b), the product of the two unknown quantities is obtained as

𝑚*𝐻h =
4𝜋2𝐽T
𝜇0𝑇 2

0

. (7)

It is convenient to eliminate the magnetic moment 𝑚* from Eqs. (7) and (3). This yields for the
horizontal component:

𝐻h =

√︃
2𝜋𝐽T

𝜇0 tan 𝛿(1)𝑥3𝑇 2
0

=

√︃
𝜋𝐽T

𝜇0 tan 𝛿(2)𝑦3𝑇 2
0

. (8)

2.5 Moment of Inertia

For simple geometries of homogeneous bodies, the moment of inertia 𝐽T with respect to convenient
axes (e.g., the principal axes of inertia) can be calculated. For a horizontally suspended circular
cylinder of mass 𝑚, length 𝐿, and radius 𝑅 rotating about its vertical symmetry axis (see Appendix),
the following holds:

𝐽T = 𝑚

(︂
𝐿2

12
+

𝑅2

4

)︂
. (9)
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Consider the limits 𝑅 → 0 or 𝐿 → 0!

Thus, from the two equations (3, 7 or 8), solely from mechanical measurements, the magnetic
field strength (𝐻h) and the magnetic moment (𝑚*) can be determined.

2.6 Vertical Component

With suitable angle-measuring instruments (inclinometers), the deviation of 𝐻⃗ from the horizontal
– that is, the inclination angle 𝛽 – can be determined.

With cos𝛽 = 𝐻h/|𝐻⃗| and tan𝛽 = 𝐻v
𝐻h

, the vertical component follows as 𝐻v = 𝐻h tan𝛽.

3 Appendix

3.1 On the Earth’s Magnetic Field

3.1.1 On the Origin of the Earth’s Magnetic
Field

There are various hypotheses and models con-
cerning the origin of the Earth’s magnetic field
[3]. It appears well established that circulating
convection currents of viscous plasma with
a suitable topology exist between the solid
inner core and the fluid outer core at roughly
𝑅E/2. These currents can stabilize themselves,
whereby the existing field, through Lorentz
forces, can increase the charge-carrier density
and thereby the current and the Earth’s field
itself [3, 4]. The relative velocities between the
solid core and the surrounding liquid layer are
on the order of 1m/year [4].
These effects are subject to fluctuations, which
manifest as changes in the magnitude and
direction of 𝐻⃗ (see below).
In 1991, the Earth’s magnetic field could be
roughly approximated by a geocentric dipole
field whose axis deviates by about 11∘ from
the geographic north-south direction [3] (see
Fig. 2 a).

Fig. 2: a. Earth’s field as a dipole field [3];
b. Distortion by the solar wind [4]

The magnitude corresponds to a dipole moment at the Earth’s center produced by an equivalent
current loop of 𝑚*

𝑒/𝜇0 ≈ 8 ·1022 Am2. Due to the solar wind (predominantly electrons and protons),
the Earth’s field is strongly distorted at greater distances (the deflected charged particles produce
additional magnetic fields), i.e., it is flattened on the dayside and stretched on the nightside (Fig. 2b).
This deformation co-rotates with the Earth and causes part of the daily fluctuations in field strength
(on the order of a few percent). During periods of strong solar activity (magnetic storms), much
larger fluctuations occur (exceeding 10%).
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3.1.2 Global View of the Earth’s Magnetic Field

Figures 3a and b show, in Mercator projection, the magnitudes of |𝐻⃗| (a) and 𝐻h (b) at the Earth’s
surface (1980, [3]). Significant deviations from the pure dipole model, as well as the presence of
poles and auxiliary poles, are visible.

Fig. 3: Lines of equal total (a) and horizontal intensity (b) of the Earth’s magnetic field in
Mercator projection, measured in 1980 [3]; the unit for 𝜇0 ·𝐻 is nT

3.1.3 Long-Term Fluctuations of the Earth’s Field

Since Gauss (around 1800) – and even earlier (e.g., Gilbert around 1600) – the Earth’s magnetic
field has been regularly measured. Its magnitude has been decreasing monotonically since 1800
(Fig. 4 a; will the field vanish in about 2000 years?). Information about earlier epochs is obtained



Versuch: MF General Principles Seite 6

by studying iron-bearing minerals and sediments.

Fig. 4: Temporal variations of the Earth’s magnetic field:
a. Decrease of the global moment 𝑚*

𝑒 over the past 200 years;
b. normal (present, black) and reversed polarity (white) in the past 5 · 106 years,

paleomagnetism, [3].

Through this paleomagnetism, the magnitude and direction of the Earth’s magnetic field during
the geological epoch in which the rock cooled below its Curie temperature (depending on rock type,
between 200 and 700 ∘C [3]) – that is, when it became ferro- or ferrimagnetic – can be inferred.
Over geological timescales, the field has undergone continuous fluctuations, also influenced by con-
tinental drift. When the dipole components fell below those of higher-order moments, a polarity
reversal could occur (as shown by model calculations [3]). The last confirmed polarity reversal
occurred about 0.7 · 106 years ago (Fig. 4b).

3.2 On the Dipole Approximation

The equations (1) can be approximately derived from the electric analog, even for smaller relative
distances 𝐿/𝑥 or 𝐿/𝑦. We therefore consider two point charges, +𝑄 and −𝑄, separated by 2𝑎 = 𝐿
(𝑚*𝑒⃗𝑥 = 𝑄𝐿𝑒⃗𝑥). The field strengths of the individual charges at a distance 𝑟⃗ are, according to
Coulomb:
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𝐸⃗ = ± 𝑄

4𝜋𝜖0

1

𝑟2
𝑟⃗

𝑟
; 𝐸 =

𝑄

4𝜋𝜖0𝑟2
. (10)

1st Principal Axis (Axial GP):
Along the connection (𝑥-) axis at the
observation point 𝑃 , 𝑟(+) = 𝑥− 𝐿

2 and
𝑟(−) = 𝑥 + 𝐿

2 (𝑎 = 𝐿
2 = half dipole

length). The total field strength produ-
ced by both point charges follows from
Eq. (10) (vector sum) as

𝐸
(1)
dipol =

𝑄

4𝜋𝜖0

[︂
1

(𝑥− 𝑎)2
− 1

(𝑥+ 𝑎)2

]︂
=

𝑄

4𝜋𝜖0

[︂
4𝑎𝑥

(𝑥4 − 2𝑎2𝑥2 + 𝑎4)

]︂
=

2 · 2𝑎𝑄
4𝜋𝜖0𝑥3

· 1

(1− 𝐿2

4𝑥2 )2

=
𝑚*

2𝜋𝜖0𝑥3
· 𝐹 (1)

corr(𝐿/𝑥) . (11)

2nd Principal Axis (Equatorial
GP):
Perpendicular to the connecting axis,
the relevant distance in Eq. (10) is 𝑟 =
(𝑎2+𝑦2)1/2. The resulting field strength
at point 𝑃 follows from the vector su-
perposition of 𝐸⃗(+) and 𝐸⃗(−) with

Fig. 5: Deviations from the ideal dipole field near the
dipole or cylindrical magnet: corresponding

correction factors 𝐹 (1) and 𝐹 (2) for two point charges
(Eqs. (11,13)) and for real cylinders (long 𝐿/𝐷 = 10;

short 𝐿 = 𝐷)

sin𝛽 =
𝑎√︀

𝑎2 + 𝑦2
=

𝐸(2)/2

𝐸0
; 𝐸0 =

𝑄

4𝜋𝜖0(𝑦2 + 𝑎2)
(12)

thus |𝐸(2)
dipol| =

2𝑄

4𝜋𝜖0(𝑦2 + 𝑎2)
· 𝑎

(𝑎2 + 𝑦2)1/2
=

𝑚*

4𝜋𝜖0𝑦3
· 1

(1 + 𝐿2

4𝑦2
)1/2

=
𝑚*

4𝜋𝜖0𝑦3
· 𝐹 (2)

corr(𝐿/𝑦) . (13)

As shown in Fig. 5, the correction factors 𝐹
(1)
corr and 𝐹

(2)
corr derived for two point charges correspond

approximately to those for a long cylinder, which can be computed by summing about 108 dipoles
over the cylinder volume. In the magnetic case, 𝜖0 is replaced by 𝜇0.

Note: A spherical magnet (approximated roughly by a cube or a ”short“ cylinder) produces a pure
dipole field at any distance (compare the correction factors for 𝐷 = 𝐿 in Fig. 5). Otherwise, the
dipole approximation requires 𝐿/𝑥 ≪ 1 or 𝐿/𝑦 ≪ 1, i.e. 𝐹corr → 1 (Fig. 5).

Example:

Let 𝐿 = 10 cm and 𝑥 or 𝑦 = 50 cm, i.e. 𝐿/𝑥 = 𝐿/𝑦 = 0.2.

From Fig. 5, the field values corrected by 𝐹corr would yield tan𝜗(1) about 2% too large (𝐹 = 1.02)
and tan𝜗(2) about 1.5% too small (𝐹 = 0.985). Hence, the determined 𝐻h value must be corrected
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according to Eq. (8) by approximately 1% downward (axial GP) or 0.75% upward (equatorial GP).
The corrections are opposite in sign for longer cylindrical magnets. It is therefore advisable to work
with both GP configurations.

3.3 Moment of Inertia

The so-called polar moment of inertia of a thin circular disk (axis = cylinder axis) is (for infinitesi-
mal d𝑚) 𝐽𝑃 = d𝑚 ·𝑅2/2. The equatorial moment of inertia (axis = diameter), 𝐽𝑎, is half of that:
d𝐽𝑎 = d𝑚 ·𝑅2/4.

For a long cylinder of length 𝐿, infinitesimal disks are arranged in series, and their equatorial
moments of inertia along the 𝑧-axis must be integrated. If the infinitesimal disk is displaced by 𝑧
parallel to the rotation axis, the parallel-axis theorem (Steiner?s theorem), in general,

𝐽𝐴 = 𝐽*
𝑠 +𝑚𝑠2 , (14)

here becomes with 𝐽*
𝑠 = d𝑚(𝑅

2

4 ): d𝐽T = d𝑚(𝑅
2

4 ) + d𝑚𝑧2. Integration yields

𝐽T = 𝐽𝑠 = (𝜌𝜋𝑅2)

∫︁ +𝐿/2

−𝐿/2
d𝑧(𝑅2/4 + 𝑧2)

= (𝜌𝜋𝑅2)(𝑅2/4 · [𝑧]+𝐿/2
−𝐿/2 + [

𝑧3

3
]
+𝐿/2
−𝐿/2)

= 𝜌𝜋𝑅2𝐿

[︂
𝑅2

4
+

𝐿2

12

]︂
. (15)

With 𝑚 = 𝜌𝜋𝑅2𝐿, Eq. (9) follows.

3.4 SI Units

1. 𝜇0 = 4𝜋 · 10−7 Vs
Am ;

2. Magnetic field strength:
a. [𝐻] = A

m ;
b. [𝜇0𝐻] = Vs

m2 = T (tesla);

3. Induction 𝐵; Magnetization 𝑀 ; Polarization 𝐽*:
𝐵 = 𝜇0𝐻 + 𝐽* = 𝜇0(𝐻 +𝑀); [𝜇0𝐻] = [𝐵] = [𝐽*] = Vs

m2 = T ;

4. Magnetic moment:
a. [𝑚*] = [𝑉 𝐽 ] = Vsm;

b. [𝑚** = 𝑚*

𝜇0
]= [VM] = Am2.

5. Note:

1 J = 1 VAs = 1 Nm = 1 kg·m2/s2
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4 Questions

1. Sketch, based on Fig. 2, a field line of the Earth’s magnetic field (𝐻⃗) for a geographic latitude
of about 50∘, and indicate the horizontal and vertical components.

2. From Fig. 3, obtain the value of 𝐻h for Central Europe and convert the unit nT into A/m.

3. Explain the equation of motion for torsional oscillations, including the solutions for small
amplitudes. On what does the oscillation period of the magnet in the Earth’s field depend?

4. What is meant by the (mass) moment of inertia? How is it calculated for a long rod about
each of its three principal axes? What are the equatorial and polar moments of inertia of a
thin circular disk?

5. How is the moment of inertia of a circular cylinder of length 𝐿 and diameter 2𝑅 calculated
with respect to all three principal axes?

6. What is Steiner´s theorem (parallel-axis theorem)?

7. How is the field strength calculated in electrostatics for

(a) a point charge, and

(b) a dipole;

and in magnetostatics for a dipole field? In which power of distance do the field strengths of
a point charge and a dipole decrease?

8. What are the axial and equatorial Gauss planes (Gaußsche Hauptlagen) with respect to the
field of a bar magnet?

9. How are the magnetic moment 𝑚* and the magnetic polarization 𝐽* related?

10. At what distance 𝑥 (e.g., from a neighboring workstation in the lab) must a magnet be placed
so that the magnetic field it produces changes the local horizontal component (e.g., 20 A/m)
by less than 0.1%? (see Eq. (1))

Example: Magnet volume 𝑉 = 2 cm3; polarization 𝐽* = 1 Vs/m2; 𝑚* = 2 · 10−6 Vsm.

Authorship

This laboratory manual was originally written by L. Jahn and revised by M. Kreller. Current
updates are made by the laboratory supervisors.
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