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ABSTRACT
Inhibitory control represents a central component of executive functions and focuses 
on the ability to actively inhibit or delay a dominant response to achieve a goal. Although 
various tasks exist to measure inhibitory control, correlations between these tasks are 
rather small, partly because of the task impurity problem. To alleviate this problem, 
a latent variable approach has been previously applied and two closely related yet 
separable functions have been identified: prepotent response inhibition and resistance 
to distractor interference. The goal of our study was a) to replicate the proposed 
structure of inhibitory control and b) to extend previous literature by additionally 
accounting for speed-accuracy trade-offs, thereby potentially increasing explained 
variance in the investigated latent factors. To this end, 190 participants completed six 
inhibitory control tasks (antisaccade task, Stroop task, stop-signal task, flanker task, 
shape-matching task, word-naming task). Analyses were conducted using standard 
scores as well as inverse efficiency scores (combining response times and error rates). 
In line with previous studies, we generally found low zero-order correlations between 
the six tasks. By applying confirmatory factor analysis using standard reaction time 
difference scores, we were not able to replicate a satisfactory model with good fit 
to the data. By using inverse efficiency scores, a two-related-factor and a one-factor 
model emerged that resembled previous literature, but only four out of six tasks 
demonstrated significant factor loadings. Our results highlight the difficulty in finding 
robust inter-correlations between commonly used inhibitory control tasks, even when 
applying a latent variable analysis and accounting for speed-accuracy trade-offs. 
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1. INTRODUCTION
Inhibitory control represents a central component of executive functions. Although various 
terms and taxonomies exist, a common working definition is that inhibitory control focuses 
on the ability to actively inhibit or delay a dominant response to achieve a goal (Friedman & 
Miyake, 2004; Miyake et al., 2000; Nigg, 2000). Importantly, research has shown that inhibitory 
control represents a core ability that is associated with various types of executive functions, 
e.g., working memory updating and shifting (Miyake & Friedman, 2012). Not surprisingly, 
the construct is widely used in numerous research domains and has been proposed as an 
underlying mechanism implicated in different skills and cognitive achievements, for example 
attention (Friedman et al., 2007), working memory span and reading comprehension (De Beni 
et al., 1998; Gernsbacher, 1993), problem solving (Pasolunghi et al., 1999), general cognitive 
ability (Dempster & Corkill, 1999) as well as emotion regulation (Tabibnia et al., 2011). Deficient 
inhibition-related processes have been postulated in several forms of psychopathology and 
mental disorders, for example rumination (De Lissnyder et al., 2010) and depression (Joormann, 
2010), externalizing behavior (Young et al., 2009), ADHD (Barkley, 1997; Nigg, 2001), substance 
use disorders (Nigg et al., 2006), schizophrenia (Westerhausen et al., 2011), autism (Geurts et 
al., 2014), and obsessive-compulsive disorder (van Velzen et al., 2014). 

Despite the high relevance, some commonly used tasks to measure inhibitory control such 
as the Stroop task or stop-signal task often show low construct validities (Rabbitt, 1997; for a 
meta-analysis, see Duckworth & Kern, 2011) and poor reliabilities (Enkavi et al., 2019; recent 
review in Hedge et al., 2018). Furthermore, although a number of tasks have been used to tap 
inhibitory control, quite often only a single task is used per study (albeit for obvious reasons 
such as limited time and resources). Given that no tasks are pure measures of inhibitory control, 
it remains unclear whether the observed effects rely rather on idiosyncratic task requirements 
instead of inhibitory control. This well-known task impurity problem (that is related to all 
executive functions) indicates that, since any target inhibitory control process must be 
embedded in a specific context, systematic variance is attributable to non-inhibitory control 
abilities (Miyake et al., 2000). This and random measurement error make it difficult to purely 
measure inhibitory control variance. Consequently, low zero-order and often insignificant 
correlations between commonly used inhibitory control tasks have been reported and likely 
result from these problems (e.g. Enge et al., 2014; Singh et al., 2018).

As several studies pointed out previously, using multiple tasks and applying a latent variable 
analysis provides a more fruitful and reliable measurement of inhibitory control (e.g., Aichert 
et al., 2012; Miyake et al., 2000; Stahl et al., 2014). By extracting common variance that is 
shared by all tasks, latent variables provide purer measures, thereby reducing measurement 
error and the task impurity problem. In their seminal study regarding the unity and diversity of 
inhibition-related functions, Friedman and Miyake (2004) investigated the structure of three 
inhibition-related functions: prepotent response inhibition, resistance to distractor interference 
and resistance to proactive interference. By using structural equation modeling, the authors 
demonstrated that prepotent response inhibition and resistance to distractor interference are 
closely related to each other (r = .67) but separable from resistance to proactive interference. 
A study by Kane and colleagues (2016) confirmed the pattern that individual differences in 
inhibition-related functions represent distinguishable yet empirically related constructs. They 
found a robust association between attention restraint (e.g., antisaccade and Stroop task) 
and attention constraint abilities (e.g., flanker task) with a correlation (.60) similar to the 
study by Friedman and Miyake (.68), but also that these skills were distinguishable and not 
identical.

The first goal of this study was to replicate the finding by Friedman and Miyake (2004) of two 
latent variables (‘prepotent response inhibition’ and ‘resistance to distractor interference’) 
using a latent variable approach. We were especially interested whether prepotent response 
inhibition and resistance to distractor interference are in fact closely related, given that several 
studies emphasize conceptual differences between both types of inhibitory control (Dempster, 
1995; Harnishfeger, 1995; Nigg, 2000) or even suggest both constructs to be empirically 
independent (Tiego et al., 2018). In detail, it has been postulated that resistance to distractor 
interference relates to an initial perceptual stage of information processing and focuses on 
the selection of relevant vs. irrelevant information. In contrast, prepotent response inhibition 
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has been associated with a later stage of information processing, focusing on the inhibition 
of motor responses and behavioral impulses. Because of several methodological problems 
for resistance to proactive interference (e.g., the dependent variable in the respective tasks 
represents a difference score that results from only one measurement value, cf. Friedman & 
Miyake, 2004), we focused only on the relationship between prepotent response inhibition and 
resistance to distractor interference. 

The second goal of the study was to account for the speed-accuracy trade-off that is inherently 
related to all tasks that rely on instructions that emphasize to respond as fast and as accurately 
as possible. However, given the inverse relationship between speed and accuracy in both 
animals and humans, known as the speed-accuracy trade-off (Bogacz, 2013; Wickelgren, 
1977), performance measures based on either reaction times (e.g., Stroop effect) or error rates 
alone may be difficult to interpret (cf. Enge et al., 2014). For example, Draheim et al. (2019) 
extensively discussed the problems and alternatives of using standard reaction time difference 
scores in differential and developmental research in their recent review. Because previous 
work on integrated speed-accuracy measures has been based on simulation data or applied 
in more experimental paradigms (Heitz, 2014; Vandierendonck, 2017), this study investigates 
whether one such integrated measure empirically improves the measurement issue of more 
conventional reaction time (RT) difference scores for individual differences research. Therefore, 
we combined error rates and reaction times into inverse efficiency scores (IES; Bruyer & 
Brysbaert, 2011; Townsend & Ashby, 1983) by dividing the mean RT of correct responses by 
the proportion of correct responses. This was done in a previous study that applied a latent 
variable approach to executive function tasks (Wolff et al., 2016) and has the advantage that 
reaction time and accuracy are combined into a single performance measure. Specifically, we 
expected higher correlations and a better fit for estimated models with the IES compared to 
the standard outcome measures. 

In sum, by using a latent variable analysis on six inhibitory control tasks, we aimed at replicating 
the general pattern of two closely related latent factors (cf. Friedman & Miyake, 2004): 
prepotent response inhibition (antisaccade task, Stroop task, stop-signal task) and resistance 
to distractor interference (Eriksen flanker task, shape-matching task, word-naming task; see 
below). In addition, we tried to extend previous literature by additionally considering speed-
accuracy trade-offs using inverse efficiency scores, thereby potentially increasing explained 
variance in the investigated latent factors. 

2. METHODS
We report how we determined our sample size, all data exclusions (if any), all manipulations, 
and all measures in the study (Simmons et al., 2012). Data and analysis routines can be found 
at: https://osf.io/2fwm4.

PARTICIPANTS 

The sample comprised 190 healthy adults (97 female; age = 18–39 years, M = 23.8 years, SD = 
4.7 years) recruited at the TU Dresden. This sample size permitted a participant-to-parameter 
ratio of more than five in all models (as recommended by Hatcher & O’Rourke, 2014; see also 
Kline, 2016). Furthermore, this sample fits about the minimum sample size for the model 
structure with two latent and six observed variables (cf. Cohen, 1988; Westland, 2010), at an 
alpha level of 0.05, a power (1–beta) of 0.80, and an anticipated effect size of 0.38 according to 
the initial model of inhibition related functions in Friedman and Miyake (2004; calculated with 
the online calculator by Soper, 2018). 

In a semi-structured interview for psychiatric and neurological disorders or treatment, none of 
the participants reported any current or past (in the last year) medical, neurological or psychiatric 
illness or treatment that might influence cognition or motor performance. All participants 
were non-smokers, reported German as their mother tongue, had normal or corrected to 
normal vision and no color blindness, and reported no regular substance or alcohol use. The 
study design was approved by the ethics committee of the TU Dresden (EK 357092014). The 
study was conducted in accordance with the Declaration of Helsinki and followed the ethical 
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guidelines of the German Psychological Association. All participants provided written informed 
consent and received compensation for expenses.

PROCEDURE

Upon arrival, participants were briefly familiarized with the laboratory setting, informed 
about the upcoming experiment, provided demographic information and ratings on their 
current mood. Afterwards, participants performed six inhibitory control tasks (see below) in 
randomized order. Finally, participants were debriefed, reimbursed and thanked. The session 
lasted approximately 90 minutes. To ensure undisturbed testing, the sessions were carried 
out in testing booths. Participants were allowed breaks of self-chosen duration following 
completion of each task inside the testing booth. To prevent that breaks were skipped 
completely, participants were instructed to pause by leaving the testing booth for 5 minutes 
after completing the first three tasks. Since circadian variation might impact on cognitive 
performance (Bratzke et al., 2012; Hasher et al., 1999; Schmidt et al., 2007) all sessions 
were conducted between 9 am and 5 pm. Because the study was part of a larger project, all 
participants returned for a second session investigating general emotion regulation ability. 
These data are not reported here. A complete list of all measures in the larger project can be 
found at https://osf.io/2fwm4.

MEASURES AND MATERIALS
Inhibitory control battery

The task battery comprised six computerized reaction time tasks, three for prepotent response 
inhibition (antisaccade task, Stroop task, stop-signal task) and three for resistance to distractor 
interference (Eriksen flanker task, shape-matching task, word-naming task). Since we followed 
the approach taken by other authors in previous work on individual differences in inhibitory 
control, the tasks were adapted from Friedman and Miyake (2004) and Enge and colleagues 
(2014), respectively. Whereas most of the tasks were identical to the tasks by Friedman and 
Miyake (2004), our implementation differed slightly with regard to the Stroop task (where we 
used a color-word conflict instead of number-denotation conflict), and the stop-signal task 
(where we used a standard response format per button press instead of an auditory version). 
However, as can be seen in the work by Enge et al. (2014), these tasks are equally suitable 
for measuring inhibitory control. All tasks were preceded by written on-screen instructions 
and at least 20 practice trials. A QUERTZ layout keyboard, and a microphone with audio cable, 
respectively, was used to enter responses. In each task, both error rate and response time were 
recorded. 

Antisaccade task. During each trial of the antisaccade task (described in Friedman & Miyake, 
2004), a fixation cross appeared in the middle of a white screen with a jitter of 1500–3500 ms 
in 250 ms intervals, followed by a visual cue on one side of the screen for 175 ms, followed 
by a target stimulus (an arrow inside an open box) on the opposite side of the screen for 150 
ms, followed by a gray mask that remained on the screen until the participant indicated the 
direction of the previously shown leftward, rightward or downward pointing arrow per button 
press (leftward, rightward, and downward pointing arrows on the keyboard, respectively). After 
22 practice trials, participants received 90 target trials. 

Stroop task. During each trial of the classical color Stroop task (described in Enge et al., 2014), 
a fixation cross was presented for 500 ms on a white screen, followed by different color names 
(“GREEN”, “RED”, “BLUE”) or a neutral stimulus (“+ + + +”) in varying font colors (green, red, 
or blue) for up to 1000 ms. Participants were instructed to identify the color of the presented 
stimulus by button press (red: leftward pointing arrow; green: downward pointing arrow; blue: 
rightward pointing arrow). Three types of trials were administered: congruent trials (matched 
font color and word meaning), incongruent trials (mismatched font color and word meaning), 
and neutral trials (neutral stimulus presented in one of the font colors). The three conditions 
were presented intermixed in a fixed random order. After 24 practice trials, participants received 
240 target trials (80 per condition).

Stop-signal task. During the stop-signal task (described in Enge et al., 2014), a fixation cross 
was presented for 500 ms on a white screen, followed by a series of black capital letters for up 
to 1000 ms. Participants were instructed to discriminate between vowels and consonants per 
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button press (go trial; vowels: leftward pointing arrow, consonants: rightward pointing arrow). 
On the minority of trials (25%), a letter appeared in red font color or changed its color after a few 
milliseconds from black to red (stop signal). Here, participants were instructed to suppress their 
response (stop trial). The delay between the stimulus and the stop signal (stop-signal delay, 
SSD) varied from 0 to 500 ms in 100 ms intervals (resulting in six steps that varied randomly). 
We assessed the stop-signal reaction time (SSRT) as the estimated time at which the stopping 
process finishes. As recommended by Logan (1994) and also pursued by Friedman and Miyake 
(2004), we used the common estimation method based on the horse-race model with the SSRT 
assumed to be a constant: For each SSD, all RTs for the go trials were rank ordered. Then, the 
number of the SSD was subtracted from the nth RT, where n was the number of all go trial RTs 
multiplied with the probability of responding at that delay. After 40 practice trials, participants 
received 440 target trials.

Eriksen flanker task. During each trial of the Eriksen Flanker task (described in Friedman & 
Miyake, 2004), a blank white screen was presented for 1000 ms, followed by a fixation cross 
for 500 ms, followed by a centrally presented letter. Participants were instructed to indicate 
by button press whether the target letter was H or K (CTRL right) and S or C (CTRL left), 
respectively. The letter was presented alone (no-noise condition, “H”) or flanked by three 
noise letters on each side, resulting in another three conditions: 1) noise same as target 
(“HHHHHHH”), 2) noise compatible (“KKKHKKK”), and 3) noise incompatible (“SSSHSSS”). The 
stimuli remained on the screen until the participant responded. The four conditions were 
presented intermixed in a fixed pseudorandom order (no more than three successive trials 
of the same condition). After 20 practice trials, participants received 160 target trials (40 per 
condition).

Shape-matching task. During each trial of the shape-matching task (described in Friedman & 
Miyake, 2004; without negative priming trials), a fixation cross was presented on a black screen 
for 500 ms, followed by a green target shape on the left for 3000 ms (maximum), followed 
by a gray mask for 100 ms. Participants were instructed to indicate per button press as fast 
and accurately as possible whether the target shape matched (rightward pointing arrow) 
or mismatched (leftward pointing arrow) with a white shape on the right, ignoring the red 
distractor shape layering the target shape when present (distractor trial vs. no-distractor trial). 
A third of the trials (56) were no-distractor trials; the other 112 distractor trials. The stimuli 
of the task were a set of eight abstract shapes and exactly the same as used in the study by 
Friedman and Miyake (2004). Targets appeared equally often in each position. After 24 practice 
trials, participants received 168 target trials.

Word-naming task. During each trial of the word-naming task (described in Friedman & 
Miyake, 2004; without negative priming trials), a fixation cross was presented on a black 
screen for 500 ms, followed by a green target word on the top or bottom of the screen 
for 225 ms, followed by a gray mask for 100 ms, and a black screen until the participant 
responded. Participants were instructed to name aloud the target word and ignore the red 
distraction word on the opposite direction (top or bottom) when present (distractor vs. no-
distractor trial). A third of the trials (56) were no-distractor trials; the other 112 distractor 
trials. Following the protocol by Friedman and Miyake (2004), the words were selected from 
eight German four-letter nouns (“TREE”, “HOUSE”, “SAND”, “RING”, “SONG”, “DOG”, “POT”, 
“CLOTH”, “SHIRT”), were matched in frequencies and did not rhyme. Targets appeared equally 
often in each position. After individual voice-key calibration and 24 practice trials, participants 
received 168 target trials.

STATISTICAL PROCEDURES
Data trimming and outlier analysis

In order to most closely adhere to the original analysis protocol, data trimming and outlier 
analysis fully followed the steps by Friedman and Miyake (2004), based on the recommendations 
by Wilcox and Keselman (2003) for robust data analysis. For the RT-based measures, all RTs from 
errors (voice key or other) and all RTs less than 200 ms were eliminated. The percentage of the 
trials eliminated was less than 12.5% in all of these tasks. To prevent extreme RTs unreasonably 
influencing the means of each participant, RTs were trimmed the following way: First, following 
the trimming procedure by Friedman and Miyake (2004), the following upper and lower criteria 
were used for each task, and any values exceeding those criteria were replaced with those 
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values: 400 ms and 2000 ms for the Stroop task, 200 ms and 1000 ms for the word-naming 
task, 200 ms and 2000 ms for the shape-matching, stop-signal and antisaccade task, and 200 
and 1500 ms for the flanker task. This procedure affected no more than 10% of observations 
for the task, except the word-naming task (33%). Second, for each participant and each task, 
RTs farther than 3 SD from the mean for each condition were replaced with the respective value 
3 SD above/below the mean (see Wilcox & Keselman, 2003). This procedure affected no more 
than 2% of observations for any task. Data for the stop-signal task were not subject to this 
procedure because the dependent measure was not influenced by extreme RTs. Afterwards, all 
between-participant distributions were examined for extreme scores. For each variable used in 
further analyses, observations farther from 3 SD from the group mean were replaced with the 
respective value. This final trimming procedure affected no more than 2.5% of observations for 
any task. This data trimming procedure was set up before data analysis and aimed at closely 
replicating the procedure by Friedman and Miyake (2004). Tables 1 and 2 (see “Results”) depict 
the descriptive statistics of the outcome measures.

VARIABLE M SD RANGE

Response Times

Stroop RTincon 655.07 119.96 445.60 to 1033.06

Stroop RTcon 607.02 95.78 456.00 to 899.64

Antisaccade RT 457.87 127.01 239.85 to 1031.01

Stop-signal RTgo 641.96 85.24 471.20 to 893.03

Flanker RTincom 593.88 105.57 338.74 to 935.57

Flanker RTno-noise 552.69 90.85 339.15 to 862.20

Shape-matching RTdis 974.07 209.74 659.41 to 1700.01

Shape-matching RTno-dis 808.95 121.84 598.48 to 1253.49

Word-naming RTdis 388.76 76.80 288.56 to 727.25

Word-naming RTno-dis 363.54 74.32 263.64 to 697.33

Error Rates

Stroop err%inc 0.04 0.08 0.00 to 0.93

Stroop err%con 0.05 0.06 0.00 to 0.61

Antisaccade err% 0.16 0.13 0.00 to 0.66

Stop-signal err%stop 0.61 0.19 0.00 to 1.00

Flanker err%incom 0.08 0.11 0.00 to 0.50

Flanker err%no-noise 0.06 0.11 0.00 to 0.50

Shape-matching err%dis 0.06 0.10 0.00 to 0.88

Shape-matching err%no-dis 0.05 0.07 0.00 to 0.93

Word-naming err%dis 0.34 0.19 0.04 to 1.00

Word-naming err%no-dis 0.22 0.19 0.00 to 1.00

Inverse Efficiency Scores

Stroop IESincon 752.06 967.26 460.48 to 13872.47

Stroop IEScon 690.62 803.10 466.25 to 11576.93

Flanker IESincom 661.97 214.50 447.38 to 1871.15

Flanker IESno-noise 606.84 198.21 402.38 to 1724.41

Shape-matching IESdis 1091.97 584.52 740.63 to 7199.81

Shape-matching IESno-dis 886.55 578.91 619.58 to 8641.50

Word-naming IESdis 635.28 365.03 365.80 to 4751.04

Word-naming IESno-dis 485.92 209.79 323.24 to 2302.86

Table 1 Descriptive statistics 
for response times, error rates 
and IES for single conditions of 
the six inhibitory control tasks.

Note: RT = reaction time; 
err% = error rate (in percent); 
IES = inverse efficiency 
score; incon = incongruent; 
con = congruent; incom = 
incompatible; dis = distractor; 
no-dis = no distractor 
trials. Given that the stop 
signal reaction time (SSRT) 
already accounts for speed 
and accuracy, no IES were 
computed.
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To further ensure that extreme values did not influence the results, we checked for outliers 
and influential cases using leverage, studentized residuals, and Cook’s D values. These values 
assess the influence of a single variable on the correlations. Extreme values were defined by 
leverage values >.05; studentized residuals > |3.00|; and D much larger than for the rest of the 
observations. Although some observations were indicated as extreme values, the correlations 
did not change when these observations were removed. In addition, we report robust Spearman 
rank correlations because this test does not rely on any assumptions about the distribution of 
the data, thereby providing a more conservative measure for potential associations. In all tasks, 
lower scores indicate better performance.

Behavioral Analyses

Behavioral data were acquired using Presentation® software (Version 17.0, Neurobehavioral 
Systems, Inc., Berkeley, CA, www.neurobs.com), running at 24-inch LCD screens with a resolution 
of 1080 × 1024. Data were examined for normality and outliers using QQ plots and boxplots 
and analyzed using SPSS Statistics for Macintosh (Version 25; IBM Corp., Armok, NY, USA) and 
RStudio (Version 1.0.143). Multivariate normality was examined using the R package MVN 
(Korkmaz, Goksuluk, & Zararsiz, 2014).

Participants received the standard instruction to respond as fast and as accurately as possible 
(Enge et al., 2014; Friedman & Miyake, 2004). The dependent variables for the analyses with the 
standard RT differences were: 1) the proportion of errors in the antisaccade task, 2) the reaction 
time difference between incongruent and congruent trials in the Stroop task, 3) the SSRT in 
the stop-signal task, 4) the reaction time difference in the no-noise versus noise incompatible 
condition in the Eriksen flanker task, 5) and 6) the reaction time difference between the distractor 
versus no-distractor condition in the shape-matching and word-naming task, respectively.

Because of the related speed-accuracy trade-off, error rates (ERs) and RTs were combined into 
inverse efficiency scores (IES; Bruyer & Brysbaert, 2011; Townsend & Ashby, 1983) by dividing 
the mean RT of correct responses by the proportion of correct responses (RT/[1–ER]). In the 
antisaccade task, the mean RT of correct responses in the target trials was divided by the 
proportion of correct responses during these target trials. In the Stroop task, the mean RT of 

MEASURE M SD RANGE SKEW KURT REL

RT

Response inhibition

Antisaccade (%) 14.37 11.32 0 to 59 1.74 3.86 .93

Stroop effect (ms) 47.52 51.52 –58 to 223 0.70 0.24 .61

Stop-signal RT (ms) 321.62 42.57 200 to 437 0.30 -0.08 .64

Distractor Interference

Flanker effect (ms) 47.06 38.72 –69 to 177 0.61 3.07 .47

Shape effect (ms) 160.04 113.02 –11 to 638 2.40 7.02 .98

Word effect (ms) 25.23 26.90 –80 to 136 0.59 3.22 .31

IES

Response Inhibition

Antisaccade (ms) 570.3 284.7 292 to 2651 4.14 23.05 –

Stroop (ms) 49.6 52.6 –60 to 201 0.67 -0.06 –

Stop-signal (SSRT)° 321.6 42.6 200 to 437 0.30 -0.08 –

Distractor Interference

Flanker (ms) 51.3 59.6 –96 to 319 0.93 2.78 –

Shape-matching (ms) 163.3 96.0 –46 to 529 1.19 1.69 –

Word-naming (ms) 131.1 91.3 –132 to 425 0.54 0.60 –

Table 2 Descriptive statistics 
for the RT and IES outcome 
measures of the six inhibitory 
control tasks.

Note: RT = reaction time; 
IES = inverse efficiency 
scores; % = percent 
incorrect; Skew = skewness; 
Kurt = excess kurtosis; 
Rel = reliability calculated 
as internal consistency by 
adjusting split-half correlations 
with the Spearman-Brown 
formula; °given that the stop 
signal reaction time (SSRT) 
already accounts for speed 
and accuracy, no IES were 
computed.

https://doi.org/10.5334/joc.150
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correct responses in the incongruent trials was divided by the proportion of correct responses 
during incongruent trials, and the mean RT of correct responses in congruent trials was 
divided by the proportion of correct responses during congruent trials, and the quotients were 
subtracted by each other (i.e., (RTinc/[1–ERinc]) – (RTcon/[1–ERcon]. In the Eriksen flanker task, the 
mean RT of correct responses during noise incompatible trials was divided by the proportion 
of correct responses during noise incompatible trials, and the mean RT of correct responses in 
no-noise trials was divided by the proportion of correct responses during no-noise trials, and 
the quotients were subtracted by each other (i.e., (RTinc/[1–ERinc]) – (RTno-noise/[1–ERno-noise]. In the 
shape-matching and word-naming task, the mean RT of correct responses in the distractor 
trials was divided by the proportion of correct responses during distractor trials, and the mean 
RT of correct responses in no-distractor trials was divided by the proportion of correct responses 
during no-distractor trials, and the quotients were subtracted by each other (i.e., (RTdis/[1–ERdis]) 
– (RTno-dis/[1–ERno-dis]. Because RTs are expressed in milliseconds (ms) and divided by proportions, 
IES are equally expressed in ms. IES were not used for the stop-signal task, because the SSRT 
already accounts for accuracy (cf. Logan et al., 2014 for further details). Descriptive statistics 
of the IES outcome measures, reaction times, error rates, and IES per condition and per task 
are given in Tables 1 and 2. All analyses were conducted using both standard response time 
outcomes as well as IES to examine possible differences between both measures. 

Model estimation

Models were estimated with AMOS (Arbuckle, 2014) using the maximum likelihood (ML) 
estimation based on the covariance matrix (cf. Friedman & Miyake, 2004). As a prerequisite of 
ML estimation, we checked multivariate normality with Mardia’s coefficient and Mahalanobis 
d2. Mardia’s coefficient of multivariate skewness and kurtosis was significant and several 
multivariate outliers were indicated by significant Mahalanobis d2 values. The results were 
the same when these outliers were removed. For this reason, all subjects were included in 
further analyses. Nevertheless, to critically evaluate the stability of parameter estimates, we 
bootstrapped the data 5000 times non-parametrically with replacement. This has been 
shown to generate less biased estimates compared to standard ML estimation for sample sizes 
around N = 200 (Nevitt & Hancock, 2001) with only moderate skewness (≤ 2) and kurtosis (≤ 7) 
(Gao et al., 2008). Bias-corrected standard errors and p-values were obtained by bootstrapping 
with N = 5000 samples (see Supplementary Table A1).

Model fit was evaluated using multiple indices according to the recommendation of Hu and 
Bentler (1999): chi-square statistic, the standardized root mean square residual (SRMR), the 
root mean square error of approximation (RMSEA), Bentler’s comparative fit index (CFI), and the 
normed fit index (NFI). In addition, Akaike’s information criterion (AIC) was examined (Burnham 
& Anderson, 2003). The chi-square statistic measures the “badness of fit” of the model 
compared with a saturated model, that is, the degree to which the covariances predicted by the 
model differ from the observed covariances (small values indicate no statistically meaningful 
differences and are therefore preferable). Compared to chi-square, the AIC takes the model 
complexity into account and was used to compare different models in order to determine the 
most adequate one (models yielding the lowest AIC are preferred). SRMR is an index of the 
average of standardized residuals between the observed and the predicted covariance matrixes; 
lower values indicate closer fit, values less than .08 indicate fair fit and less than .05 indicate 
good fit. RMSEA is an index of the difference between the observed covariance matrix per degree 
of freedom and the hypothesized covariance matrix which denotes the model (Chen, 2007). It 
also takes model complexity into account; lower values indicate closer fit, values less than .08 
indicate an acceptable fit, less than .05 good fit, and less than .01 excellent fit. The CFI quantifies 
the extent to which the model is better than a baseline model (e.g., with covariances set to 0), 
and values above .95 indicate good fit, although .90 is also commonly used. The NFI measures 
the discrepancy between the chi-squared value of the hypothesized model and the chi-squared 
value of the null model; values above .95 indicate good fit. All analyses used an alpha level of .05. 

3. RESULTS
Table 1 depicts the descriptive statistics for response times, error rates and IES for single 
conditions of the six inhibitory control tasks.
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As shown in Table 2, the reliability estimates for the outcome measures of the six inhibitory 
control tasks were only moderate (high for antisaccade and shape-matching task, moderate 
for stop-signal and Stroop task, and low for flanker and word-naming task). 

Inter-correlations of reaction times and error rates for the six inhibitory control tasks are 
depicted in Table 3. There were mostly significant positive correlations between mean reaction 
times and error rates among the tasks. For example, Stroop mean RT correlated with stop-
signal reaction time (SSRT) and antisaccade mean RT, and Stroop error rate correlated with 
stop-signal error rate and antisaccade error rate (see Table 3).

Bivariate zero-order correlations between the tasks are shown in Table 4. The magnitudes of 
these correlations were generally low (.29 or smaller). Using standard reaction time scores, 
there were significant positive correlations between performance in the antisaccade task and 
the stop-signal task and between performance in the Stroop task and the shape-matching 
task. Furthermore, there were correlations with p < .10 between performance in the Stroop 
task and the stop-signal task and between performance in the flanker task and the shape-
matching task. Using IES, there were still correlations between performance in the antisaccade 
task and the stop-signal task and between performance in the Stroop task and the shape-
matching task, and a correlation with p < .10 between performance in the Stroop task and the 
stop-signal task. Compared to the standard reaction time scores, there were now significant 
correlations between performance in the antisaccade task and the shape-matching task as 
well as performance in the antisaccade task and the word-naming task. Furthermore, there 
was a correlation with p < .10 between performance in the stop-signal task and the word-
naming task.

VARIABLE 1 2 3 4 5 6 7 8 9 10 11

1 Stroop RT —

2 Antisaccade RT .36*** —

3 Stop-signal RT .26*** .21** —

4 Flanker RT .61*** .48*** .29*** —

5 Shape-matching 
RT .61*** .48*** .18* .55*** —

6 Word-naming RT .18* .10 .13° .16* .17* —

7 Stroop err% .03 –.123° –.18* –.13° –.13° –.02 —

8 Antisaccade err% .03 .38*** –.03 .14* .13° –.02 .18* —

9 Stop-signal err% –.14° –.08 –.90*** –.17* –.04 –.11 .15* .09 —

10 Flanker err% –.19* –.07 –.10 –.15* –.15* –.06 .21** .25** .13° —

11 Shape-matching 
err% –.17* –.17* –.08 –.16* –.20** .01 .29*** .19** .07 .19** —

12 Word-naming 
err% .12° .11 –.13° .12° .16* –.39*** .02 .27*** .16* .04 .05

Table 3 Inter-correlations of 
reaction times and error rates 
for the six inhibitory control 
tasks.

Note: RT = mean reaction time; 
err% = error rate (in percent) 
in stop/distractor/incongruent 
trials; ° p < .10; * p < .05; 
** p < .01; *** p < .001.

1 2 3 4 5

RTa IES RT IES RT IES RT IES RT IES

1 Antisaccade

2 Stroop .07 .11

3 Stop-signal .16* .19** .13 .13

4 Flanker –.03 –.02 .03 .10 –.05 –.11

5 Shape-matching .12 .18* .29*** .21** –.06 –.08 .14 .06

6 Word-naming .00 .18* .05 .03 –.07 .13 .05 .11 .01 .11

Table 4 Spearman correlations 
of the six inhibitory control 
tasks for RT scores and IES.

Note: RT indicates correlations 
between reaction time 
measures with the exception 
of a where error rates in 
percent in the antisaccade 
task were correlated with 
reaction time measures in 
the other tasks; IES indicates 
correlations between inverse 
efficiency scores. Correlations 
between RT and IES are not 
shown. * p < .05; ** p < .01; 
*** p < .001.
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THE TWO-FACTOR MODEL OF THE INHIBITION-RELATED FUNCTIONS

We constructed the measurement model of the two inhibition-related functions for both RT scores 
(Figure 1A) and IES (Figure 1B). Table 5 also presents the fit of the null model (all covariances among 
the tasks are hypothesized to equal zero, but variances of the tasks are allowed to vary freely). 
Given the low zero-order correlations between the tasks, one might speculate that there is not 
much to be modelled and that the fit of any model would be adequate. However, the fit of the 
null model was poor, 𝘟2(15, N = 190) = 40.12, p < .001, RMSEA = .094, SRMR = .090, CFI < .01, 
AIC = 64.12, NFI < .01. Therefore, the covariances are substantial enough to support model-fitting 
procedures. As shown in Table 5, the fit of the depicted model with two related factors (prepotent 
response inhibition and resistance to distractor interference) was poor, 𝘟2(8, N = 190) = 12.65, 
p > .05, RMSEA = .055, SRMR = .053, CFI = .82, AIC = 50.65, NFI = .685. Furthermore, only three tasks 
demonstrated significant factor loadings (antisaccade task, Stroop task, shape-matching task) and 
the two factors were not significantly related to each other. Table 5 also presents the fit statistics 
for alternative theoretical models that we considered (two factors unrelated, one factor). The fit 
statistics of these models were comparable (one factor) or even worse (two factors unrelated). 
Supplementary Table A1 contains the bootstrapped p-values and standard errors of the depicted 
model in Figure 1. Note that the fit of all models was evaluated according to the fit criteria reported 
in Table 5.

Figure 1 The two-factor 
model of inhibition-related 
functions using RT scores (A) 
and inverse efficiency scores 
(B), completely standardized 
solution. Numbers on the 
leftwards single-headed 
arrows are standardized 
factor loadings. Numbers 
on the rightwards smaller 
arrows depict error variances 
for each task, attributable to 
idiosyncratic task requirements 
and measurement error. 
The number on the curved 
double-headed arrow is the 
correlation between the latent 
variables. Bold-face type 
indicates significance at the 

.05 level.

MODEL df X2 RMSEA SRMR CFI AIC NFI

Reaction time scores

Null model 15 40.12*** .094 .090 .000 64.115 .000

Two factors unrelated 9 26.48** .101 .079 .304 62.476 .340

Two factors related 8 12.65 .055 .053 .815 50.645 .685

One factor 9 15.34 .061 .057 .748 51.340 .618

Inverse efficiency scores

Two factors unrelated 9 19.71* .079 .074 .619 55.707 .543

Two factors related 8 11.62 .049 .049 .871 49.623 .730

One factor 9 14.03 .054 .041 .821 50.030 .674

Table 5 Fit statistics for the 
confirmatory factor analysis 
models.

Note: Reasonable fit: Chi-
squares not significant at 
the .05 level; lower values 
of root mean square error of 
approximation (RMSEA) with 
<.08 mediocre fit, <.05 good 
fit and <.01 excellent fit; lower 
values of standardized root-
mean-square residual (SRMR) 
with <.08 fair fit, <.05 good fit; 
values above .95 for Bentler’s 
comparative fit index (CFI) for 
excellent fit; lower values of 
Akaike’s information criterion 
(AIC); values above .95 for the 
normed fit index (NFI) for good 
fit * p < .05.
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As mentioned earlier, we constructed the same measurement models with IES and expected 
better model fit by taking reaction time and accuracy for each task into account. The fit for the 
model with two related factors was mediocre, 𝘟2(8, N = 190) = 11.62, p > .05, RMSEA = .049, 
SRMR = .049, CFI = .87, AIC = 49.62, NFI = .730. The fit was preferable over the model with 
unrelated factors but comparable to the model with one factor. However, there were still two 
tasks that demonstrated no significant factor loadings (stop-signal task, flanker task).

4. DISCUSSION
In this study, we examined the relationship between six commonly used inhibitory control tasks 
and aimed at replicating the general pattern of two closely related latent variables (prepotent 
response inhibition, resistance to distractor interference). In addition, well-known speed-
accuracy trade-offs were taken into account by considering inverse efficiency scores (IES). In 
line with previous studies (Aichert et al., 2012; Cheung et al., 2004; Enge et al., 2014; Enticott 
et al., 2006), we found generally low and non-significant zero-order correlations between the 
six tasks. By using standard reaction time difference scores, we were not able to replicate a 
satisfactory latent variable model with good fit to the data. In contrast, by using IES, both 
a two-related and a one-factor model with the latent variable response–distractor inhibition 
indicated mediocre fit to the data and resembles previous literature (Friedman & Miyake, 
2004), although only four out of six tasks demonstrated significant factor loadings. The results 
highlight the difficulty in finding robust inter-correlations between inhibitory control tasks, even 
when accounting for speed-accuracy trade-offs, thereby possibly reflecting the consequence 
of the task impurity problem.

The magnitudes of the correlations between the six inhibitory control tasks were generally 
low (.29 or smaller), but are consistent with the results of previous studies and seem not to be 
restricted to college samples, but also present in samples with a wider age range and across 
different levels of intellectual abilities (Cheung et al., 2004; Enge et al., 2014; Enticott et al., 
2006; Friedman & Miyake, 2004; Miyake et al., 2000; Shilling, Chetwynd, & Rabbitt, 2002; Singh 
et al., 2018; Wolff et al., 2016). This is why we applied a latent variable analysis: By extracting 
common variance that is shared by all tasks, latent variables provide purer measures, thereby 
reducing measurement error and the task impurity problem. Indeed, the fit for the null model 
(assuming that the covariances among all tasks are zero) was poor, indicating that although we 
found only low and mostly non-significant zero-order correlations, the covariances did support 
model-fitting procedures. However, applying the commonly used reaction time difference 
scores for the measurement model, we were not able to find a satisfactory fit for the two-
factor model (prepotent response inhibition and resistance to distractor interference) or the 
alternative one-factor model (response–distractor inhibition) based on the findings of Friedman 
and Miyake (2004). Only three tasks demonstrated significant factor loadings (antisaccade 
task, Stroop task, shape-matching task).

Given that participants are generally instructed to respond as fast and accurately as possible 
when conducting these or similar executive function tasks, speed-accuracy trade-offs are 
likely to be expected. Indeed, negative correlations between mean reaction times and error 
rates were observed in our study, indicating enhanced speed at the expense of accuracy 
(see Table 3 for further details). Therefore, in a second step we computed a composite score 
combining reaction times and error rates in a single score (IES). Using IES, inter-correlations 
between tasks remained mostly the same (positive correlation between performance in the 
shape-matching and the Stroop task, as well as between the stop-signal and the antisaccade 
task) and two additional correlations were observed (positive correlations between the 
antisaccade task and the shape-matching and word-naming task, respectively). When 
constructing the measurement model, the fit for the model with two related factors was only 
moderate and two tasks still demonstrated non-significant factor loadings (stop-signal task, 
flanker task).

The failure to extract a satisfactory inhibitory control factor using latent variable analysis is 
consistent with a line of other studies (e.g., Friedman & Miyake, 2017; Huizinga et al., 2006; 
Logan et al., 2014; Singh et al., 2018; van der Sluis et al., 2007). Given the generally low zero-
order correlations, low factor loadings and high amount of unexplained variance (77–95%), 
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one might conclude that the task measures for inhibitory control used in our and in other 
studies make it difficult to reliably measure a latent factor. This likely reflects the task impurity 
problem, that is, the fact that systematic variance is attributable to non-inhibitory abilities 
(e.g., specific task demands, differing task properties, measurement error). However, similar 
results regarding low zero-order correlations and factor loadings have also been found for tasks 
measuring working memory updating and shifting ability (Friedman & Miyake, 2017; Huizinga 
et al., 2006; van der Sluis et al., 2007), but these studies were able to successfully apply a latent 
variable approach and found higher factor loadings for the respective tasks. Therefore, another 
interpretation might be that, in contrast to updating and shifting, inhibitory control represents 
no common process. This assumption is supported by recent studies from Rey-Mermet and 
colleagues (2018) and Morra and colleagues (2018), emphasizing that the inhibition construct 
may need to be separated into different subtypes (see also Noreen & MacLeod, 2015). Instead, 
studies investigating inhibitory control as a latent variable often found that most of the 
variance can be accounted for by another factor, that is, basic naming speed (a non-executive 
processing demand in verbal tasks) and goal maintenance, respectively (Singh et al., 2018; 
van der Sluis et al., 2007; Friedman & Miyake, 2017). Although goal maintenance is a crucial 
prerequisite in all executive function tasks, it may be particularly important for inhibition tasks in 
which the main requirement is avoiding strong prepotent responses or conflicting information. 
This mechanism could explain why inhibitory control tasks often load on a common executive 
function factor, but not on an additional inhibition specific factor (Friedman & Miyake, 2017). 
However, the issue is likely more complicated, given that we found no latent factor (representing 
goal maintenance) for all tasks. Clearly, more research is needed to disentangle the effects of 
specific task demands (e.g., by using multiple versions of the same task), inhibitory control 
ability, and other involved processes like attention and basic naming speed.

A comprehensive study by Stahl et al. (2014) investigated behavioral components of impulsivity, 
among them resistance to distractor interference and prepotent response inhibition (which 
they called “stimulus interference” and “behavioral inhibition”, respectively). In contrast to 
our findings, they were able to find two latent factors for both constructs using a structural 
equation modeling approach, but they were not significantly correlated (as opposed to 
Friedman & Miyake, 2004). The authors argued that this could be attributable to the applied 
tasks: In their view, the Stroop task and the flanker task involve both distractor- and response-
related interference, which might possibly reduce the amount of ability-specific variance in 
the respective latent factors. This is also in line with the study by Tiego et al. (2018), who 
classify the Stroop task among the flanker and shape-matching task as measures for distractor  
interference. Following this line of reasoning, the proposed unitary nature of the response-
distractor inhibition factor might be artefactual and possibly reflects a failure to use appropriate 
tasks, or task modifications, to circumvent the task impurity problem. Indeed, this interpretation 
seems to be partly supported by our data, with the strongest zero-order correlation observed 
between performance in the Stroop task and the shape-matching task (r = .29, p < .001), a 
correlation that would be expected if both were measuring resistance to distractor interference. 
Interestingly, similar correlations were found in the studies of Stahl et al. (2014; r = .21, 
p < .05) and Tiego et al. (2018; r = .299, p < .01). Furthermore, the study by Tiego et al. (2018) 
demonstrated that resistance to distractor interference and prepotent response inhibition were 
empirically unrelated when individual differences in working memory capacity were taken into 
account. Although the study was carried out in a developmental sample, it shows that the 
empirical overlap of both inhibitory control concepts might at least partly be explained by their 
common reliance on a limited-capacity attentional resource. 

It should be noted that although we found generally low zero-order correlations between 
the tasks, there were mostly positive significant correlations between mean reaction times 
and error rates among the tasks. For example, Stroop mean RT correlated with stop-signal 
reaction time and antisaccade mean RT, and Stroop error rate correlated with stop-signal 
error rate and antisaccade error rate (see Table 3 for further information). The fact that error 
rate and mean RT were correlated in nearly all tasks provides support that the errors reflect 
an inability to inhibit prepotent responses and distractors, respectively, and that the mean 
RTs reflect general impulsivity. In contrast, the difference scores (e.g., Stroop effect, flanker 
effect) were not correlated. This is in line with research showing that difference scores are 
generally lower in reliability than their components. For example, Hedge and colleagues (2018) 
demonstrated that the total amount of variance is reduced in difference scores often by a 
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factor of 3 or 4 relative to their components. Therefore, the authors concluded that “robust 
experimental effects do not necessarily translate to optimal methods of studying individual 
differences” (p.17), partly because experimental designs have been developed for providing 
robust effects, which means low between-participant variance (Hedge et al., 2018; see also 
Draheim, Mashburn, Martin, & Engle, 2019; and Liesefeld & Janczyk, 2019). Furthermore, the 
reliance on IES has also been debated, as Bruyer and Brysbaert showed that IES increase the 
variability of the measure when the respective error rate of the task exceeds 10 percent. This 
has a critical impact on the power of the experiment (Bruyer & Brysbaert, 2011). It remains to 
be seen whether current alternative statistical and methodological approaches, for example, 
reliance on accuracy-based measures (Draheim, Tsukahara, Martin, Mashburn, & Engle, 2019) 
or accounting for trial-by-trial variability (Rouder & Haaf, 2019), will prove promising. For 
example, Draheim et al. (2019) found that accuracy-based measures improve reliability and 
validity of attention measures. Using a hierarchical regression model, Rouder and Haaf (2019) 
showed improved reliability (but not validity). Similarly, Rey-Mermet et al. (2019) attempted to 
reduce variance associated with general processing speed when using difference scores.

LIMITATIONS AND FUTURE DIRECTIONS

Although all inhibitory control tasks were adopted from Friedman and Miyake (2004), there were 
some variations compared to their study (e.g., Stroop task with color-word conflict instead of 
number-denotation conflict; stop-signal task with standard response format per button press 
instead of an auditory version and without tracking method). At least regarding the Stroop 
task, this might explain why our mean Stroop effect was approximately 100 ms smaller (147 
vs. 48 ms; stop-signal reaction time was comparable with 370 vs. 332 ms). However, as we 
have shown previously, the tasks are equally suitable for measuring inhibitory control (Enge et 
al., 2014) as they still provide meaningful interference effects. Therefore, these differences in 
implementation did not have a substantial effect on the results. However, a limitation might 
arise from the comparably low reliabilities of the word-naming and flanker tasks (.31 and .47, 
respectively). Although we used the same number of trials as Friedman and Miyake (2004) 
and wanted to stay as close as possible to their protocol, 40 trials per condition are few 
and might have contributed to the non-significant factor loadings. The word-naming task had 
more trials (168), but many had to be excluded during the trimming procedure (mostly due to 
technical artifacts with the microphone). Therefore, further studies should include a sufficiently 
large (as large as possible) number of trials to enhance reliability of the tasks.

A further limitation related to the antisaccade task is that because no eye-tracker was used 
in the study, we cannot rule out that direction errors were missed or wrongly detected. 
Furthermore, the visual angle was only about 2°. A study by Kane et al. (2001) has shown that 
a larger visual angle (around 11°) produces more reliable results. However, at least the general 
error rate is comparable to other studies (e.g., Friedman & Miyake, 2004).

With a sample size of 190, the present study also meets stricter criteria for a case-to-parameter 
ratio of 10-20:1 instead of 5:1 (Kline, 2016). However, this sample size may still be insufficient 
when applying χ2 difference tests to decide between competing models with few degrees of 
freedom (Kenny et al., 2015). Although we wanted to stay as close as possible to Friedman and 
Miyake’s latent variable analyses, further studies might apply Monte Carlo simulations (e.g., 
Muthén & Muthén, 2002) for determining adequate sample sizes for model comparisons. A 
larger sample size (>250) would also benefit the examination of robust intercorrelations (e.g., 
see Schönbrodt & Perugini, 2013).

Another general limitation of studies like ours regards sample composition. By investigating 
young healthy adults in an academic setting (students), it is possible that their general cognitive 
control ability is already in the upper range compared to the general population or clinical samples 
(e.g., patients with ADHD), resulting in relatively homogenous inhibitory control performance. 
This could make it even more difficult to find reliable interindividual differences and potentially 
underestimate the effect size. In contrast, it is reasonable to speculate that individual differences 
in inhibition could be found in clinical samples, or can be used to distinguish between clinical and 
non-clinical samples. Further studies should compare different samples, for example adults of 
the general population and clinical patients, in order to enhance heterogeneity in the cognitive 
control measures (but see Rey-Mermet et al., 2018, who studied inhibitory control in young and 
old adults but still found only weak evidence for inhibition as a psychometric construct).
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CONCLUSION
In sum, our inhibition measures correlated only weakly. By accounting for speed-accuracy trade-
offs using inverse efficiency scores, we were able to extract a two-related-factor and a one-factor 
model, respectively, but only four out of six tasks demonstrated significant factor loadings in 
these models. Together, these results add to the growing body of research that calls into question 
whether individual differences in inhibitory control can be measured reliably and validly with the 
existing tasks. Future studies need to generate and test specific predictions on task demands, and 
think of alternative measures than difference scores when investigating individual differences, or 
develop new tasks that are able to tap more inhibition-related variance. Otherwise, the concept of 
inhibitory control as a common process may no longer withstand (cf. Noreen & MacLeod, 2015).

DATA ACCESSIBILITY STATEMENT
The dataset analyzed for this study and the analysis code can be found at the Open Science 
Framework [https://osf.io/2fwm4].

APPENDIX

ETHICS AND CONSENT
The study design was approved by the ethics committee of the TU Dresden (EK 357092014). 
The study was conducted in accordance with the Declaration of Helsinki and followed the 
ethical guidelines of the German Psychological Association. All participants provided written 
informed consent.

FUNDING INFORMATION
Open Access Funding by the Publication Fund of the TU Dresden.

COMPETING INTERESTS
The authors have no competing interests to declare.

MODEL STANDARDIZED 
FACTOR LOADING°

MEAN STANDARDIZED 
FACTOR LOADING

BIAS SE P

Two factors, related (reaction time scores)

Antisaccade ← response 
inhibition

.239 .238 .000 .18 .046

Stroop ← response inhibition .635 .662 .027 .27 .001

Stop-signal ← response 
inhibition

.112 .138 .025 .14 .583

Eriksen flanker ← distractor 
interference

.142 .149 .149 .10 .111

Shape-matching ← distractor 
interference

1.00 .947 .947 .16 <.001

Word-naming ← distractor 
interference

.038 .036 .036 .13 .619

One factor, 4 tasks (inverse efficiency scores)

Antisaccade ← response 
distractor interference

.417 .417 .000 .16 .001

Stroop ← response distractor 
interference

.394 .382 –.013 .15 .007

Shape-matching ← response 
distractor interference

.476 .508 .033 .18 .002

Word-naming ← response 
distractor interference

.212 .214 .002 .13 .044

Supplementary Table 
A1 Factor loadings and 
bootstrapped estimates for 
the respective models.

Note: ° Without bootstrap; 
Bias: difference between 
original estimate and 
bootstrap mean estimate; 
bootstrap with N = 5000.
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