

Fakultät Physik

Physikalisches Grundpraktikum

Versuch: NF

Aktualisiert: am 7. Oktober 2025

Nichtleiter im Feld

Inhaltsverzeichnis

1	Ziel und Aufgabenstellung	1
2	Grundlagen 2.1 Dielektrika 2.2 Messtechnik	
3	Anhang 3.1 Kapazität eines Koaxialzylinders	
4	Durchführung	9

1 Ziel und Aufgabenstellung

Wichtige Kenngrößen eines Dielektrikums sind neben der Durchschlagsfestigkeit und dem Isolationswiderstand die Permittivitätszahl (auch als relative Permittivität, Dielektrizitätszahl oder relative Dielektrizitätskonstante bezeichnet) und der Verlustfaktor. Das Ziel des Versuchs besteht in der Bestimmung der Permittivitätszahl ϵ_r eines Nichtleiters. Zu diesem Zweck wird der Einfluss verschiedener fester Nichtleiter, die zwischen den Elektroden eines Kondensators gebracht werden, auf die Kapazität dieses Kondensators untersucht. Dazu gehört:

- 1. Einstellen, Beobachten und Dokumentieren von elektrischen Spannungsverläufen am Oszilloskop.
- 2. Festlegung des Kalibrierungsbereiches und Aufnahme der Kalibrierungskurve.
- 3. Bestimmung der Kapazität des Zylinderkondensators als Funktion der Dielektrikum-Fülltiefe und grafische Darstellung dieser Abhängigkeit.
- 4. Ermittlung der Permittivitätszahl ϵ_r

2 Grundlagen

2.1 Dielektrika

Bringt man zwischen die Platten eines Kondensators, der mit der Ladung Q aufgeladen wurde (und nun von der Spannungsversorgung getrennt ist), einen Isolator - ein sogenanntes Dielektrikum, so bleibt die Ladung Q auf den Platten konstant, die Spannung U zwischen den Platten sinkt. Der Grund dafür ist, dass die elektrische Feldstärke E im Plattenkondensator sinkt. Da diese proportional zur Spannung U zwischen den Platten ist, sinkt auch sie um den gleichen Faktor. Was ist der Grund für diese Verringerung der Stärke des elektrischen Feldes?

Werden elektrische Ladungen in ein elektrisches Feld gebracht, so erfolgt durch die Kraftwirkung auf diese Ladungen im Allgemeinen eine Verschiebung der Ladungen. In Isolatoren sind Ladungsträger jedoch nicht frei beweglich, sondern können nur innerhalb des Atoms oder Moleküls verschoben werden. Erst durch das "Anlegen" eines elektrischen Feldes werden in den Atomen eines Nichtleiters die Ladungsschwerpunkte der negativen Elektronenhüllen und der positiven Kerne getrennt. Unter der Wirkung des äußeren elektrischen Feldes werden diese Atome zu elektrischen Dipolen. Diese Dipole werden als induzierte Dipole bezeichnet, der Vorgang dieser Dipolbildung als Polarisierung.

Im Gegensatz dazu können in Molekülen die Ladungsschwerpunkte der negativen und positiven Ladungen auch ohne das Vorhandensein eines äußeren elektrischen Feldes getrennt sein. Aufgrund ihrer zufälligen Ausrichtung im Nichtleiter können diese elementaren Dipole erst durch das "Anlegen" eines äußeren elektrischen Feldes ausgerichtet und damit nachgewiesen werden. Unabhängig davon, ob die Dipole durch Polarisierung entstanden sind und sich im äußeren Feld ausrichten oder ob sich die permanenten Dipole nur im äußeren Felde ausrichten, wird die Vektorsumme aller elementaren Dipolmomente pro Volumeneinheit als Polarisation \vec{P} bezeichnet, bzw. anders formuliert, sind die durch das äußere elektrische Feld erzeugte Polarisationsladungen der Dichte ρ_{Pol} die Quellen der elektrischen Polarisation \vec{P} . Man beachte, dass in einfachen homogenen Dielektrika bei nicht zu großen elektrischen Feldern der Polarisationsvektor \vec{P} in Richtung des äußeren elektrischen Feldes \vec{E} zeigt, also

$$\vec{P} = \chi_e \epsilon_0 \vec{E}$$

 (χ_e) ist materialabhängig und heißt elektrische Suszeptibilität) und ein elektrisches Feld, welches nur durch die Polarisationsladungen bedingt würde, entgegen dem äußeren elektrischen Feld gerichtet ist. Für die Permittivität ϵ bzw. für die relative Permittivität oder auch Permittivitätszahl ϵ_r eines Mediums folgt damit

$$\epsilon = \epsilon_0 \epsilon_r = \epsilon_0 (1 + \gamma_e)$$

Das elektrische Feld \vec{E} wird im Dielektrikum um den Faktor ϵ_r geschwächt. Die Bezeichnung "Dielektrizitätskonstante" für die Permittivität ϵ und "relative Dielektrizitätskonstante" für die relative Permittivität oder für die Permittivitätszahl ϵ_r sollten besser vermieden werden, da es sich streng um keine Konstanten handelt, beide Größen zeigen eine starke Frequenzabhängigkeit, da es bei immer schnelleren Umpolungen des elektrischen Felds im Material zu Verlusteffekten kommt. Im vorliegenden Versuch beschränken wir uns jedoch auf geringe Frequenzen, so dass die Verluste durch das Umpolarisieren der Dielektrika vernachlässigt werden können und folgende anschauliche Erklärung das Verhalten der Dielektrika beschreibt. Die Dichte der freien Ladungen im Kondensator mit und ohne Dielektrikum bleibt unverändert. Wie in Abb. 1

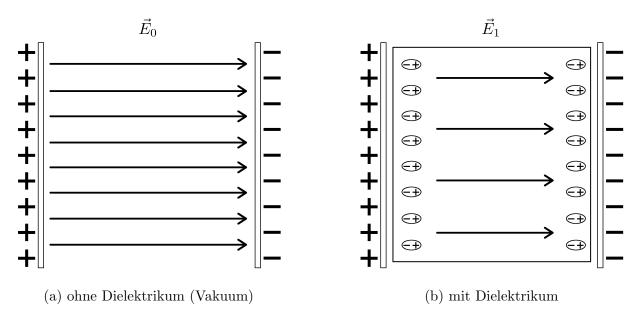


Abbildung 1: Elektrisches Feld eines mit der Ladung Q geladenen Plattenkondensators

dargestellt, kompensieren sich alle induzierten Dipolmomente im Inneren des Dielektrikums. Demgegenüber konzentrieren sich an der Oberfläche des Dielektrikums in unmittelbarer Nähe der angrenzenden Kondensatorplatten Ladungen mit dem der Ladungen auf der angrenzenden Platte entgegengesetzten Vorzeichen. Diese Ladungen an der Oberfläche des Dielektrikums erzeugen ein elektrisches Feld \vec{E}_p , welches dem durch die freien Ladungen auf den Kondensatorplatten erzeugtem Feld \vec{E}_0 entgegengerichtet ist, aber nie größer als dieses werden kannn. Der Betrag der resultierende Feldstärke im Dielekrikum $E_1 = E_0 - E_p = \frac{E_0}{\epsilon_r}$ wird also um den Faktor ϵ_r , kleiner. Die Kapazität des vollständig mit einem Dielektrikum mit der Permittivitätszahl ϵ_r gefüllten Plattenkondensators wird dann gerade um diesen Faktor größer.

$$C = \frac{Q}{U} = \frac{Q}{E_1 \cdot d} = \frac{Q}{\frac{E_0}{\epsilon_r} \cdot d} = \epsilon_r \cdot C_0 \tag{1}$$

Die Bestimmung der Permittivitätszahl ϵ_r eines Dielektrikums kann also durch Messung der Kapazität C eines Kondensators, der vollständig mit diesem Dielektrikum ausgefüllt ist, und der Kapazität C_0 desselben Kondensators ohne Dielektrikum erfolgen.

2.2 Messtechnik

Die genaue Messung der Kapazität eines Kondensators ist mit erheblichem Aufwand verbunden, da sogenannte "parasitäre" Kapazitäten bei der Messung zu berücksichtigen sind (s. Abb. 2). Das heißt, dass die zu messende Kapazität C eines Kondensators durch die Kapazität der Zuleitung $C_{par-Zul}$ und durch die Kapazität der Metallflächen des Kondensators mit leitfähigen Flächen der Umgebung $C_{par-Umg}$ verfälscht wird. Das erfordert eine Messanordnung, bei der sich die parasitären Kapazitäten der Messungen mit und ohne Dielektrikum nahezu nicht unterscheiden. Andererseits muss der Kondensator auch so aufgebaut sein, dass das definierte Füllen desselben mit einem Dielektrikum einfach möglich ist. Ein koaxialer Zylinderkondensator erfüllt diese Forderungen recht gut, da sein innerer Mantel durch den äußeren Mantel fast vollständig gegen Leiteranordnungen der Umgebung abgeschirmt und das definierte Einbringen eines Dielektrikums einfach realisierbar ist. Die Kapazität des

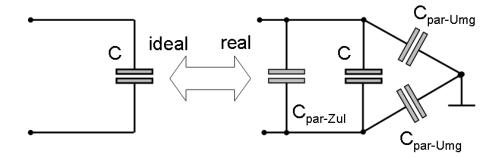


Abbildung 2: Parasitäre Kapazitäten bei der Messung einer unbekannten Kapazität C

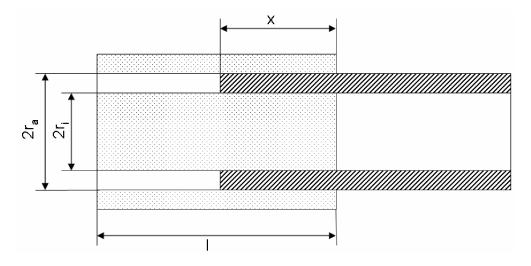


Abbildung 3: Zylinderkondensator mit verschiebbarem Dielektrikum

in Abb. 3 dargestellten koaxialen Zylinderkondensators lässt sich als Parallelschaltung der Kapazität C_{leer} eines leeren Zylinderskondensators der Länge (l-x) und der Kapazität C_{voll} eines vollständig mit Dielektrikum gefüllten Zylinder der Länge x mit gleichem Innen- und Außenradius (siehe Anhang) herleiten.

$$C = C_{leer} + C_{voll} = \frac{2\pi\epsilon_0 \cdot (l-x)}{\ln\frac{r_a}{r_i}} + \frac{2\pi\epsilon_0\epsilon_r \cdot x}{\ln\frac{r_a}{r_i}} = \frac{2\pi\epsilon_0}{\ln\frac{r_a}{r_i}}(l + (\epsilon_r - 1)x))$$
(2)

Unter der gerechtfertigten Annahme, dass sich beim Eintauchen des Dielektrikums in den Kondensator die parasitären Kapazitäten nicht ändern, lässt sich die Permittivitätszahl ϵ_r aus dem Anstieg in einer grafischen Darstellung C=f(x), also der Messung der Kapazität C des Zylinderkondensators in Abhängigkeit der Eintauchtiefe x des Dielektrikums bestimmen. Die Messung der Kapazitäten ist direkt mit einer Kapazitätsmessbrücke oder indirekt über die Messung einer von der zu messenden Kapazität abhängigen Größe möglich. Letzteres Verfahren wird im Versuch genutzt, indem die Schwin-

Material	Permittivitätszahl ϵ_r		
Luft	1.006		
Glas	$5 \dots 10$		
Plexiglas	$3 \dots 4$		
Glimmer	$4 \dots 10$		
Pertinax	$3 \dots 4$		
PVC	$2 \dots 4$		
Wasser	80		
	•		

Abbildung 4: Permittivitätszahlen einiger wichtiger Materialien

gungsdauer T=f(C) eines Kippspannungsgenerators, beschaltet mit der jeweiligen Ka-

pazität C, bestimmt wird. Da die direkte Messung der Periodendauer einer Kippschwingung am Oszilloskop jedoch relativ ungenau ist, erfolgt die Zeitmessung durch den Vergleich mit der harmonischen Schwingung hoher Genauigkeit und Stabilität eines Signalgenerators und Lissajous-Figuren. Zur Erstellung der Kalibrierkurve $T_k = f(C_k)$ stehen 12 Kalibrierungska-

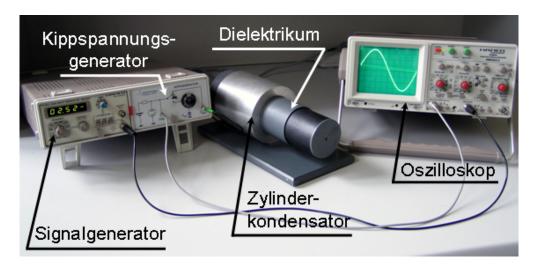


Abbildung 5: Experiemntierplatz Versuch NF

pazitäten zur Verfügung. Misst man anschließend die Schwingungsdauer T_x der Kippschwingung mit angeschlossenem Zylinderkondensator in Abhängigkeit der Eintauchtiefe x des Dielektrikums, kann mit Hilfe der Kalibierkurve sofort C = f(x) dargestellt und aus dem Anstieg der grafischen Darstellung die Permittivitätszahl ϵ_r des Dielektrikums berechnet werden.

3 Anhang

3.1 Kapazität eines Koaxialzylinders

Ein idealer Zylinderkondensator besteht aus zwei elektrisch leitenden Zylindermänteln, zwischen denen sich ein Dielektrikum befindet. Die Zylindermäntel sind koaxial, gleich hoch, und die Grundflächen der beiden Zylinder befinden sich in einer gemeinsamen Ebene.

Der im Versuch verwendete Zylinderkondensator (s. Abb. 6) besteht aus zwei Aluminiumrohren, so dass r_i der Außenradius des inneren Rohrs und r_a der Innenradius des äußeren Rohres sind. Die Berechnung der Kapazität C des Zylinderkondensators erfordert die Kenntnis des elektrischen Feldes \vec{E} zwischen dem inneren und äußeren Zylindermantel.

$$C = \frac{Q}{U} = \frac{Q}{\int\limits_{r_{c}}^{r_{a}} \vec{E} \vec{dr}}$$

Das Feld der elektrischen Verschiebung \vec{D} zwischen dem Innen- und Außenzylinder, hervorgerufen durch die freien Ladungen Q, ist nicht homogen, muss aber jeweils senkrecht auf der Oberfläche des Innen- und Aussenzylinders stehen, also radial nach Außen zeigen, wenn auf dem Innenzylinder eine positive Ladung Q vorliegt. Wird der Innenzylinder koaxial von einer Inte-

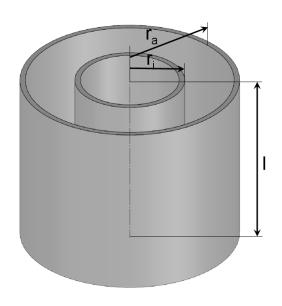


Abbildung 6: Koaxialzylinder

grationsfläche in Zylinderform mit dem Radius r ($r_i < r < r_a$) und der Länge l umschlossen, ist der Betrag der elektrischen Verschiebungsdichte D auf der Manteloberfläche dieses Zylinders konstant und der Vektor der elektrischen Verschiebungsdichte \vec{D} zeigt in Richtung des Flächenvektors $d\vec{A}$. Unter der Vernachlässigung der Integration über die Boden- und Deckfläche dieses Zylinders folgt mit dem Gaußschen Satz:

$$Q = \oint \vec{D} d\vec{A} \approx \oint D\vec{e_r} dA \vec{e_r} = DA_{Zylindelmantel} = 2\pi r l D$$

und mit

$$\vec{D} = \epsilon_0 \epsilon_r \vec{E}$$

$$\vec{E} = \frac{Q}{2\pi \epsilon_0 \epsilon_r r l} \vec{e_r}$$
(3)

Damit folgt für die Kapazität des Zylinderkondensators:

$$C = \frac{Q}{\int\limits_{r_i}^{r_a} \vec{E} d\vec{r}} = \frac{Q}{\frac{Q}{2\pi\epsilon_0\epsilon_r l}} \int\limits_{r_i}^{r_a} \frac{1}{r} \vec{e_r} d\vec{r} = \frac{2\pi\epsilon_0\epsilon_r l}{\int\limits_{r_i}^{r_a} \frac{1}{r} dr} = \frac{2\pi\epsilon_0\epsilon_r l}{ln\frac{r_a}{r_i}}$$
(4)

3.2 Spannungsverlauf an einem Kippspannungsgenerator

Zur indirekten Messung der Kapazität von Kondensatoren kann die Schaltung eines Kippspannungsgenerators mit einer Glimmlampe (s. Abb. 7a) verwendet werden. Zur exakten

Berechnung des Spannungsverlaufs am Kondensator bedarf es eigentlich der genauen Analyse der Spannungs-Strom-Kennlinie einer Glimmlampe. Zur Vereinfachung nehmen wir an, dass die nicht gezündete Glimmlampe durch einen unendlich großen Widerstand und die gezündete Glimmlampe einen sehr kleinen Widerstand genähert wird. Mit dieser Vereinfachnung folgt nach Einschalten der Betriebsspannung die Spannung am Kondensator C der bekannten Ladekurve (s. Abb. 8a), die Kapazität C wird über den Widerstand R (bzw. R_1 in Abb. 7a) aufgeladen. Beim Erreichen der Zündspannung U_z wird der Widerstand der

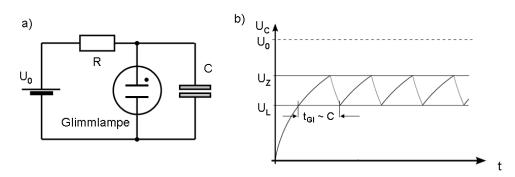


Abbildung 7: Kippspannungsgenerator a) Schaltskizze, b) Spannungsverlauf am Kondensator

Glimmlampe (ersetzt durch R_2 in Abb. 7) klein gegen R, so dass unter Vernachlässigung von R (bzw. R_1 in Abb. 7b) die Spannung am Kondensator der bekannten Entladekurve (s. Abb. 8b) folgt, bis beim Erreichen der Löschspannung U_L dem Entladevorgang ein neuer Ladevorgang folgt.

So folgt die Spannung am Kondensator C einem periodischen Aufladen mit einer großen Zeitkonstante und einem Entladen mit einer kleinen Zeitkonstante zwischen der Lösch- und Zündspannung der Glimmlampe (s. Abb. 7b)). Die Periodendauer

$$t_{Gl} = t_{Lade} + t_{Entlade} = R_1 C \ln(\frac{U_0 - U_L}{U_0 - U_Z}) + R_2 C \ln(\frac{U_Z}{U_L})$$
 (5)

ist proportional der Kapazität des Kondensators, so dass mittels der Kalibierungskurve mit Kondensatoren bekannter Kapazität unbekannte Kapazitäten bestimmt werden können.

3.3 Zeitmessung mit Hilfe von Lissajous-Figuren

Kurvengraphen, die durch Überlagerung harmonischer Schwingungen entstehen, werden als Lissajous-Figuren (benannt nach dem französischen Physiker Jules Antoine Lissajous) bezeichnet. Am Oszilloskop erhält man diese Figuren, wenn man an die Eingänge für die yund x-Ablenkung eine harmonische Wechselspannung anlegt. Die Lissajous-Figur am Oszilloskop ist dann eine Figur $U_y = f(U_x)$, die durch die Überlagerung der beiden harmonischen Spannungsverläufe in Abhängigkeit vom Parameter t

$$U_x = U_{x_0} \sin(\omega_x t + \phi_x)$$
 $U_y = U_{y_0} \sin(\omega_y t + \phi_y)$

entsteht. Dabei bestimmen die Frequenzen ω_x, ω_y und Phasen ϕ_x, ϕ_y der beiden Spannungen die Form dieser Figuren (s. Abb. 9). Sind die Frequenzen beider angelegter Spannungen nahezu gleich oder nahe einem einfachen rationalen Verhältnis, zeigt der Schirm des Oszilloskops eine geschlossene, aber sich zeitlich verändernde Figur. Je kleiner die Abweichung

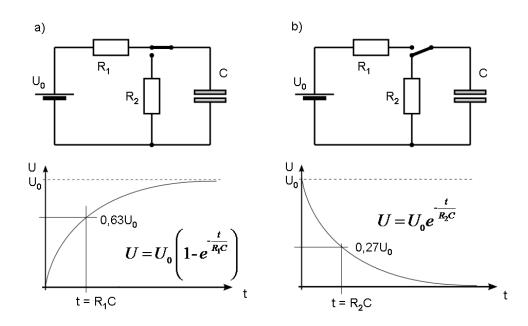


Abbildung 8: Reihenschaltung aus Kondensator und Widerstand a) Ladevorgang, b) Entladevorgang

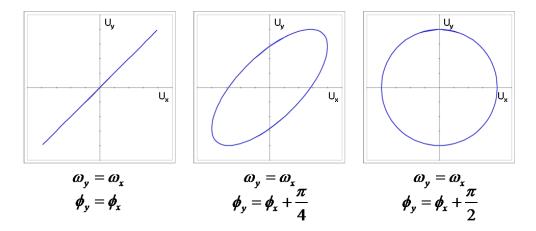


Abbildung 9: Lissajous-Figuren für zwei Spannungen gleicher Amplitude

der Frequenzen von diesem einfachen rationalen Verhältnis ist, um so besser scheint diese Figur am Oszillografenschirm zu stehen. Das nutzt man, um mit hoher Empfindlichkeit kleine Frequenzunterschiede zu messen. Diese Messung ist nicht auf harmonische Spannungsverläufe beschränkt, diese hohe Empfindlichkeit erreicht man auch beim Vergleich einer harmonischen Funktion mit einer einfachen periodischen Funktion. Überlagert man die nahezu Sägezahnspannung des Kippspannungsgenerators am x-Eingang des Oszilloskops mit einer harmonischen Spannung gleicher Periode am y-Eingang des Oszilloskops erwartet man das Bild einer nahezu harmonischen Funktion am Oszilloskop (s. Abb. 10).

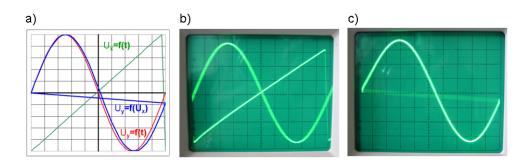


Abbildung 10: a) erwartete und gemessene b) zeitabhängige und c) x-y-Graphen am Oszilloskop für gleiche Periodendauer der Kippspannung und der harmonischen Spannung

4 Durchführung

Ziel des Versuches ist die Bestimmung der Permittivitätszahl ϵ_r eines vorgegebenen Dielektrikums mit Hilfe eines Zylinderkondensators. Gehen Sie dabei wie folgt vor:

1. Schalten Sie den Oszilloskop und den Generator (kombinierter Sinus- und Kippspannungsgenerator) sofort ein. Bedenken Sie, dass beide Geräte etwa 10 min Einlaufzeit benötigen, bevor die für die Messungen benötigte Stabilität erreicht ist.

2. Vorbereitende Messungen mit dem Oszilloskop

- a) Stellen Sie die Impulsform der Kippschwingungen, die mit dem Kippspannungsgenerator für Kapazitäten $C_K \approx (50...600)$ pF erzeugt werden, mit dem Oszilloskop (Y-Ablenkung, Kanal 1) dar. Benutzen Sie dazu die interne Zeitablenkung (X-Ablenkung) und messen Sie die Schwingungsdauer für den Kalibrierkondensator $C_{10x} \approx 110$ pF (den genauen Wert für C_{10x} entnehmen Sie der Tabelle 1, x-Versuchsplatznummer, x = 1...4)
- b) Stellen Sie am Sinusgenerator eine Frequenz ein, die der gleichen Schwingungsdauer entspricht und stellen Sie diese Impulsform auf dem Oszilloskop wie unter 2a) (Kanal 2) dar und messen Sie die Schwingungsdauer mit dem Oszilloskop.
- c) Betreiben Sie jetzt den Oszilloskop im X-Y-Mode. Korrigieren Sie geringfügig die Frequenz des Sinusgenerators, so dass eine Lissajous-Figur am Oszilloskop zu sehen ist, für die die Schwingungsdauer der Kippschwingung mit der der Sinusschwingung übereinstimmt, und zeichnen Sie diese Figur.

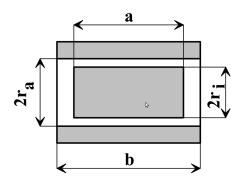
3. Messungen der Schwingungsdauer der Kippschwingung als Funktion der Kalibrierkapazitäten des Kippspannungsgenerators

- a) Messen Sie Schwingungsdauer T_K der Kippschwingung als Funktion der Kapazität C_K (Werte siehe Tabelle. Welche Kondensatoren benötigen Sie zur Kalibrierung?) durch Frequenzvergleich mittels Lissajousfiguren. Weshalb ist dieses Verfahren der direkten Zeitmessung an diesem Oszilloskop vorzuziehen?
- b) Erstellen Sie die Kalibrierungskurve T = f(C).
- 4. Bestimmen Sie mit Hilfe der Kalibrierungskurve T = f(C) und der Messanordnung aus 3. die Kapazität eines Zylinderkondensators C_x , der mit einem Dielektrikum gefüllt

wird, als Funktion der Füllhöhe x. Stellen Sie diesen Zusammenhang $C_x = f(x)$ grafisch dar.

5. Ermitteln Sie aus der Grafik die Permittivitätszahl ϵ_r des Dielektrikums.

Technische Daten



Abmessungen des Messkondensators:

 $a = 100 \,\mathrm{mm}$ $b = 116 \,\mathrm{mm}$ $2r_a = (70.0 \pm 0.1) \,\mathrm{mm}$ $2r_i = (65.0 \pm 0.1) \,\mathrm{mm}$

Die maximale Messunsicherheit der Frequenz des Sinusgenarators (200 MHz SINE-WAVE GENERATOR, Hersteller HAMEG) ist durch die Anzeige dominiert und beträgt ± 1 Digit.

	Kalibr	ierkapaz	Messunsicherheit			
	C_{n1}	C_{n2}	C_{n3}	C_{n4}	C_{n5}	$\Delta C/\mathrm{pF}$
			$\Delta C/pr$			
C_1	593.0	588.0	582.0	600.0	585.0	5.9
C_2	489.0	479.0	487.0	505.0	473.0	5.4
C_3	415.0	392.0	417.0	420.0	400.0	5.0
C_4	341.0	341.0	355.0	329.0	326.0	4.7
C_5	284.0	285.0	285.0	286.0	289.0	4.4
C_6	215.0	213.0	238.0	218.0	217.0	4.1
C_7	197.5	204.0	206.0	207.0	195.8	4.0
C_8	168.3	178.1	175.6	184.2	164.7	1.2
C_9	152.0	155.8	150.6	130.1	130.3	1.1
C_{10}	103.9	110.7	111.5	107.4	112.1	0.9
C_{11}	86.1	77.7	80.6	84.2	79.6	0.7
C_{12}	55.6	55.5	55.4	54.9	54.8	0.6

Tabelle 1: Werte und Messunsicherheiten der Kalibrierkapazitäten des Kippspannungsgenerators

Fragen

- 1. Wie sind die Größen elektrische Feldstärke, elektrisches Potential und elektrische Verschiebung an einem Plattenkondensator in Luft, an dem eine Spannung U anliegt, definiert?
- 2. Wie ändern sich die genannten Größen, wenn ein Dielektrikum vollständig zwischen die Platten eigefügt wird bei a) konstanter Ladung auf den Platten und b) bei konstanter

Spannung zwischen den Platten?

- 3. Wie groß ist die Kapazität eines Plattenkondensators (Plattenabstand d, Plattenlänge l), Plattenbreite b), wenn a) ein Isolator der Breite b und der Dicke d nur um die Länge L < l hineingeschoben wird und b) ein Dielektrikum zwar vollständig hineingeschoben wird, aber nur eine Dicke D < d hat?
- 4. Leiten Sie die Formel für die Kapazität eines koaxialen Zylinderkondensators (r_a Außenradius, r_i Innenradius, l Länge) her!
- 5. Beantworten Sie die Fragen 1 bis 3 sinngemäß für den Koaxialkondensator aus Frage 4!
- 6. Ein Kondensator sei von einer geerdeten Metallfläche umgeben, die Platten des Kondensators bilden also auch mit diesen Flächen eine Kapazität. Welche Messungen mit einer Kapazitätsmessbrücke wären notwendig, um die Kapazität des Kondensators selbst zu bestimmen?
- 7. Wie berechnet man die Spannungsverläufe beim Laden und Entladen eines Kondensators?
- 8. Machen Sie sich mit dem Aufbau und der Wirkungsweise eines Oszillografen vertraut!
- 9. Konstruieren Sie sich Lissajous-Figuren, die bei Frequenzverhältnissen von 2:1 zwischen zwei harmonischen Spannungen und zwischen Kippspannung und harmonischer Vergleichsspannung entstehen!

Literatur

- 1. L. Bergmann, C. Schaefer: Lehrbuch der Experimentalphysik, Band 2: Elektromagnetismus, Verlag de Gruyter, Berlin 1999
- 2. W. Demtröder: Experimentalphysik 2: Elektronik und Optik, Springer-Verlag, Berlin, Heidelberg 1994
- 3. H. J. Eichler, H. D. Kronfeldt, J. Sahm: Das neue physikalische Grundpraktikum, Springer-Verlag, Berlin, Heidelberg [u.a.] 2006
- 4. H. A. Stuart, G. Klages: Kurzes Lehrbuch der Physik, Springer-Verlag, Berlin, Heidelberg 2005