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Abstract. How are visual scenes represented in the brain during cat-
egorization? We acquired magnetoencephalography (MEG) data from
nine healthy subjects who participated in a rapid natural scene catego-
rization task. Scenes were presented in two different perspectives (aerial
vs. terrestrial) and two different orientations (upright vs. inverted). We
applied multivariate pattern classification to categorize scene categories
from computational (spatial envelope (SpEn): [6]) and neural represen-
tations (MEG responses). Predictions of both types of classifiers (1)
exceeded chance but performed worse than human subjects, and (2)
were significantly correlated in their pattern of predictions, suggesting
the relevance of low-level visual features during scene categorization.
In general, the pattern of predictions and errors were not correlated
with behavioral predictions. We also examined the influence of perspec-
tive and orientation on neural and computational representations by
studying the generalization performance of classifiers across perspective
and orientation. We compared within-perspective-and-orientation classi-
fiers (trained and tested on the same perspective and orientation) with
across-perspective (trained on one perspective and tested on another)
and across-orientation classifiers (trained on one orientation and tested
on another). We report several interesting effects on category-level and
identity-level (dis)agreement between neural, computational, and behav-
ioral ”views”. To our knowledge, this is the first study to examine natural
scene perception across scene perspectives and orientations from neural,
computational, and behavioral angles.

Keywords: natural scene categorization, neural representations, spatial
envelope, magnetoencephalography, multivariate pattern analysis, aerial
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1 Introduction

Visual percepts arise from neural representions of the visual environment. Com-
putational candidates mathematically describe how neural representations are
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formed from natural images. By examining (1) the extent to which candidate
computational representations agree with observed neural representations, and
(2) how well computational and neural candidates predict behavior, we can begin
to discover the true candidate neural mechanisms and computations underlying
perception. Here, we propose and apply such an approach to the cognitive neu-
roscience of visual scene perception.

Henderson and Hollingworth [1] define the concept of a scene as ”a semanti-
cally coherent (and often name-able) view of a real-world environment comprising
background elements andmultiple discrete objects arranged in a spatially licensed
manner.” It is known from an early study that semantic information from scenes is
available only from a single fixation [2]. Further, behavioral studies have suggested
that it is even possible to infer scene category from scenes presented at durations
much shorter than a typical fixation [7,8], or at low spatial resolution, where the
level of detail is too coarse to accurately identify constituent objects [3,4].

Since the discovery of the parahippocampal place area [16], a dedicated brain
region for scene perception, the computational role of related regions in the
ventral visual stream have been under active study [17,15,18,19] using func-
tional magnetic resonance imaging (fMRI). Recently, natural scene categories
have been successfully decoded from fMRI data [13,12,14] suggesting that neu-
ral representations of scenes are accessible using non-invasive functional imaging
techniques.

In the past decade, computational candidates have been put forward for how
we represent scenes, and these have been shown to explain various aspects of
behavioral scene categorization. Oliva and Torralba [6] have proposed low-level
localized power spectra, that they called the ”spatial envelope” (SpEn). They
showed that the SpEn representation is sufficient to obtain good classification
accuracies on scene categories. Recent work from the same group [5] showed
that ratings of scene typicality correlated with the likelihood of correct scene
classification based on a related low-level image feature representation called
the all global feature space. Taken together, an attractive hypothesis for scene
perception emerges: from brief exposures to a complex natural scene, humans
categorize scenes on the basis of low-level scene statistics. Yet only little is known
about whether such computations are carried out in the brain, and if so, how.

What is the nature of information represented by the ventral stream regions?
Although it is known that the ventral visual stream contains high-level object
representations invariant to size, pose, and occlusion, it is as yet unclear what
sort of knowledge about scenes is represented neurally: high-level visual fea-
tures, or semantic/conceptual knowledge. To probe the nature of information
represented during scene categorization, Loschky and colleagues [11] character-
ized the behavioral consequences of a drastic change in scene perspective. They
showed that the confusion matrices of behavioral scene categorization from aerial
and terrestrial views were highly correlated, suggesting a possible semantic neu-
ral representation.

To follow up on their study, here, we addressed the following questions about
neural scene representation. First, we asked how neurally realistic is a popular
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computation representation: the spatial envelope. To this end, we quantified the
similarity between the predictions of scene category classifiers on computational
and neural representations. Second, we asked whether high-level visual or seman-
tic representations of scenes are accessible from MEG responses. To this end we
studied the ability of a classifier trained to predict scene categories from one
perspective (aerial vs. terrestrial) or orientation (upright vs. vertically inverted)
to predict them from another perspective or orientation.

2 Materials and Methods

2.1 Experimental Details

Stimuli were 736× 736 pixel grayscale images of natural scenes from one of six
possible categories, viz. airports, cities, coasts, forests, mountains, or suburbs,
presented for 33 ms. We replicated the design from [11] but did not mask the
stimuli. Nine healthy volunteers (2 females; mean age 32 years) were asked to
categorize each scene using an eye-gaze-based response interface. Each category
comprised 60 unique images: 30 aerial and 30 terrestrial scenes. There was no
one-to-one correspondence between aerial and terrestrial scenes. Each image was
presented in upright and vertically inverted orientations, resulting in 180 unique
trials across 4 conditions: aerial upright (AERup), aerial inverted (AERdn), ter-
restrial upright (TERup), and terrestrial inverted (TERdn). We acquired MEG
data (filtered at 0.03–330 Hz; sampled at 1000 Hz) using a 306-channel Elekta
Vectorview system.

2.2 Representation of Neural Signals and Stimuli

The MEG data were preprocessed using temporal Signal Space Separation (tSSS)
[9], downsampled to 500 Hz and low-pass filtered to 45 Hz. The evoked responses
were separated from the trigger signals and a baseline correction was applied
using a time window of 150 ms preceding the stimulus onset. Data from a post-
stimulus window of 600 ms from 204 planar gradiometer channels were used. To
reduce temporal redundancies, we applied a discrete cosine transform (DCT) to
each channel and retained only the 50 coefficients corresponding to the lowest
frequencies. For each trial, we concatenated DCT coefficients from each channel
to constitute a feature vector.

For each stimulus image, we normalized local contrast and computed the SpEn
features [10]. The SpEn features are localized energy spectra obtained by com-
puting the energies of the input image convolved with Gabor filters at multiple
scales and orientations. We precomputed Gabor filters at 8 orientations and 6
scales in the Fourier domain, multiplied each filter with the Fourier transform of
the input image, and subsequently inverted the Fourier transform. We divided
each filtered image into a coarse 4 × 4 grid and averaged the Fourier energies
across the pixels in each block of the coarse grid, resulting in 8× 6× 4× 4 = 768
image features.
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2.3 Scene Classification

We built within-perspective-and-orientation classifiers (trained and tested on the
same perspective and orientation; Wk’s), across-perspective (trained on one per-
spective and tested on another; Pk’s), and across-orientation classifiers (trained
on one orientation and tested on another; Ok’s).

For each subject, we trained one Wk for each condition viz. AERup, AERdn,
TERup and TERdn on a random half of the data, i.e. 90 trials and tested
them on the remaining 90 trials. The classifier was a multiclass support vector
machine (SVM) which performed a majority voting on pairwise binary classifiers.
We trained and tested Wk’s separately on MEG and SpEn features. To obtain
error estimates, we repeated the classification on 10 randomized cross-validation
(CV) repeats separately for each subject. Next, we trained two Pk’s: AERup →
TERup and TERup → AERup, and two Ok’s: AERup → AERdn, and TERup
→ TERdn. As before, we performed this classification on MEG features and on
the SpEn features. We refer to the MEG and SpEn classification accuracies as
αn and αc respectively, and the accuracy of behavioral reports as αb. Table 1
gives the list of classifiers and their source and target conditions.

Table 1. List of classifiers implemented separately on MEG responses and SpEn fea-
tures

Name Source → Target Train:Test CV repeats

W1 AERup → AERup 90 : 90 10
W2 AERdn → AERdn 90 : 90 10
W3 TERup → TERup 90 : 90 10
W4 TERdn → TERdn 90 : 90 10

P1 AERup → TERup 180 : 180 1
P2 TERup → AERup 180 : 180 1

O1 AERup → AERdn 180 : 180 1
O2 TERup → TERdn 180 : 180 1

For each subject and randomized split, we computed the confusion matrix
(CM) on the test set: each column of the CM represents one predicted cate-
gory, while each row represents one true category, with correct categorization
responses on the main diagonal and confusions in the off-diagonal cells. In addi-
tion to the MEG and SpEn CMs, we also computed CMs corresponding to the
behavioral responses.

We quantified similarity of predictions from neural (MEG) features, compu-
tational (SpEn) features, and behavioral responses in two ways. First, we com-
puted Spearman’s rank correlation coefficients (ρ) between the entries of each
pair of CMs (viz. neural-computational: ρnc, computational-behavioral: ρcb, and
neural-behavioral: ρnb) concatenated over CV repeats, separately for each sub-
ject. Second, we computed the agreement fraction for a pair of classifiers, (θ),
defined as the fraction of images from the test set for which both classifiers
predict the same category.
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3 Results and Discussion

3.1 Classification Accuracies

Figure 1A shows classification accuracies αn, αc and αb along with their stan-
dard errors of mean, for Pk’s, Ok’s and Wk’s. For neural classifiers, we found
greater generalization across orientations than perspectives (Ok’s were larger
than Pk’s) for terrestrial, but not aerial, scenes and that both performed worse
than within-perspective-and-orientation classifiers (Wk’s). For computational
classifiers (based on SpEn), those generalized across orientations were as good
as within-perspective-and-orientation classifiers (Ok’s were equal to Wk’s). How-
ever, generalization across perspectives was very poor (Pk’s were low). We make
the following remarks about these accuracy measures.

1. In general, all classifiers exceeded chance level. However, neither computa-
tional nor neural classifiers were as accurate as human subjects’ behavioral
responses.

2. For behavioral responses, and to a lesser extent the computational classifiers,
the within-orientation-and-perspective accuracies were higher for terrestrial
(W3 and W4) than aerial scenes (W1 and W2). However, the neural clas-
sifiers showed a reverse trend: aerial conditions had higher accuracies than
terrestrial ones.
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Fig. 1. A. Accuracies α (dotted line represents chance level), B. Spearman’s correlation
coefficient ρ, and C. agreement fraction θ for the various classifiers. Error bars represent
standard errors of mean across subjects.
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3. Computational classifiers were more accurate than neural classifiers for
within-orientation-and-perspective classifiers and across-orientation classi-
fiers (Wk’s and Ok’s) but not for the across-perspective classifiers (Pk’s).
Among across-perspective classifiers (Pk’s) the neural classifiers behaved
similarly in both directions of generalization, but the computational clas-
sifiers did not. In particular, the computational classifiers from terrestrial
to aerial perspectives (P2) generalized better than the reverse direction
(P1), suggesting that low-level statistics of terrestrial upright scenes are
more predictive of scene categories from aerial upright scenes, than vice
versa.

4. For across-orientation classifiers, the computational classifiers for aerial
scenes (O1) performed better than those for terrestrial scenes (O2), sug-
gesting that computational representations of aerial scenes generalize better
across viewing orientations than the computational representations of ter-
restrial scenes do. A similar trend was observed for the neural Ok’s but they
were not significantly different. These findings agree with our observation
that aerial scene accuracies are not affected by inversion, whereas terrestrial
scene accuracies are greatly reduced by inversion [11]. The findings are also
understandable if aerial scenes tend to have more cardinal orientations than
terrestrial scenes (i.e., the orientations are more symmetrically biased) since
cardinal orientations are preserved by inversion (i.e., 180 deg rotation), but
we did not test for this explicitly.

3.2 Correlation and Agreement between Classifiers

Figure 1B shows Spearman’s rank correlation coefficients between pairs of neural,
computational or behavioral confusion matrices ρnc, ρnb and ρcb along with
their standard errors of mean, for Pk’s, Ok’s and Wk’s. The correlation between
confusion matrices is a measure of how similarly two classifiers err at the level
of categories. Figure 1C shows the agreement fractions θnc, θnb and θcb. The
agreement fractions are a stronger measure of similarity between two classifiers
because they measure the extent to which classifiers agree at the level of each
individual stimulus. We make the following remarks about these measures.

1. For all within-orientation-and-perspective classifiers (Wk’s), neural classifiers
were weakly correlated with both computational and behavioral classifiers.
In comparison, computational and behavioral classifiers were more strongly
correlated. We found no clear differences between any of the orientations
or perspectives. The agreement measure seems to confirm this general trend
although the computational-behavioral agreement metrics tended to be lower
for the aerial (W1, W2) than the terrestrial (W3, W4) scenes.

2. For across-perspective classifiers from aerial to terrestrial upright scenes
(P1), neural classifiers are strongly correlated with computational classi-
fiers, but there is almost no correlation between neural vs. behavioral and
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computational and behavioral classifiers. However, the difference between
the classifier pairs is less pronounced for the agreement metric. This sug-
gests that athough neural and computational classifiers err similarly at the
category level, they err quite differently at the level of individual images,
while attempting to generalize from aerial to terrestrial perspectives.

3. Although the correlations are comparable between classifiers across orienta-
tions and perspectives (Ok’s and Pk’s), the computational-behavioral agree-
ment metrics for the Ok’s clearly exceeded the Pk’s. This suggests that
computational classifiers perform similarly as humans when they general-
ize across orientations rather than perspectives.

4. Correlations between computational and neural classifiers were higher for
the across-perspective classifiers from aerial to terrestrial scenes (P1), and
the across-orientation classifier from upright to inverted aerial scenes (O1),
than all other classifiers. This observation, together with almost equivalent
accuracies for all neural classiers suggests that low-level visual information
in the MEG response contributes more towards classification than high-level
visual or semantic information.

4 Conclusion

Using MVPA of MEG responses to natural scenes, we showed that for both up-
right aerial and terrestrial perspectives, it was possible to decode scene categories
above chance level. We also found that the pattern of scene category predictions
from brain activity were weakly but significantly correlated with the pattern of
predictions from low-level image statistics. While our result is not causal evi-
dence, given its basis in correlational analyses, it supports the possibility that
low-level statistics of scenes such as the spatial envelope are robustly represented
in MEG responses.

The presented framework—comparing the pattern of errors in a classification
task across neural and computational representations—is widely applicable to
experimentally test computational theories of perceptual and semantic represen-
tation. More broadly, constraining neural and computational representations to
agree, and constraining these in turn to predict behavioral observations (see eg.
[14] for a study comparing behavioral categorization and fMRI-based classifica-
tion of natural scenes) will help us elucidate the computational strategies and
neural mechanisms underlying cognition.
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