

Versuch: RM2 - Teil 2

Physikalisches Grundpraktikum

Platzanleitung RM2 - Teil 2

Schwächung von γ -Strahlung

1 Aufgabenstellung

Die charakteristischen Konstanten μ , μ/ρ und x_0 werden experimentell bestimmt. Dazu werden in das schmale kollimierte Strahlungsbündel eines ¹³⁷Cs-Strahlers quadratische Platten bekannter Masse mit gleicher Fläche A und variabler Dicke x aus verschiedenen Abschirmmaterialien eingebracht. Die Zählrate der ungestreuten Photonen wird mit Hilfe eines Plastszintillationsdetektors gemessen und in Abhängigkeit von der flächenbezogenen Masse (kurz: Flächenmasse) des Materials dargestellt.

2 Anleitung zur Versuchsdurchführung

2.1 Inbetriebnahme der Messanordnung

- Detektorelektronik erst nach dem Hochfahren des Rechners einschalten, ggf. erneut aus- und wieder einschalten, sollte die Software sie nicht erkennen
- Starten des Programms RM2-Gamma am PC (vgl. Abb.1)
- Einstellung der Betriebsspannung für den Sekundärelektronenvervielfacher auf -1160V:
 - über "Detektorspannung EIN" einschalten
 - Regler verschieben und Anzeige am Strahlungsmessgerät beachten
- Impulsverstärkung auf etwa 60% einstellen
- untere "Kanal-Grenze des Spektrums" auf Kanal 10 und obere "Kanal-Grenze des Spektrums" auf auf Kanal 1022 einstellen
- Messzeit > 60s einstellen

2.2 Messung

2.2.1 Aufnahme des Spektrums des 137 Cs- γ -Strahlers

- über "Start" Messung starten, wenn die Messung nicht startet:
 - vorherige Messung mit "Rücksetzen" löschen
 - Verbindung mit Detektorelektronik prüfen ("USB FW-Ver.xx" muss grün sein)
 - Detektorspannung kontrollieren
- Positionieren Sie die Lage des Vollenergiepeaks (veraltet: Photopeaks) durch geeignete Wahl der Impulsverstärkung im oberen Viertel des Spektrums. Begründen Sie, warum das notwendig ist?
- Die Messung kann jederzeit durch "Abbrechen" gestoppt werden.
- \bullet Messzeit auf 60s einstellen und das Spektrum des γ -Strahlers mit der gewählten Impulsverstärkung aufnehmen

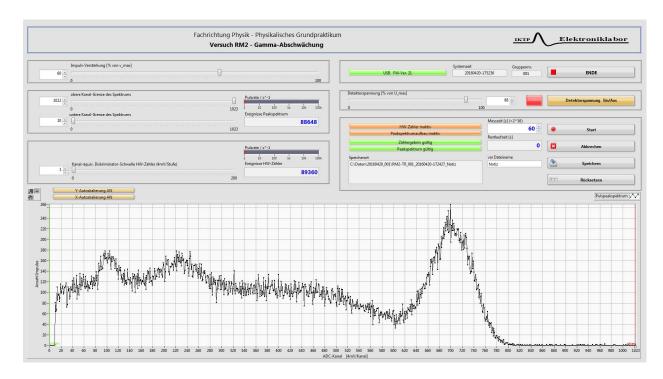


Abb. 1: Benutzeroberfläche des Steuer- und Datenerfassungsprogramms

- Sie können die Spektrendaten als CSV- und die grafische Darstellung als PNG-Datei über "Speichern" sichern. Die CSV-Datei enthält die Daten in einem Text-Format und kann über Excel oder einen Editor bearbeitet werden. Die Grafik kann über MS-Paint oder die Windows-Fotoanzeige ausgedruckt werden.
- Nach dem Ausschalten der X- und Y-Autoskalierung lassen sich Bereiche des Spektrums mit Hilfe der Maus und der Werkzeugleiste vergrößern.

2.2.2 Einstellung des Messgerätes für die Zählratenmessungen

- Die Anzeige "Ereignisse Peakspektrum" zählt nur die Impulse, deren Impulshöhe zwischen der eingestellten unteren und oberen Kanal-Grenze liegen.
- Die "untere Kanal-Grenze des Spektrums" und die "obere Kanal-Grenze des Spektrums" so einstellen, dass bei allen weiteren Messungen nur die direkte γ -Strahlung gezählt wird.
- Die Messzeitvorgabe durch Messung der Zählrate ohne Abschirmung so einstellen, dass die zählstatistische Messunsicherheit bei allen Messungen außer der Nulleffektmessung kleiner 1% bleibt.

2.2.3 Ermittlung des Nulleffekts bei geschlossenem Kollimatorkanal

• Die zählstatistische Messunsicherheit sollte kleiner 5% sein.

2.2.4 Aufnahme der Zählrate und grafische Darstellung der Nettozählrate in Abhängigkeit von der Flächenmasse für mindestens 2 Metalle [Al, Cu, Pb]

- Bestimmung einer günstigsten Staffelung der zu verwendenten Metallplatten
 - Um die Zählrate in den günstigsten Abständen bis auf ca. 25% der Zählrate der un-

geschwächten γ -Strahlung zu schwächen, bestimmen Sie zuerst die Zählrate der ungeschwächten γ -Strahlung. Anschließend messen Sie die Zählrate bei vorzulegenden Platten der Gesamtmasse Blei ca. 550g, Kupfer ca. 800g und Aluminium ca. 800g.

- Schätzen Sie damit eine optimale Staffelung für etwa 8 weitere Messwerte ab.
- \bullet Bestimmung der Nettozählrate $Z-Z_{\rm Untergrund}$ in Abhängigkeit von der Gesamtmasse der vorgelegten Metallplatten
 - Nehmen Sie mit der optimalen Staffelung der vorzulegenden Metallplatten die Abhängigkeit der Nettozählrate $Z-Z_{\rm Untergrund}$ von der vorgelegten Massenflächendichte (m/A) auf und stellen Sie diese grafisch dar.
- Ermittlung von μ , μ/ρ und x_0 aus der grafischen Darstellung
 - Bestimmen Sie die Größen μ , μ/ρ und x_0 (entspr. Gleichung 11 Ihrer Anleitung) aus der halblogarithmischen grafischen Darstellung $\ln(Z Z_{\text{Untergrund}}) = f(m/A)$.