Introduction to Matlab

First part: Morse code

Pouyan R. Fard \& Prof. Dr. Stefan Kiebel

6. April 2017

Assignment

Basic value assignment:

- $A=5 \leftarrow$ Variable name: A, value: 5 .
- $\mathrm{B}=7$
- $C=A+B \leftarrow$ Variable name: C, value: The values of A and B added.

Naming variables:

- Combinations of letters, numbers and underscores.
- Must begin with a letter
- Case sensitive

Strings:

- First_Name = 'Dario';
- Last_Name = 'Cuevas';
- Full_Name = [First_Name, , Last_Name] ; \leftarrow This is called concatenation.

Vectors

A vector is a collection of numbers. Examples:

- The heights of every person in the room.
- The number of pieces of bread eaten in the past four days.
- The reaction times of every subject in an experiment.

What to do with vectors:

- Defining a vector: First5Numbers $=[1,2,3,4,5] ; \leftarrow$ Notice the square brackets used to define. Every element is separated by a comma.
- Reading the value of one element (indexing):

First5Numbers (3) <Enter> \leftarrow round brackets (parentheses) for indexing.

- Changing the value of one element: First5Numbers (3) $=-20 \leftarrow$ Just like indexing, but with an equal sign.
- Operations and changing of values, all in one:

First5Numbers(5) = First5Numbers(1) + First5Numbers(4);

Indexing vectors

Say $A=[10,20,30,40,50,60,70,80,90,100]$; We can:

- Read the first three elements: $\mathrm{A}(1: 3)$ <Enter>.
- Change the first two to some other value: $\mathrm{A}(1: 2)=\mathrm{A}(5)$;
- Read the first and fifth elements: $A([1,5])$ <Enter $>\leftarrow$ Notice the square brackets inside the parentheses.
- Change the values of elements 1 and $5-10$ to -1 :

$$
A([1,5: 10])=-1
$$

- Note that $A(1: 3)$ is the same as $A([1: 3])$. The square brackets are not necessary but they do not hurt either.

Indexing vectors

Say $A=[10,20,30,40,50,60,70,80,90,100]$; We can:

- Read the first three elements: $\mathrm{A}(1: 3)$ <Enter>.
- Change the first two to some other value: $A(1: 2)=A(5)$;
- Read the first and fifth elements: $A([1,5])$ <Enter $>\leftarrow$ Notice the square brackets inside the parentheses.
- Change the values of elements 1 and $5-10$ to -1 :

$$
A([1,5: 10])=-1
$$

- Note that $A(1: 3)$ is the same as $A([1: 3])$. The square brackets are not necessary but they do not hurt either.
Mini exercises. Do each in just one line of code.

1. Generate the vector A as before.
2. Change the values of the second and seventh elements to -1 .
3. Set the values of elements 1 to 5 to those of elements 6 to 10 .

Concatenation

For two vectors $A=[1,2,3]$; and $B=[-1,-2]$; we can:

- Add new elements: $A=[A, 4]$; or $B=[0, B,-3]$; \leftarrow Use square brackets.
- Join them together (called concatenation): $\mathrm{C}=[\mathrm{A}, \mathrm{B}]$;
- For an empty vector $\mathrm{D}=[]$; add more things: $\mathrm{D}=[\mathrm{D}, 1: 10]$;

Concatenation

For two vectors $\mathrm{A}=[1,2,3]$; and $\mathrm{B}=[-1,-2]$; we can:

- Add new elements: $A=[A, 4]$; or $B=[0, B,-3]$; \leftarrow Use square brackets.
- Join them together (called concatenation): C = [A, B] ;
- For an empty vector $\mathrm{D}=[]$; add more things: $\mathrm{D}=[\mathrm{D}, 1: 10]$;

Mini exercise:

For the vectors A and B above, create a vector E whose elements are: the first two elements of A, the first element of B, the last element of A and the last element of B , in that order.

The colon operator

Notice that $\mathrm{A}([1,2,3,4])$ is the same as $\mathrm{A}(1: 4)$. In reality, $[1,2,3,4]$ is the same as $1: 4$. That is the colon operator. The syntax is: start:step:end. Examples:

- Numbers for 1 to 100: A1to100 = 1:100;
- Even numbers from -10 to 10: Evens $=-10: 2: 10$; \leftarrow How many elements does it have?
- Numbers from 0 to 1 in steps of size 0.001 :

ZeroToOne = 0:0.001:1;

- Numbers from 10 to 1 (order matters!): Inverse_order = 10:-1:1;

The colon operator

Notice that $A([1,2,3,4])$ is the same as $A(1: 4)$. In reality, $[1,2,3,4]$ is the same as $1: 4$. That is the colon operator. The syntax is: start:step:end. Examples:

- Numbers for 1 to 100: A1to100 = 1:100;
- Even numbers from -10 to 10 : Evens $=-10: 2: 10$; \leftarrow How many elements does it have?
- Numbers from 0 to 1 in steps of size 0.001 :

ZeroToOne = 0:0.001:1;

- Numbers from 10 to 1 (order matters!): Inverse_order = 10:-1:1;
Mini exercises. Do each in just one line of code.

1. Generate a vector called Big_Vector, with all numbers from 1 to 100.
2. Set all odd-numbered elements to zero.
3. Multiply the even-numbered elements of Big_Vector by 2 .

Cells

Cells are like vectors, but instead of storing numbers in each element, you can store whatever you want. Examples:

- MyCell\{1\} = 5; \leftarrow notice that indexing of cells is with curly brackets.
- MyCell\{2\} = 1:10; \leftarrow The second element of the cell is a vector.
- MyCell\{3\} $=[5,2,-10] ; \leftarrow$ Another vector.
- MyCell\{4\} = 'We can also store strings in cells';.
- MyCell $\{5\}=[] ; \leftarrow$ This means that element 5 is 'empty'.

You can index cells like with vectors, except with curly brackets:

- Five $=$ MyCell\{1\};
- MyCell\{2\} = $2 *$ MyCell\{2\};

When an element of a cell is a vector, you can access the elements of the vector:

1. MyCell $\{2\}$ (5) <Enter> will return the fifth element of the second element of MyCell.
2. MyCell\{4\}(1:5) <Enter> will return the phrase 'We can'.

Writing the dictionary

For this part of the exercise, check the section called The Dictionary in the Morse.pdf file.

For loops

To repeat a command many times, use the For loop:
for i = start:step:end
commands to be repeated
end

For loops

To repeat a command many times, use the For loop:
for i = start:step:end
commands to be repeated
end
Examples:

- sumI = 0;

$$
\text { for } i=1: 100
$$

$$
\text { sum } I=\text { sum } I+i ;
$$

end

For loops

To repeat a command many times, use the For loop:
for i = start:step:end
commands to be repeated
end
Examples:

- sumI = 0;

$$
\text { for } i=1: 100
$$

$$
\text { sumI }=\text { sum } I+i ;
$$

end

- $X=[1,-10,5,32,1]$;
sumX = 0;
for $i=1: 5$
sum $X=\operatorname{sum} X+X(i) ;$
end

For loops

To repeat a command many times, use the For loop:
for $i=$ start:step:end
commands to be repeated end
Examples:

- sumI $=0$;

```
    for i=1:100
```

 sumI \(=\) sumI \(+i ;\)
 end
 $\rightarrow \mathrm{X}=[1,-10,5,32,1]$;
sumX $=0$;
for $i=1: 5$
sumX $=\operatorname{sum} X+X(i) ;$
end

Mini exercises.

1. Calculate the multiplication of all the elements in a vector.
2. Calculate the area of circles of radii 1,3 and 10 . Save the results in a vector called Areas ($A=2 \pi r^{2}$).
3. Calculate the volume of cylinders whose circular faces have the areas as in (2), and with heights 10,15 and 25 . ($V=A h$). Do not save the results; just print them using the command display (V), where V is the current calculated volume.

If statements

False

When you want to run a piece of code only under specific circumstances, the IF statement is your friend. Examples:

1. Check whether a number is positive before obtaining its square root:
if $\mathrm{A}>0$
SQRofA $=\operatorname{sqrt}(A) ;$
end

If statements

False

When you want to run a piece of code only under specific circumstances, the IF statement is your friend. Examples:

1. Check whether a number is positive before obtaining its square root:
if $\mathrm{A}>0$
SQRofA $=\operatorname{sqrt}(A) ;$
end
2. If an element of a vector is negative, make it positive:
```
vect = [1, -5, 10, 52, -0.1];
for i=1:numel(vect)
        if vect(i)<0
            vect(i) = -vect(i);
        end
    end
```


Conditionals

The following symbols can be used as conditions in an IF statement, for two numbers A and B :

1. $A<B$: A smaller than B
2. $A>B$: A bigger than B
3. $A==B$: A equals B
4. $A \sim=B: \mathrm{A}$ is different from B
5. $A<=B$: A is smaller than or equal to B
6. $A>=B: \mathrm{A}$ is bigger than or equal to B

You can also combine conditions in an IF statement:

1. Cond1 \&\& Cond2: Both conditions have to be true
2. Cond1 || Cond 2: At least one has to be true

Example:
if $A<B \& \& A<C$
display('A is the smallest from ABC')
end

Medium-sized exercise

Define two vectors as follows: $\mathrm{A}=[1,10,2,-5,50,80]$ and $B=[90,-5,90,2]$. Now, write a script that counts the number of elements that these two vectors have in common (the answer should be 2). You will need two nested For loops and an IF statement; the first For should run through the elements of A, the second through the elements of B.
Use the numel Matlab function to make it a general script, i.e. a script that works for any two vectors A and B.

Translation from text to Morse

For this part of the exercise, check the section called The Translation in the Morse.pdf file.

Operations with vectors

For a scalar $\mathrm{A}=5$ and two vectors Vec1 = 1:10; and Vec2 = 11:20; we can do the following:
Sum:

- Vec1 + Vec2 <Enter> \leftarrow They are added element-wise and the result is a vector of the same size as Vec1 and Vec2.
$-\mathrm{A}+$ Vec1 <Enter $>\leftarrow \mathrm{A}$ is added to each element of Vec1
- A - Vec2 <Enter>

Operations with vectors

For a scalar $\mathrm{A}=5$ and two vectors Vec1 = 1:10; and Vec2 = 11:20; we can do the following:
Sum:

- Vec1 + Vec2 <Enter> \leftarrow They are added element-wise and the result is a vector of the same size as Vec1 and Vec2.
$-\mathrm{A}+$ Vec1 <Enter> $\leftarrow \mathrm{A}$ is added to each element of Vec1
- A - Vec2 <Enter>

Multiplication:

- A*Vec1 <Enter> \leftarrow Each element of Vec1 is multiplied by A.
- Vec1. $* \operatorname{Vec} 2$ is called the element-wise multiplication. Works as the sum.
- Vec1./Vec2 is the element-wise division.

Operations with vectors

For a scalar $\mathrm{A}=5$ and two vectors Vec1 = 1:10; and Vec2 = 11:20; , we can do the following:
Sum:

- Vec1 + Vec2 <Enter> \leftarrow They are added element-wise and the result is a vector of the same size as Vec1 and Vec2.
$-\mathrm{A}+$ Vec1 <Enter $>\leftarrow \mathrm{A}$ is added to each element of Vec1
- A - Vec2 <Enter>

Multiplication:

- A*Vec1 <Enter> \leftarrow Each element of Vec1 is multiplied by A.
- Vec1.*Vec2 is called the element-wise multiplication. Works as the sum.
- Vec1./Vec2 is the element-wise division.

Mini exercise:

1. Create a vector Vec3 such that Vec1-Vec3 is a vector of ten ones.
2. Create a variable B such that Vec1+B-Vec3 is a vector of ten zeros.
3. Create a vector with 100 elements, whose value is all 1 using element-wise division.

The beep

For this part of the exercise, check the section called The Sound File in the Morse.pdf file.

Scripts

- Scripts are successions of commands. Executed in the order found (from top to bottom).
- \% at the beginning of a line means that it's a comment and won't be executed.
- Use ; at the end of each command to suppress the output of that command.
- To run the script, use F5.
- Use \%\% to divide the script in independent cells.
- To run a cell, press ctrl+Enter.
- Script names can have letters, underscores and numbers. Just like variables.
- All will be saved to the workspace (command window). Variables will be overwritten.
- You can execute a script within another script by just writing its name.

Functions

A function is defined as:
function [out1, out2, ...] = functionName(in1, in2,...)
Content of function
end

- It's also a succession of commands
- All variables are stored in a temporary workspace and deleted afterward.
- You can reuse names of variables that are in your main workspace without changing them.
- You cannot use variables from outside of the function unless passed as inputs.
To call a function:
[var1, var2,...] = functionName(in1, in2,...);

Last part of the Morse Code

For this part of the exercise, check the section called 'Turning it into a Function' in the Morse.pdf file.

