

Platzanleitung EL

Studierende Molekulare Biologie und Biotechnologie

Aufgabenstellung

Bestimmen Sie die Temperaturkennnlinien und Parameter von elektrischen Widerständen

Hinweise zur Versuchsdurchführung

1. Vorbereitung

- Drehen Sie am Messaufbau den Temperaturregler auf Minimum und am Stromversorgungsgerät den Spannungsregler auf Null und schalten Sie mindestens 10 Minuten vor Beginn der Messaufbau ein.
- Lassen Sie alle aufgebauten Schaltungen vom Betreuer kontrollieren, bevor sie den Spannungsregler am Stromversorgungsgerät aus der Nullstellung drehen.
- Die Handhabung des Messaufbaus sollte selbsterklärend sein, Fragen beantwortet Ihr Betreuer gern.

2. Messen der Temperaturkennlinien von zwei Widerständen

- Für einen Platin-Dünnschichtwiderstand und einen NiCr Schichtwiderstand oder einen Halbleiter-Widerstand ist der elektrische Widerstand in Abhängigkeit von der Temperatur durch die Messung von Strom und Spannung zu bestimmen und einschließlich ihrer Messunsicherheiten grafisch darzustellen.
- Die Nennwiderstände, also R(20°C) sind durch Extrapolation der grafischen Darstellungen zu ermitteln.
- \bullet Für den Platin-Dünnschichtwiderstand ist der lineare Temperaturkoeffizient α zu bestimmen.

3. Hinweise

- Die zu bestimmenden Widerstände liegen in dem Bereich: 40Ω bis $4k\Omega$. Mit den Innenwiderständen der Messgeräte: $R_A=2\Omega$ und $R_V=10M\Omega$ ist die Messschaltung mit der kleinsten schaltungsbedingten Messunsicherheit zu ermitteln und anzuwenden.
- Vor Inbetriebnahme der Messschaltung ist sicher zu stellen, dass sich der Temperatur-Einstellregler in der linken Endlage befindet.
- Die Temperaturerhöhung sollte in $10 \dots 12$ Schritten im Bereich von ca. $25^{\circ}C$ bis $65^{\circ}C$ erfolgen. Aufgrund des Einschwingens der Temperatur ist ein sinnvoller Messablauf wichtig!
- \bullet Unbedingt beachten, die an den zu messenden Widerständen umgesetzte Leistung P<40mW!
- Die Bestimmung des Temperaturkoeffizienten α erfolgt sinnvollerweise aus der Darstellung der relativen, d.h. auf den Nennwiderstand bezogenen, Widerstandsänderung als Funktion der Temperaturzunahme.

 \bullet Die Messunsicherheit von α wird grafisch bestimmt.

Technische Daten der Messgeräte

• Thermostat: Heizleistung P = 4W

Unsicherheit der Temperaturanzeige $\Delta T = 0, 4K$

• Multimeter FLUKE 175

Innenwiderstand bei Strommessung: $R_A=2,0\Omega$

Innenwiderstand bei Spannungsmesseung: $R_V=10,0M\Omega$

Messunsicherheit bei Strommessung: $\Delta I = 0,01I + 3Digit$

Messunsicherheit bei Spannungsmessung: $\Delta U = 0,0015U + 2Digit$