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Most research on risk aversion in behavioral science with human subjects has focused

on a component of risk aversion that does not adapt itself to context. More recently,

studies have explored risk aversion adaptation to changing circumstances in sequential

decision-making tasks. It is an open question whether one can identify evidence, at

the single subject level, for such risk aversion adaptation. We conducted a behavioral

experiment on human subjects, using a sequential decision making task. We developed

a model-based approach for estimating the adaptation of risk-taking behavior with

single-trial resolution by modeling a subject’s goals and internal representation of task

contingencies. Using this model-based approach, we estimated the subject-specific

adaptation of risk aversion depending on the current task context. We found striking

inter-subject variations in the adaptation of risk-taking behavior. We show that these

differences can be explained by differences in subjects’ internal representations of task

contingencies and goals. We discuss that the proposed approach can be adapted to

a wide range of experimental paradigms and be used to analyze behavioral measures

other than risk aversion.

Keywords: risk aversion, decision making, active inference, modeling, single subject

INTRODUCTION

It is typically assumed that humans, as well as other animals, prefer courses of action free of risk
and uncertainty; e.g., when foraging for food, easier and safer patches are preferred (Kacelnik and
Bateson, 1996; Myerson et al., 2003). However, this safety-seeking behavior is highly contextual:
In many situations, the course of action with the least risk or least uncertainty is not the one that
can best fulfill the current goals. For example, while an animal might choose to go for small, easy
prey at the beginning of a day, toward the end, if sustenance is not ensured for the night with the
small prey, bigger prey must be sought, with all the risks it entails (McNamara and Houston, 1992;
Kacelnik and Bateson, 1996).

Personality traits related to such risk proneness and risk aversion are well-studied in humans.
However, it is known that, as with animals, the preference toward risky or safe choices is not a
static parameter of behavior; instead, this preference seems to change to better fit the context.
While much research has been conducted on these dynamic context effects in animal behavior
(Caraco et al., 1980, 1990; Cartar and Dill, 1990; Kacelnik and Bateson, 1996) and in anthropology
and related fields (Winterhalder and Smith, 2000), relatively few studies seem to have explored the
same themes in human subjects (Kolling et al., 2012; Mobbs et al., 2013; Houston et al., 2014).

A possible reason for this is that studying the dynamics of risk aversion in an individual is
notoriously difficult (Kellen et al., 2016). This is mostly due to the fact that risk aversion must
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be measured, by definition, in a situation in which risk and
uncertainty play a great part. In these situations, the behavior of
the subject is stochastic (Rieskamp, 2008), which may complicate
the analysis of the behavioral data.

To work around this difficulty, experimenters have resorted
to experimental manipulations to indirectly assess or directly
ask for the subject’s preferences or uncertainty (Hey and Orme,
1994), which comes with its own set of pitfalls (Charness et al.,
2013). Other methods are based on averaging behavior across
many decisions, sometimes across many subjects and tasks, and
inferring how behavior changes, on average, as a function of
context, e.g., (Kolling et al., 2014; Economides et al., 2015;
Schwartenbeck et al., 2015; Walasek and Stewart, 2015; Kellen
et al., 2016). This approach has the downside of being blind to
subject- and/or trial-specific changes on choice preference.

Here we performed a model-based analysis of the adaptation
of risk aversion to context based on subject-specific behavioral
responses. To do this, we combined a behavioral model
formulated in the recently-developed active inference framework
(Friston et al., 2015) with maximum-likelihood estimators of
subject-specific parameters. The behavioral model allowed us
to estimate a subject’s preference for risk at every decision.
Importantly, the proposed method has the advantage of not
requiring multiple observations of the same context in order
to estimate a subject’s preferences, instead harnessing statistical
power from every decision made across all trials.

As an experimental proof of principle, we applied the resulting
model-based technique to a sequential decision-making task first
presented in Kolling et al. (2014). In this task, subjects must make
a sequence of decisions to accumulate points toward a target.
This task is well-suited to study the effects of context on risk
aversion, as the risk of not reaching the target varies throughout
the sequence of decisions, thereby prompting subjects to adapt
their choices to the current risk context.

With this approach, we find inter-subject differences in the
way that context modulates risk aversion, as well as motivational
and confidence-related differences in the way subjects evaluate a
context and make a decision.

METHODS

The Task
Subjects performed a game-like task first introduced in Kolling
et al. (2014), in which they have a total of eight trials (decisions)
to accumulate points, in what we call amini-block. For eachmini-
block, a threshold is set, of which subjects are informed; if at the
end of themini-block the number of points accumulated does not
exceed the threshold, all points for that mini-block are lost. The
overarching goal for the subjects is to accumulate as many points
as possible over all mini-blocks.

In every trial, the subjects are presented with two choices; they
can either choose (i) an action that yields a small number of
points with a high probability of success, or (ii) one which yields a
high number of points, but with a low probability of success. Each
yields zero points if it does not win. We call these two choices
the “safe choice” and the “risky choice,” respectively. Following
(Kolling et al., 2014), there are eight pairs of a safe and risky

choices (called action pairs; see Table 1), and they are presented
in random order in every mini-block, without repetition. The
order is not known to the subjects. Subjects are informed that
the outcomes of the two bets at each trial are randomly selected,
independently of each other.

The maximum possible number of points in a mini-block
is 2,005, which is achieved only in the unlikely case when the
subject chooses and wins every risky option. The threshold to be
reached, for each mini-block, is pseudo-randomly chosen from
four possibilities: 595, 930, 1,035, and 1,105.

In this task, the variables relevant to making a decision are
the trial number, the number of points accumulated so far in
the mini-block, the current threshold and the presented action
pair. All this information is shown to the subject on the screen
during a trial (see Figure 1). On the top of the screen, a bar shows
the subjects how many points they have accumulated through
the current mini-block, as well as the threshold. We used a bar
to prevent subjects from calculating exactly how many points
were needed, in order to maintain uncertainty in the decisions.
The two available actions are shown on the left and right of
the screen; the position of the two choices (right or left side)
was randomized. The probabilities of success for the actions
are displayed as vertical bars, and the reward magnitudes are
displayed as numbers. The trial number of the ongoing mini-
block is displayed on the bottom.

Subjects made choices by pressing the X or M keys on a
standard keyboard, to choose the option on the left or right,
respectively. After a decision was made, feedback was displayed
that informed the subjects whether the two choices had been
successful or not (regardless of which choice was made). If the
selected action was successful, the points were added to the top
bar in white. At the beginning of the next trial, the white bar turns
the same color as the rest of the bar. At the end of the mini-block,
subjects were informed as to the number of points gained in that
mini-block. The timings of the screens can be seen in Figure 1.

Following (Kolling et al., 2014), a mini block-specific
multiplier was used, which can be seen in the top-right corner of
the display. This number is set according to the current threshold,
with values 1.1, 2.3, 3.3, and 4.2 (for the corresponding thresholds
in ascending order). If the subject goes past the threshold of
this mini-block, the accumulated points are multiplied by this
multiplier. This is done to offset the difficulty of the higher
thresholds and maintain the subject’s motivation.

For this task, we defined the context as the combination of
trial number, action pair (offered), number of points that have
been earned so far, and threshold for the current mini-block.
These are the variables that are relevant to making a decision
and may prompt subjects to adapt their behavior in a specific
context. For example, subjects may decide differently about a
specific action pair when late in a mini-block with many points
required to surpass the threshold, as compared to early in the
mini-block. We use this definition of context throughout this
paper.

The task was performed by 35 subjects, recruited from a pool
of subjects at the Technische Universität of Dresden. 13 were
men and 22 women, with an average age of 26 years (standard
deviation 4.6). All had normal or corrected-to-normal eyesight.
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TABLE 1 | The eight action pairs offered to subjects in each mini-block, in random order.

Risky option Safe option

Prob. of

success

Reward Expected

value

Subj. value Prob. of

success

Reward Expected

value

Subj. value

1 0.35 265 92.75 0.243 0.9 100 90 −0.449

2 0.35 260 91 0.130 0.6 180 108 0.491

3 0.45 240 108 0.980 0.9 115 103.5 0.134

4 0.45 190 85.5 −0.149 0.6 150 90 −0.677

5 0.35 245 85.75 −0.208 0.75 145 108.75 0.215

6 0.2 350 70 0.210 0.55 145 79.75 −0.123

7 0.4 245 98 0.442 0.75 170 127.5 0.118

8 0.3 210 63 −0.165 0.9 120 108 0.329

Each row represents a single action pair with one safe option and one risky option. The column “Prob. of success” indicates the probability of getting the reward and the column

“Reward” indicates the magnitude of a reward in points. The column “Expected value” lists the probability of success times the reward. The column “Subj. value” shows the subjective

value (see main text for the definition).

FIGURE 1 | Experimental design. The information was shown to subjects on a computer screen. Each screen was shown for 1.5 s, except for the decision screen (the

second screen), which was displayed either for a maximum of 10 s or until the subject made a decision. If no decision was made during the 10 allotted seconds,

another screen (not shown) reminds the subject to stay attentive, and the trial is repeated. After the final screen is shown for 1.5 s, a new trial begins. At the end of

each mini-block (of eight trials), the subject is informed about success or failure of reaching the threshold, i.e., the required number of points for this mini-block. For

visual clarity, the elements are shown bigger in this figure than in the experiments.

The training session consisted of 4 mini-blocks, each with
a different threshold. After the training session, each subject
completed a total of 48 mini-blocks, 12 with each threshold,
in randomized order. The session was divided into two blocks
with 24 mini-blocks each, with a pause between the two blocks,
totaling around 45min per subject, depending on the time they
took for each decision. Both the offers and their outcomes
were chosen randomly before the experiments and were used
with all subjects. The position of the risky option (left or
right hand side of the screen) was randomly chosen for each
trial.

The payout was of 10e, not tied to performance. While some
studies have found evidence that real vs. hypothetical payouts

affect behavior in gambling tasks (Locey et al., 2011; Xu et al.,
2018), it is unclear if and how adding non-hypothetical rewards
would affect behavior in our task, as risky and safe choices
can both be valid ways of winning a mini-block. Relatedly,
whether monetary incentives alleviate or completely eliminate
these biases is still under investigation, with studies attempting
to eliminate the effects of these biases seeing mixed effects
(Fantino et al., 2007; Locey et al., 2011). Moreover, incentivizing
subjects has been found to exacerbate certain cognitive biases
and hurt performance (Camerer and Hogarth, 1999; Hertwig and
Ortmann, 2001).

The study was approved by the Institutional Review Board
of the Technische Universität Dresden (protocol number EK
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541122015) and conducted in accordance with the declaration of
Helsinki. All subjects gave their written, informed consent.

Active Inference Model
Our behavioral model is based on active inference, as was
described in Friston et al. (2015). In this and the following
sections, we briefly describe the Active Inference framework, as
well as the generative model parameters that we used, and the
fitting procedures to fit the model to each subject’s data.

The active inference agent chooses actions which minimize
expected free energy (i.e., maximize model evidence or minimize
surprise), given the generative model and the goals of the task.
The generative model is a formal description of the agent’s
knowledge about the existing hidden states of the environment
and the existing rules that define transitions between these states.
Model inversion based on Bayes’ theorem allows us to formulate
the agent’s beliefs about the current and past states of the world,
and to generate expectations about the future.

In practice, exact probabilistic inference is rarely
computationally tractable, as generative models capture complex
task dynamics. Hence, one often has to resort to an approximate
inference scheme when defining model inversion. Active
inference is based on the so-called variational approximation
which allows treating posterior beliefs over specific hidden
variables as conditionally independent from other factors of the
hidden states space (Beal, 2003; Daunizeau et al., 2009). This
method allows us to obtain closed-form algebraic equations that
define the evolution of beliefs over the hidden states of the world.

In active inference, the problem of choosing an action that
best fits the goals of the task is cast as an inference problem. In
fact, actions are taken as another hidden state (so-called control
states) of the environment, and as such benefit from the same
simplification that the closed-form update equations bring.

In the following sections, we discuss the underlying hidden
Markov model in which the task contingencies are represented.
Full details of the mathematical derivation of the update
equations can be found in Friston et al. (2015).

Generative Model
The full generative model of active inference is built with the
following (Friston et al., 2015):

• A set of observations
• A set of hidden states and actions
• A generative model over observations, states and actions
• An approximate posterior probability over hidden states

In what follows, we describe these required components of the
generative model in more detail.

Observations and Hidden States
We take the hidden states of the environment to be two-
dimensional. The first dimension is that of the accumulated
points: it describes how many points in the mini-block the
agent has won so far. These are taken to be the integers in the
interval (0, 200), where 0 means that no points have been so
far earned, and 200 is the maximum number of points possible.
In the experiments, the points run from 0 to 2005; however,

for the sake of computational efficiency, we divided the points
by 10 and rounded up. In trial simulations, we found that
this approximation made no difference in the behavior of the
agent, and it allowed us to simulate the task in computation
times adequate for our fitting procedures. Additionally, we did
not include all 200 states (points) in the model, but rather
created a cut-off point shortly after threshold; this allowed us
to further reduce the computation times without affecting the
results. The value chosen was 1.2 times the threshold for most
of the computation, except for the (much smaller) computations
in the section Risk preferences for the low- and high-STP groups,
where it was set at 1.5 times the threshold to fully accommodate
the consequences of all action pairs. Very few observations were
made by subjects beyond the cut-off point (a maximum of 12 out
of 384 for one subject) and they were removed from the pool.

The second dimension of the hidden states is the current offer;
the action pairs are labeled from 1 to 8, as in Table 1.

We have chosen the observation likelihood, which defines
dependence of observations on hidden states, as an identity
matrix. This was to reflect the fact that, during the experiments,
subjects receive direct observations pertaining to the number
of points so far accumulated and the current offer. This means
that the observations are fully informative about the state of
the environment; hence the inference about the current state
corresponds to matching beliefs to observations.

Generative Model of States and Action
The state transition probability defines the agent’s belief about
the evolution of the environment, both as a consequence of the
agent’s actions and of the passing of time.

We now describe the agent’s generative model pertaining to
the task at hand that consists of accumulating points throughout
the trials. It is beyond the scope of this work to explain how
an agent (or subject) comes to build (learn) this generative
model. Here we assume that subjects have learned an accurate
representation of the environment, which would correspond to
setting the agents’ generative model to correspond to the true
generative process of the environment (i.e., the exact transition
rules of the environment). This reflects the fact that the rules
of the task are simple and well-explained to the subjects at the
beginning of the experiment.

The evolution of the environment is described in terms of
transition matrices. There is one for each of the available actions.
In our model, there are two actions available: risky and safe. The
effect of each action depends on the current offer, which is why it
is included as a dimension of the hidden states. The matrices can
be represented with the following equation:

Bs/r
(

Xt + Rs/r, j, Xt

)

= Ps/r,succ,j (1)

Bs/r (Xt , Xt) = Ps/r, fail, j (2)

Bs/r (X, Xt) = 0, ∀X /∈
{

Xt + Rs/r, j, Xt

}

(3)

Where Bs/r is the transition matrix for the safe or risky action,
respectively, Xt is the current number of points, and Pr/s,succ/fail,j
and Rr/s,j are the probabilities of success/failure and the reward
of the j-th action pair, respectively. These reflect the rules of the
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game, in which choosing an action can either yield that action’s
reward, with the action’s probability, or yield no reward.

Regarding the current offer (action pair), we chose a
generative model which differs from the generating process of the
environment. In the environment, transitions from one offer to
another are randomized, but no action pair is repeated during a
single mini-block. However, because keeping track of the offers
already seen (and those still to come) is a very costly process, the
agent instead believes that all transitions (i.e., from the current
action pair to all others) are equally probable. We believe that
this generative model is more likely to resemble that of human
subjects.

Prior Preferences Over Goal States
The goals of the task are stated as a distribution over the last
state, after the eighth trial. The agent will make its decisions by
comparing its predictions regarding states to be visited in the
future by making a set of decisions, and the prior distribution
over the last state.

In our case, this distribution describes the relative desirability
of outcomes of a mini-block, in terms of the accumulated
points. A score is assigned to each of these hidden states of the
environment; the higher this score, the more the agent will seek
to be in this state by the end of the mini-block. We assumed that
subjects learned this distribution through both task instructions
and experience during training.

Given the task instruction one could reason that the best
functional form for the preferences is the one with zeros
everywhere below threshold and some positive number above
threshold (see Figure 2A). However, it is important to note
that the prior preferences over the goal state do not necessarily
reflect the rules of the game, but rather establishes the behavioral
strategy that the agent believes is the best for winning. Therefore,
we expect that, through experience, subjects build different beliefs
as to what the best way to win is. Because of this, we allowed for
subject-specific goal distributions.

For our fitting procedures, we used three distinct shapes for
the goals: Gaussian, sigmoid, exponential. By changing their
parameters, we were able to generate a large family of shapes
that are consistent with the task instructions. In particular, the
sigmoid family recreates the task instructions to the letter, such
that any state below threshold has no value, and a ramping up
holds for those above threshold. Examples of these shapes can be
seen in Figures 2B,C.

The sigmoid family has two parameters: slope and center.
The center determines where the transition from zero to one is
centered, and the slope parameter is the slope at the center. These
follow the equation:

fsig(x) =
1

1+ e−m(x−x0)
(4)

Wherem and x0 are the slope and the center, respectively. A very
high m and a x0 at threshold reproduces the step function as in
Figure 2A.

The exponential family has only one parameter, the coefficient
of the exponent. This family follows the equation:

fexp (x) = eκx (5)

where κ is a free parameter, For the remainder of this work,
we will refer to the parameter κ of the exponential goal shape
as sensitivity to points (STP), in analogy to the sensitivity to
delay/probability in the discounting literature (Basile and Toplak,
2015). This family describes a “ramping-up,” which does not
incorporate the existence of a threshold. This shape represents
a simple heuristic, where the agent assigns exponentially larger
amounts of preference to higher number of points.

Finally, the Gaussian family has two parameters: mean and
standard deviation. They are given by the equation:

fg (x) = Ae
−

(x−µ)2

2σ2 (6)

whereµ and σ are the mean and standard deviation, respectively,
and A is the normalization constant. This family reflects a
compromise between the general rule of “more points are better”
and a strong preference to states close to threshold (depending
on the mean of the distribution).

Note that, while most of the shapes considered do not have a
strong threshold that the agent must surpass (with the exception
of the sigmoid, when the slope is high), they do not conflict
with the rules of the task; by maximizing points (which can be
said of any monotonously-increasing shape), a mini-block can
be won. Additionally, certain parameter ranges (for example,
higher values for the exponential) do include the idea of soft
thresholds, i.e., that the agent has a strong preference for ending
above threshold.

Posterior Over Actions (Update Equations)
To calculate the posterior probability distribution over the
available actions at each trial, P(at|st , m), our model makes use
of the following equation:

log P (at|st) = F (st , C) + log
(

βat

)

where βat is a subject-specific choice bias, which does not depend
on the context and the function F(st, C) compares the projected
future states to the agent’s goals C; see Friston et al. (2015) for
details.

We introduced this choice bias parameter because we
observed a marked average preference of most subjects for the
safe choice across the entire data set (see “Standard analysis
of behavioral data” below). Choice bias is a prior preference
for or against the risky option, regardless of context and, more
specifically, of the current offer. That is, βat has two components,
βrisky and βsafe. The values referred to in the main text are
those of βrisky. This parameter complements the goal parameters
by adding a component that is non-contextual on top of the
contextual goal parameters. For an overview of the model
parameters, see Figure 3A.

Fitting the Model
Our model has free parameters which we fitted to every subject
independently by doing a grid-search over the relevant part of
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FIGURE 2 | Goal shapes. Goals are expressed as a valuation of each of the relevant hidden states, which in this case are the accumulated points after the 8th trial.

These valuations are presented here as shapes, following the equations described in the Methods section. The shade areas are those points above threshold. For

visualization, only points from 0 to 700 are plotted, with a threshold of x̂ = 595. (A) An example of a shape that follows the task instructions to the letter. All points

below threshold have a value of 0, while all above are valued the same. (B) Gaussian, (C) sigmoid and (D) exponential families of shapes. For each family, three

examples are plotted (shown in different colors), with their corresponding parameters shown in the legend. The values of µ and κ are relative to the threshold x̂. For

example, µ = −150 represents a mean located at x̂ − µ = 445. In (D), STP stands for sensitivity to points, which is the parameter of the exponential family (see the

section “Subject-specific parameter values” above).

FIGURE 3 | Model parameters and fitting. (A) Model parameters. The goal shape (e.g., exponential) is shared by all subjects, while the rest (Subject-specific, free

parameters) are fitted to each subject. Non-contextual parameters are those that affect all decisions equally (the choice bias and the maximum decision multiplier,

MDM). Contextual parameters are those whose effect on decisions changes with context, which are those related to the shape of the goal. The number of parameters

depends on the shape; the Gaussian has two (µ, σ ), the sigmoid two (m, x0) and the exponential one (STP) (see “Prior preferences over goal states”). In total, the

model with the exponential has four free parameters and with Gaussian and sigmoid five. (B) Diagram for the proposed method to estimate subjects’ preferences. The

process starts at the top, with the collection of all models and the experimental data for all subjects. Nodes on the left-hand column are models, which become more

refined as the process moves downwards. The same is true for the Fitting and Data columns (center and right-hand, respectively). The final step, “Estimate

preferences,” is repeated for each trial, while the rest are performed only once.
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the parameter space. These parameters are of two categories,
affecting the agent in different ways, see Figure 3A.

In the first category, the first parameter affects how extreme
the probability distributions from which actions are sampled
can be. We call this parameter maximum decision modifier
(MDM) and it corresponds to the α parameter in Friston et al.
(2015). The effect of the MDM is that, for a low value, the
distributions approach 50/50, regardless of context, while for
large value, they approach either 0/100 or 100/0, depending
on the context. This can be interpreted as controlling how
certain the agent can be about its decisions; its value, either
optimal (performance-wise) or inferred (fitted to a subject)
is both task- and subject-dependent. The second parameter
in this category is choice bias, which is a non-contextual
number added to (or subtracted from) the preference for
risk.

The second category pertains to the shape of the goal
distribution. These are the three families discussed above, each
with its own parameters.

For each subject, we performed a grid-search over the
parameter space and calculated, for each set of values for the
parameters, the data likelihood of the model. Through this
procedure, we created a likelihood map for each subject, which
represents a multi-dimensional probability distribution over
parameter values.

The parameters we searched are as follows. For the Gaussian
family, µ from x̂ − 15 to x̂ + 15, σ from 1 to 15, where x̂
is the threshold, both with increments of 1. For the sigmoid
family, we chose centers x0 between x̂ − 15 to x̂ + 15 with
increments of 1, and slope m from 0.1 to 3 with increments
of 0.1. We chose to set the values of µ and x0 to be centered
about threshold in order to unify the parameter values across all
conditions and simplify calculations; since the interpretation of
the fitted agents is made in terms of their shapes and not their
parameter values, this choice has no effect on the results. For
the exponential family, the parameter STP was taken from 0.5 to
10, in increments of 0.1. Smaller increments in these parameters
caused no discernible differences in the posteriors over
actions.

The parameter MDM was searched in the range 0.1 to 5 in
increments of 0.1, and from there to 60 in increments of 5. The
range of MDM is segmented in this way because for higher values
(>5), small increments create no discernible differences in the
posterior distributions over actions.

Finally, the choice bias parameter was searched between
0.1 and 2 in increments of 0.1. Maximum likelihoods rapidly
drop after 1.2, and by 2 are already many orders of magnitude
lower.

Model Comparison
We made use of the Bayesian information criterion (BIC)
(Schwarz, 1978) to evaluate each model and compare between
them, using the guidelines in Kass and Raftery (1995).

In Figure 3B we show a diagram of the entire procedure
comprising model comparison, parameter fitting and preference
estimation (which will be discussed below).

RESULTS

The influence of the environment, as well as the internal state
of an agent, e.g., a foraging bee, on the decision-making process
under varying risk has been extensively studied in the fields of
behavioral ecology (for animals) and behavioral anthropology
(for humans; Winterhalder and Smith, 2000). In these studies,
animal or human subjects are placed in environments, or
presented with tasks, in which a sequence of decisions must be
made in order to reach an overarching goal. For each decision,
two or more options are presented to the subject, differing in how
risky these options are, i.e., how likely it is that they will yield no
reward, and how much reward, e.g., food or money, they may
yield. Here we define risk as the probability that a chosen action
does not yield any reward, when these probabilities are known
to the decision-making agent (as opposed to uncertainty, where
the contingencies are unknown). Because this definition of risk
(and its usage in risky/safe choices) refers to the differences on
the probabilities of success for the two choices in a trial, “relative
risk” would be a more adequate name; however, since it is the
only definition of risk used in this study, we have dropped the
adjective “relative” from the name for simplicity.

For this work, to exemplarily showcase this approach, we
made use of one such task, introduced in Kolling et al. (2014),
in which the variations in the context, i.e., the states of the
environment and of the agent relevant to the decision-making
process, allowed us to study the effects of context on the choices
of human subjects. More specifically, it allowed us to study the
adaptation of risk aversion to changing context, as has been done
with animals (Caraco et al., 1980, 1990; Cartar and Dill, 1990;
Kacelnik and Bateson, 1996).

This section is divided into three parts: firstly, we show,
using standard analysis tools, the behavioral results. Secondly, we
present a computational model for the task, as well as the results
from fitting this model to behavioral data. Finally, we show that
our approach can be used to track the change in subjects’ risk
aversion throughout the experiment.

Standard Analysis of Behavioral Data
We first performed the same data analysis as was performed in
Kolling et al. (2014) on our data set of 35 subjects.

In Figure 4A, we show the average probability of choosing
the risky action as a function of 1V, the difference in subjective
values of the risky and safe choices. To reproduce the findings in
Kolling et al. (2014), we defined the subjective value of a choice
as:

Vrisky/safe = p̃risky/safe (win | offer)+ r̃risky/safe(offer) (7)

where p̃ and r̃ are the probability of success and the reward for
the current offer, where offers are normalized by the mean and
standard deviation across all offers. The tildes in p̃ and r̃ indicate
that they have been normalized: for each offer, we subtracted
the mean across all offers and divided by the standard deviation
(see Table 1). Note that the term “subjective” refers to the fact
that it differs from the objective definition of expected value
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(probability multiplied by reward); Kolling et al. (2014) opted for
this definition as they found that it better fitted subject’s choices.
Note that, to show the expected value in the conventional sense,
Table 1 lists the standard expected values for each offer pair,
based on a multiplication of probability and reward size.

As already found in Kolling et al. (2014), it can be seen
that, when averaged across all subjects and all mini-blocks, the
probability of choosing the risky offer increases monotonously
with the difference in subjective values. Note that 1V does not
offer a full description of a context, for it does not take into
account the potential pressure created by the upcoming end of
the mini-block or the necessity to go above threshold in the task
(Kolling et al., 2014).

Kolling et al. (2014) defined the variable “risk pressure” as
a more detailed (but still incomplete; see below) description of
the context of the present task. Risk pressure is defined as the
average number of points the subject would need to earn in each
of the remaining trials in the mini-block in order to surpass the
threshold:

Ŵt =

{

x̂−xt
T−t xt < x̂

0 otherwise
(8)

where t is the current trial number, x̂ is the threshold, xt the
accumulated number of points at t, and T the total number of
trials. They found evidence, using a regression analysis, that its
value is a predictor of subjects’ choices. Risk pressure has values
in the interval [0, x̂]: (i) zero when points are above-threshold,
(ii) and x̂ when no points have been earned and only one trial is
left. In the present task, risk pressure values above 350 represent
a context in which the subject cannot possibly win, as the highest
possible offer is 350 (see Table 1).

We replicated the behavioral results in Kolling et al. (2014)
using two fixed-effects generalized linear models (GLMs); both
assume the same regressor values for all subjects. The first model
had four regressors, namely: a constant term (choice bias), 1V,
trial number and risk pressure. The results can be seen in
Figure 4B. In our case, probably due to the larger number of
subjects, all regressors are significant (p < 0.001); however, to
exactly reproduce the previous results we created a second GLM
with three regressors: constant term, 1V and risk pressure. The
resulting regression can be seen in Figure 4C.

Adaptability of Risk Aversion
In this section, we use a simple method to analyze the adaptation
of risk pressure, where many trials are binned together and
averaged to calculate the subject’s preferences for risk aversion
for this set of trials. This is an obvious extension of the analysis
performed in Kolling et al. (2014) for 1V (also see Figure 4A).
We show the limitations of such a method and show, in
subsequent sections, how the model-based approach we present
in this paper sidesteps these difficulties.

When trying to estimate subjects’ preferences from a single
decision in a stochastic environment, that single decision is
not necessarily representative of the subject’s preference. This is
especially true when the preference is not too strong, which we
found to be the case for this task. In such a case, to estimate the

small size of the preference, one would require many exposures to
this decision in the same context. However, this is suboptimal due
to potentially confounding memory effects (Mather et al., 2003;
Bornstein et al., 2017): the subject may remember having made a
specific context-dependent decision before, which will influence
any subsequent repetitions.

In order to study the context dependence of risk aversion,
a simple analysis method is to make use of risk pressure as a
description for the context: We binned risk pressure to obtain
enough decisions to calculate a risk pressure-dependent risk
aversion value for each bin.

Any such reduction of dimensionality will have the
disadvantage of possibly mapping two very distinct contexts
onto the same risk pressure value. For example, a risk pressure of
300 on the last trial, when an option to win 350 points has been
offered to the subject, presents a context with 20% probability
of going above threshold (see Table 1) if the subject takes the
risky offer, and 0% if the subject takes the safe offer. The same
risk pressure near the beginning of a mini-block would present
a game in which winning is almost impossible, and choice
becomes inconsequential. This downside is inevitable in order to
obtain reliable estimates on the mean risk aversion when using
averaging methods.

As can be seen in Figure 5A, high values of risk-pressure
above 350 were observed much more rarely than lower values.
This is a direct consequence of the task design: if values of risk
pressure above 350 were commonly observed, subjects might lose
motivation due to the high difficulty of the task.

We calculated risk aversion as a function of risk pressure, by
binning the contexts for each subject according to values of risk
pressure. For each bin, the average risk aversion can be calculated
by averaging across all decisions made in the bin. In Figure 5B,
the frequency of choosing the risky choice for each bin is shown
for three representative subjects, along with the 95% confidence
intervals. The results for the remaining subjects can be seen
in the supporting information (Supplementary Figure 1). We
found that for 25 out of 35 subjects, the null hypothesis that
risk aversion is constant for all values of risk pressure cannot be
rejected (one-way ANOVA, p > 0.05).

In what follows, we introduce a novel method for inferring the
risk aversion on a trial-by-trial basis.

Model-Based Approach
In this section we describe a novel method for estimating the
subject’s preference (i.e., risk aversion) for every context they
observed. This method takes advantage of all decisions made
by the subject to calculate the subject’s preference in any given
context. We introduce a model-based approach using active
inference, with free parameters that we fitted to each subject using
all the decisions made by the subject (see Methods). This so-
called agent (the fitted model) can then be used to estimate, for
any given context, the probability distribution over actions that
is most consistent with the subject’s entire set of choices.

This process is equivalent to finding the underlying
mechanism with which subjects make their decisions (which
is assumed not to change throughout the experiment). Once
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FIGURE 4 | Behavioral results which reproduce the results reported in Kolling et al. (2014). (A) Probability of choosing the risky choice, P(risky), as a function of 1V,

the difference between the values of the risky choice and the safe choice, averaged across all subjects. (B) Fixed-effects logistic regression with decisions pooled from

all subjects as the dependent variable (1 for risky, 0 for safe) and four regressors: a constant term (choice bias), the difference in values for the two choices [as in (A)],

trial number and risk pressure. (C) GLM regression as in (B), but without the trial number as regressor. Error bars are SEM. All regressors in (B,C) are significant

(p < 0.001).

FIGURE 5 | Risk pressure and risk aversion. (A) Histogram of the values of risk pressure encountered by all subjects. (B) Adaptive risk aversion for three

representative subjects where we plot, against risk pressure, the frequency that the subject chooses the risky option, P(risky), calculated by averaging over all choices

for each subject, binned according to the context in which the choice was made. Only risk-pressure values between 0 and 350 are shown as only few contexts were

observed in higher values of risk-pressure by all subjects–see (A).

this mechanism has been found, it can be used to calculate the
preferences (risky vs. safe) that the subject had for any trial.

We will show that these fitted agents can be used to study in
greater detail the changes of risk aversion in human subjects.

Model Parameters and Fitting
We fitted three different models which differed in their
parameterization of the goal shape; see Methods. For each of
these three models, we fit the model’s parameters to the choices
made by the subjects throughout all the mini-blocks. We fitted
a total of four parameters to subjects’ choices: (i) the maximum
decision multiplier (MDM), (ii) up to two parameters that
control the shape of the goal distribution, and (iii) a choice bias
parameter. For more details on these parameters, see Methods.

The MDM and choice bias parameters differ from the goal
shape parameters in that their effect on choices does not
depend directly on the context. For this reason, their effects
will be discussed mostly separately from those of the goal shape
parameters.

Modeling Inter-subject Differences
We first hypothesized that previously observed inter-subject
differences in risk aversion (Choi et al., 2007; Shead and Hodgins,
2009) can be modeled for this task here as differences in the
internal representation of the task contingencies. For example,
an agent for whom finishing below threshold is unacceptable
(Figure 2A) will tend to display, if necessary, riskier behavior
than one who is simply trying to increase the number of points
(blue and brown line in Figure 2).
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To address this hypothesis, we tested for inter-subject
differences in the model parameters that best fit the behavior
of each subject. To do this, we compared two models: With the
first, we inferred a single, best-fitting parameter set for the data
of all subjects, i.e., same parameter values for all subjects. For
the second model, we inferred subject-specific parameters. We
found that the BIC difference between these two models strongly
favored the subject-specific model (1BIC > 100), as per the
guidelines in Kass and Raftery (1995).

Given that there was strong evidence for inter-subject
variability in how subjects represented the goal of the task, we
next performed a model comparison between the three goal
shapes, to determine whether one family was significantly better
at explaining subjects’ behavior than the other two.

We found strong evidence that the exponential shape is better
at explaining subjects’ behavior than the other two families, as
evidenced by 1BIC > 100, and therefore all the following results
were obtained with this exponential shape family.

Finally, we tested whether there was also evidence for
condition-specific differences in goals, i.e., different goal shapes
for the four different thresholds, for each subject. However, we
found no significant advantage in separating data into conditions;
therefore, all results that follow were obtained with the subject-
specific model but with the same parameters across conditions.

We also found that the introduction of the subject-specific
MDM significantly improved model fit (1BIC > 100). Adding
the choice bias parameter further increased model fit (1BIC >

100).
To summarize, we found very strong evidence for the model

with inter-subject differences, with the exponential family being
the best model for representing subjects’ goal shapes. This model
was used for the results presented in what follows.

Subject-Specific Parameter Values
The MDM values we obtained for different subjects range from
0.1, which makes most decisions close to a 50/50 decision, to
values as high as 20, which creates preferences close to being
deterministic. In Figure 6A we present a histogram of the values
of MDM for all subjects, where the average MDM value is 6.01
(standard deviation of 5.70). The number of bins and their
positions were determined using the SciPy (Jones et al., 2001)
implementation of the Freedman-Diaconis estimator (Freedman
and Diaconis, 1981), assuming equal-width bins.

The low values of the MDM for many subjects reflect a degree
of indecisiveness, with which decisions are mostly driven by the
choice bias parameter; this seems to be at least partially due to
the fact that the task rarely presents contexts in which one action
is clearly better than the other. Those subjects with a high MDM
tend to have many strong preferences throughout a mini-block;
these strongly determined decisions are the least affected by the
choice bias.

All best-fit choice bias parameter values were found between
0.6, which favors safe choices, to 1.2, which favors risky choices
(a value of 1 has no effect), and a mean of 0.8 (see Figure 6B).
For most subjects (26 out of 35), we found a best-fit choice
bias parameter smaller than one, which indicates an increased
preference for the safe choice.

We also found inter-subject differences in the shape
parameters, reflected in subject-specific values for the STP. To
summarize these results, we clustered all subjects based on their
fitted STP using the k-means algorithm (Lloyd, 1982; Goutte
et al., 1999). We found that the best number of clusters is 2,
and the clusters resulting from this procedure can be classified
as low- or high-STP; see Figures 6C,D. Subjects belonging to the
low-STP group implement a simple heuristic of accumulating
more points, regardless of threshold; those in the high-STP
group are best described by representing rather sharp goal
shapes, i.e., by giving relatively low importance to points below
threshold. For a full list of the inferred parameters, see the
(Supplementary Table 1).

Finally, we calculated a Pearson cross-correlation matrix
for the fitted parameters and found no significant correlations
between them.

Recovering Subjects’ Preferences
With the estimated parameters for each subject, we can build a
decision-making agent (henceforth, a fitted agent) which makes
decisions the most consistently with its corresponding subject.
Thus, for each subject we have a fitted agent.

Using these subject-specific fitted agents, we recovered
subjects’ preferences via the posterior distributions over actions
that the subject-specific fitted agents calculate for every context.
The key advantage of this procedure is that it eliminates the
necessity of having many trials measured experimentally in the
same context (or the same variable of interest, which is related to
context, e.g., risk pressure), when investigating subjects’ trial-by-
trial preferences and their dynamics. In other words, the model-
based approach is like a “mathematical microscope” (Moran
et al., 2013) which enables the experimenter to replace actual
(here binary) choice observations of a single subject, for a specific
context, by inferred posterior probabilities lying continuously
between 0 and 1.

Adaptation of Risk Aversion
In this section we show the behavior of the fitted agent in a similar
manner as that used for Figure 5B, discuss the shortcomings of
this approach and, in the next section, show how our model-
based approach can be used to sidestep these shortcomings.

We first looked at the subject-specific general risk aversion,
i.e., how likely subjects are to pick the safe option throughout all
contexts they observed. Averaged across all the trials and subjects,
we observed a probability of choosing the risky option of 0.41,
with a standard deviation of 0.07 across subjects, before taking
into account the choice bias parameter. Despite the differences
in parameter values, we found no significant differences between
subjects (one-way ANOVA, p > 0.05).

Figure 7 (left), where we show the recovered preferences for
three representative subjects (the same as in Figure 5B), for the
set of all the contexts that they observed (for the rest of the
subjects, see Supplementary Figure 2). Note that the spread of
the dots is not measurement noise but the inferred preferences
for differences offers. While different trends can be seen for the
three representative subjects (e.g., subject A’s preference for risk
increased for the first 100 units of risk pressure, while subject
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FIGURE 6 | Summary of estimated parameters for all subjects. (A) Histogram for the best-fit values of the maximum decision multiplier (MDM) for all subjects.

(B) Histogram of the best-fit choice bias parameter values, where the value of 1 stands for unbiased choice behavior and values smaller than one for a bias for the

safe choice. (C) The shapes elicited by the centers of each of two identified clusters, as given by the cluster center’s sensitivity to points (STP) value. The shaded area

indicates above-threshold values (depicted here with a threshold of 595). (D) Scatter plot of the STP parameter for all subjects. The colors indicate cluster membership,

as in (C). Subjects were sorted by cluster membership. The horizontal lines represent the values of STP which were determined as the cluster centers in (C).

B’s preference dipped in the 50–150 range), this representation
suffers from similar problems as those discussed in section
“Adaptability of risk aversion.”

Relatedly, the sharp vertical swings of the averages in Figure 7

(left-hand side, solid lines) are due only to the fact that the
observations made by subjects do not sample all values of
risk pressure evenly; the calculation of the preferences (vertical
positions of the dots) itself entails no stochasticity, as the model
is deterministic. These variations make extracting any significant
information from these plots all but impossible. However, our
model-based approach allows us to overcome this difficulty
by being able to predict how such a subject would behave in
the “missing” contexts, uncovering the differences in behavior
between subjects A and B in greater detail; See the next section.

For validation purposes, we compared the estimates obtained
with our method and with the binning method (see Figure 5B).
Since most of the observed contexts (for all subjects) are for low
values of risk pressure (see Figure 5A), and to allow for a better
comparison between themethods, we binned the decisions in risk
pressure values between 0 and 200 (with bins at 0, 50, 100, and
150). The results are shown in the right-hand column of Figure 7,
alongside the average obtained with our method (the same as the
left-hand column), using the same bins as the binning method,
i.e., we binned the preferences estimated by our method and
calculated their average for each bin. For clarity, in the remainder
of this work, we use the name “model-based binning” to refer to
the results presented in the right-hand column of Figure 7, i.e.,
to binning the model-based risk aversion to calculate averages
(blue line). For all three subjects both methods agree in their

estimate of how often, in a specific risk pressure range, these three
subjects will choose the risky choice. There are small differences,
especially for subjects A and B, which we will discuss below.

Risk Preferences for the Low- and
High-STP Groups
In this section, we show that the jaggedness of the average risk
preference for each value of risk pressure (Figure 7, left-hand
column) is mostly caused by the biases introduced by the set of
contexts observed by the subjects. We also show how one can
use the fitted agents to “see through” these biases, to gain further
insight into the adaptation of risk aversion to context for the two
groups of subjects.

For the results in this section, we used the agents that were
fitted to subjects A and B from Figure 7. To facilitate a direct
comparison between the risk aversion adaptations of these two
subjects, we set their MDM to 20 and their choice bias to 1.
Because the effects of these two parameters are not context-
dependent, the principled findings in this section are not affected
by using the fitted values while the visual clarity of the figures is
increased. Note that for both subjects, MDM values are similar in
their effects (10 and 5, respectively) and choice biases are identical
(0.6). We used these two modified agents to extrapolate these
subjects’ preferences to contexts that were not observed during
the experiment.

As shown above, the model-based approach allows us to have
a trial-specific estimation of subjects’ risk aversion. This enables
us to separate trials not just by risk pressure as in Figure 7,
but also by trial number, essentially creating a two-dimensional
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FIGURE 7 | Probability of choosing risky option for three subjects. The subjects are labeled (A–C), and each row corresponds to one subject. These subjects are the

same as those used in Figure 5B. Left-hand column: plot for each subject, labeled “Inferred preferences,” represents the subject’s preference for the risky option. For

each data point (context of being offered, under as specific value of risk pressure, a specific option pair, see Table 1) the subject’s preference for the risky option

(y-axis) is plotted against risk pressure (x-axis). For each risk-pressure value, the average preference for the risky option is calculated (solid line). Not all risk pressures

have been sampled by the subjects during the experiment as can be seen from the broken solid line for subjects (A,B). Right-hand column: to validate the

model-based approach, we show the binning method shown in Figure 5 (green) and the preferences estimated by the model-based approach, averaged on the

same bins as the binning method. Note that the definition of bins deviate from Figure 5 as only risk pressure values up to 150 are shown in these plots; this is done

for a better comparison with the model-based approach (see main text).

projection of the four-dimensional context (trial number, offered
action pair, number of points that have been earned so far, and
threshold). Such a separation, which can be seen in Figure 8 for
agents A and B, revealed stereotyped trends in the adaptation of
risk aversion to risk pressure as mini-blocks advanced.

Importantly, for each trial and risk pressure value, the vertical
spread of the points is due to the available action pairs (eight
of them), and not due to measurement errors, as there is no
stochasticity in these estimated preferences.

A key feature of this presentation is the stereotyped curves,
across trials, for average risk aversion adaptation that differ from
trial to trial only in their length of spread across risk pressure
values. This difference in length is caused by the fact that it is
impossible to observe high risk pressures at the beginning of a
mini-block, while on later trials the risk pressure may become
quite large if the subject is missing a lot of points to reach the
target. For any trial number, the high-STP subject type has a
higher risk aversion than the low-STP subject type for the lowest
values of risk pressure. For the largest values possible in the trial,
however, this relationship is inverted, the low-STP subject type
having now higher risk aversion than the other. This trend holds
formost trials and slowly disappears toward the end of eachmini-
block. As can be seen in Figure 7, this phenomenon is lost, for
both model-based and standard binning, when averaging across
all trials and using the contexts observed by subjects.

To avoid biasing the estimates of Figure 8 with the specific set
of contexts that any subject observed, we created a set of contexts
which contains exactly one context for every combination of
risk pressure, trial number and offered action pair. To make use
of this set of contexts, we take advantage of the fact that our
agents allow us to extrapolate how the corresponding subject
would react to any context, even if it was not observed during
the experimental session. For simplicity, we fixed the threshold
to 595 for all contexts as we did not find evidence for differences
in subject parameterizations for different conditions (see above).

This set of observations is unbiased in the sense that
all possible observations are encountered exactly once. The
importance of this can be seen in Figure 8: if for any value
of risk pressure the action pairs with the highest probability
of choosing the risky option had not been encountered by the
subject, the average for this value of risk pressure (solid line)
would be much lower. Conversely, if any one action pair had
been encountered multiple times, the average would be skewed
toward the probability of choosing the risky option for that action
pair. The model-based approach is not susceptible to such biases.
Critically, this bias is outside experimental control, as it depends
on the subjects’ choices during the experiment, which determine
what risk pressure values are experienced for each action pair
and trial number. Clearly, such a bias may impact the results and
interpretation when using the binning method; see Discussion.
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FIGURE 8 | Risk aversion as a function of risk pressure and trial number. Each plot is for a different trial number, shown above each plot. Agent A, a representative of

the high-STP group, is shown in blue. Agent B, a representative of the low-STP group, is shown in orange. We exposed both agents to all possible contexts in the

task. Each single dot indicates the probability of choosing the risky choice for a single context. Orange dots were offset by 0.2 units to the right for visual clarity;

averages (solid lines) were not offset. The solid line represents averages that were obtained for each value of risk pressure across all eight offers. For every trial, there is

a maximum possible risk pressure (threshold divided by remaining trials); blank spaces on each plot are values of risk pressure beyond that maximum.

Figure 8 also reveals a trend not visible in more coarse-
grained descriptions, such as Figure 7: as mini-blocks progress,
the average risk aversion across all values of risk pressure
becomes flatter and more similar between the two subject types.
This culminates in the last trial of the mini-block, where both
average lines are very similar to each other and close to a flat
line around medium values of risk pressure. We believe this to
be a consequence of the smaller depth of future planning that a
subject has to go through at each trial. In the last trial of the mini-
block, when no future planning is necessary, the probability of
choosing the risky choice peaks in very different places of risk
pressure, for different action pairs, creating the flat average seen
in the last trial (since this is the average across all action pairs).
To make this clearer, in Figure 9, we plotted the probability of
choosing the risky choice for four different offer pairs in the last
trial. This plot contains the same data as the last panel (trial 8)
of Figure 8, but different types of lines (e.g., dashed) are used
instead of individual dots to aid in differentiating between action
pairs, and the other four offers were removed to avoid visual
clutter.

Figure 9 shows that, even when the difference in average risk
aversion (averaged across all action pairs, for every risk pressure
value) between the two agents is not large (as seen in Figure 8

for the 8th trial), the probability of choosing the risky option of
a specific action pair can differ greatly between the two subject

types. In general, for the high-STP subject type the probability of
choosing the risky option for an action pair has steeper curves
than for the low-STP subject type. This is partially due to the
fact that the high-STP subject type is much more inclined to
take the risky choice for any one given offer at risk pressure
values in which the safe choice is not good enough to succeed.
This is especially true if the probability of success for the safe
offer is not much higher than the risky choice, e.g., for the
2nd offer (dashed line in Figure 9, safe offer: 180 points with
probability 0.6, risky offer: 260 points with probability of 0.35;
see Table 1).

Looking at the averages shown in Figure 8, it may appear as if
the average differences in behavior (solid lines) between the two
subject types can be explained by a potential difference in choice
bias. This would shift the entire solid line up or down, if the
choice bias were bigger or smaller than 1, respectively. However,
it is evident from Figure 9 that this is not the case when looking
in more detail at single offers: given the different shapes between
the blue and orange curves, shifting any curve up or down (by
adding a choice bias different from 1) would not make them
similar across subject types.

Although we focused here on only two subject types to show
principled subject-specific differences, note that these two subject
types are representatives for the high-STP and the low-STP
group. As we have shown in Figures 8, 9, the model-based
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FIGURE 9 | Probability of choosing the risky option on the last trial. Probability

of choosing the risky option for the first four offers (action pairs) in Table 1,

during the last trial, for both subject types (orange for high-STP, blue for

low-STP). The four offers are plotted, each with a different type of line, (in the

order of Table 1): solid, dashed, dash-dotted and dotted. Lines of the same

type with two different colors represent the same offer for the two different

subject types. The last four offers of Table 1 were removed for visual clarity.

For example, the dashed lines represent the offer (safe: 180, risky: 260), where

the blue dashed line shows that the high STP subject type chooses more often

the risky choice once the risk pressure is above 180, i.e., there are more than

180 points missing. In contrast, the low STP subject type does not change

much its choice behavior when offered this specific offer on the last trial.

approach enables a precise mapping between subject-specific
goals and corresponding action preferences at the single-trial
level for a concrete context experienced in a single trial. Here,
we have used this mapping to infer from sequences of choices the
internal goal function at the single-subject level.

DISCUSSION

To reveal adaptation of risk-taking behavior to changing context,
we developed a model-based approach for inferring the risk
aversion with subject- and trial-specific resolution. This allowed
us to use the set of binary choices made by subjects to
infer the preference that each subject had when making those
decisions. The method uses the computational framework of
active inference and is based on a decision-making model with
free parameters that can be fitted to an individual subject’s
decisions. To show how this works in practice, we used a
sequential decision-making task, in which subjects aim to achieve
a goal over multiple trials. This task was designed to elicit changes
in risk-taking behavior as the context changes in which the
subject must make a decision.

We demonstrated how thismodel-based approach can be used
to analyze behavior at a subject- and trial-specific resolution,
which is generally not possible with standard binning methods
due to limitations in the amount of data that is typically collected.
Using clustering, we found that subjects can be divided into two
groups, according to a key model parameter that describes the
relative value that subjects give to increasing gains.We found that
these two groups have different risk-taking behavior adaptation
to changing context.

Risk Aversion Adaptation
Traditionally, behavioral studies on risk aversion have focused
on its fixed, context-independent component. Economic theories
of decision making under risk, e.g., prospect theory (Kahneman
and Tversky, 1979), as well as psychological experiments on
probability discounting (Green et al., 1999), have focused
on characterizing human choices in fixed, often hypothetical,
contexts, and risk aversion is assumed not to change throughout
the experiment.

Conversely, the dynamic, context-adapting aspect of risk
aversion has seen much study in ecology, where it is established
that risk aversion is not only a function of the given
options, but also of the current needs and their urgency
(McNamara and Houston, 1992). From ecology, risk-sensitive
foraging theory (McNamara and Houston, 1992) emerged as
a normative account of a foraging animal in an ever-evolving
environment, which takes into account the changing needs
of the foraging animal. The jump to the study of risk-taking
behavior to human subjects has been made in the field of
human behavioral ecology, where the tenets of theories, such
as risk-sensitive foraging theory have been applied to human
evolution; for an extensive review, see Winterhalder and Smith
(2000).

Despite this, descriptive accounts of risk aversion as an
adapting variable of human behavior have been more limited.
Examples of studies that have focused on the dynamic, context-
adapting side of risk aversion in human subjects are (Kolling
et al., 2014), and (Schweighofer et al., 2006), the latter in the
similar field of delay discounting.

The approach in Kolling et al. (2014) was a direct, data-
driven measurement of risk aversion, which relied on binning
enough decisions together to obtain reliable statistics, fromwhich
a preference for risk can be calculated. Such binning of distinct
decisions is necessary in tasks with a large set of possible contexts
since it becomes impossible to sample once, let alone enough
times for a reliable estimation of a mean, any sizeable portion of
the whole space. For example, in the task used by Kolling et al.
(2014), the number of different contexts is in the order of tens
of thousands, while the number of trials per subject was only
384.

In this work, we presented a model-based approach which is
not affected by the size of the set of contexts and with which
there is no need for a proxy variable nor binning decisions, since
estimates on risk aversion can be obtained by fitting a decision-
makingmodel to the entire data set of each subject. This approach
assumes that the experimentally-measured choices are sufficient
to infer about an underlying choice mechanism with which one
can extrapolate the remaining contexts not seen by the subject
in the experiment. As the underlying choice mechanism we used
the so-called active inference framework (Friston et al., 2015).
The overall procedure resulted in an increased resolution, at the
single-trial level, for the study of the adaptation of risk aversion
to changing context. As a beneficial side effect, the model-
based approach also avoids known statistical artifacts of binning
approaches, e.g., hiding existing effects in the data (Siegler, 1987;
Ashby et al., 1994; Estes and Maddox, 2005; Cohen et al., 2008).
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Subject Classification and Differences in
Behavior
Using the fitted model parameters, we found that subjects can be
classified into two groups (see “Model parameters and fitting”).
We found differences both when looking at subjects’ preferences
averaged across all trials, for which the differences are shown to
be only evident in the low risk-pressure ranges (see Figure 7),
and when looking at the more detailed per-trial analysis (see
Figures 8, 9).

While it is difficult to discern differences in Figure 7 due to
the averaging over trials (see “Adaptability of risk aversion”),
Figures 8, 9 reveal the clearest differences. We found that there
are clear differences between the choice behavior between the
high-STP and low-STP subject type; for the high-STP subject
type, risk aversion decreases as risk pressure increases, while for
the low-STP subject type, the highest values of risk pressure see
an increase in preference for risk.

The behavior of a high-STP subject type is to try and go
above threshold. When more points are needed to reach the
threshold (high risk pressure), more risk is taken. When few
points are required (low risk pressure), risk is unnecessary and
therefore avoided. We found that a low-STP group subject type
shows a much weaker awareness of the threshold. It is an open
question what exactly low-STP subjects try to achieve. A simple
explanation may be that they were less motivated, or less goal-
directed than the high-STP subject types to try and succeed in this
specific task. Note that the model-based approach inferred these
differences without an obvious reliance on subjects’ performance:
we did not find a significant performance difference between
the two groups. We inferred the differences in subjects’ internal
representation of the task goal just by fitting the pattern of choices
to the underlying active inference model. The finding that there
was not a difference in performance between the two groups is
possibly a consequence of the stochastic nature of the task; in
future work, it may be useful to focus on less stochastic tasks
to confirm the difference between the low- and high-STP groups
also in terms of performance or other measures. We believe it is a
strength of the proposed method that we can model the behavior
of these subjects who do not necessarily follow the instructions to
the letter but nevertheless perform well.

The lack of threshold awareness is noticeable when comparing
the curves on the last (eighth) trial in Figures 8, 9. For the high-
STP subject type, the probability of choosing the risky option for
each offered action pair peaks at different values of risk pressure,
depending on the action pair, which reveals threshold-awareness.
The low-STP subject type instead shows little adaptation, at this
last trial, of risk aversion to risk pressure.

The last trial also offers some insight into a feature of the
model-based approach, as applied to this experimental task.
Intuition suggests that the maximum probability of choosing the
risky option should be very high in the last trial when the reward
offered by the safe option is insufficient. However, the underlying
heuristic of “the more the better” is present even for the high-
STP subject type: this can be seen in Figure 6C where the goal
shape of the high STP-group (blue solid line) has non-zero values
even for a number of points below threshold. These non-zero
values increase the usefulness of the safe choice even in cases
where it is not enough to go above threshold, decreasing the

preference for the better risky choice. This, coupled with the low
probability of success with the risky choices, effects the lack of
extreme preferences for the risky choice in the last trial seen in
Figures 8, 9. Whether or not subjects’ choices show the same
behavior is rather difficult to determine because such cases occur
rarely (around 1% of trials in our data set). Additionally, given
the low number of occurrences, even a single safe choice made
by a subject in these situations (e.g., by not paying attention or
by miscalculation) throws off any estimate that is made based on
these choices alone, or by the whole set of choices (as with our
approach). Moreover, subjects had only a rather coarse-grained
indicator of the number of missing points by a plotted bar as
shown in Figure 1, so there may be cases where subjects were not
entirely clear about whether a safe choice would be sufficient to
reach the goal, or not. In fact, in the 1% of trials where a subject
may obtain the target only by choosing the risky option, subjects
chose the risky option only 75% of the times, which could explain
the results seen in Figures 8, 9. It could prove interesting to
explicitly model this observation noise in future studies in order
to determine whether the inferred goal shapes better conform to
the task’s rules.

Starting from these initial results, the model-based approach
can be used to generate predictions. For example, one could ask
(i) how specific subjects will respond in specific but yet unseen
contexts and whether this can be generalized and translated,
using inferred parameters, to different experiments, and (ii) what
specific contexts are those, for a specific experiment, that will
show the most obvious differences between two groups of subject
or, more generally, along a specific trait dimension. One can also
use Bayesian model comparison to test alternative or extended
versions of the current model. For example, the low percentage of
risky choices observed in extreme contexts on the 8th trial might
be caused by observation noise: subjects do not know exactly
how many points they need to go above threshold and might
therefore miscalculate the usefulness of the safe option. As a
first approximation, the current model does not account for such
observational noise; rather it calculates with absolute precision
whether a given reward would suffice. Because of this, one way for
the model to account for these decisions (safe choices in extreme
cases) was to “soften” the shape of the goals, assuming that
subjects found values below threshold acceptable, if not optimal,
which gives a higher preference (likelihood) to the exponential
family of goals over the other two.

Describing a Context With a Proxy Variable
Reducing a complex context into a one-dimensional proxy
variable (such as 1V or risk pressure) can bring with it loss
of information. In the specific case of the task used here, as in
many other tasks used in psychology, the context, i.e., the set
of variables necessary to make a decision, is multi-dimensional.
In many tasks, e.g., the urn task (FitzGerald et al., 2015), the set
of all contexts is small enough that a proxy variable might not
be necessary, or a natural proxy variable, such as trial number
itself, can be used, as e.g., in Schweighofer et al. (2006). However,
in other tasks as the one used here, in which the number of
contexts is usually in the thousands, it is difficult to obtain
veridical estimates on context-dependent risk aversion without
using proxy variables that bin together dissimilar decisions.
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With our model-based approach we do not need to use such a
proxy variable for context; instead, the context is evaluated by the
model by using all the information available to make a decision.
This approach additionally revealed the effects of using a proxy
variable. This can be seen in Figure 7 where, for each value of
risk pressure, data points at different heights can be seen. These
represent trials with different trial numbers, offered action pair,
number of points and/or threshold, which nonetheless might
have the same risk pressure. In standard binning approaches,
these would be binned together to obtain summary statistics.

As a first attempt to validate the results from our model-based
approach using standard binning methods, we compared the
overall preference for the risky offer, averaged across all subjects
and trials. A finer comparison was made in Figure 7, where
we showed that binning the results using model-based binning
yields curves of summary statistics that are very similar to those
obtained with standard methods.

It is this similarity between the two methods that hints at
important information being lost when binning many decisions:
with the results from the binning method we could not conclude
that any adaptation of risk aversion to risk pressure happens as we
could not reject the null hypothesis of no risk adaptation for 25
out of 35 subjects. In contrast, our model-based approach reveals
differences between stereotyped risk aversion adaptation curves
that are clearly visible when looked at in a trial-specific fashion
(Figure 8). Additionally, our method provided a single, subject-
specific parameter value (i.e., STP, sensitivity to points) to explain
the rather complex adaptation of risk aversion.

Risk Aversion
In this work we showed that differences in risk-taking behavior
can be partially explained by differences in the way that subjects
set goals for themselves. These internal goals are related to the
goals of the task, as they were explained to the subjects, but are
not necessarily the same as determined by the instructions.

The internal representation of goals sets not only the
desired end states of a task, but also the valuations of these
end states relative to each other (see Figure 6C). It is these
relative values that can explain the inter-subject differences
observed in the adaptation of risk aversion. For example,
a subject with an internal goal of maximizing the number
of points achieved at all costs could be less risk-prone that
a subject who only wants to go above-threshold, due to
the expected value of the safe choice is larger than that of
the risky choice (see Figure 7). The effects of this internal
representation of goals on risk aversion is highly contextual:
in a given context, if two subjects have different internal
goals, one subject might show a stronger preference for the
risky offer than the other, while for another context, the
opposite would be true. This is what differentiates this adaptive

account of risk aversion from a trait-like account. Examples
of this can be seen in Figure 9B, where differently-colored
lines of the same action pair (e.g., dotted lines) cross each
other.

To complement this adaptive account, we introduced the
additional parameter of choice bias, which accounts for an overall
preference for safe choices (risk aversion) or risky choices (risk
proneness) by using prior probabilities for actions. In this work,
we implemented a subject-specific, overall prior preference for
(or against) the risky choice for any action pair. This choice
bias is not informed about context or about the relative values
and probabilities of success of the given choices. We found this
simple, fixed bias to be an important parameter as evidenced
by very strong evidence for it when comparing models. In this
sense, the model presented in this work incorporates an adaptive
risk aversion adaptation, which tailors responses to changing
contexts, and a trait-like, non-adaptive risk aversion, which biases
all responses toward or away from risk taking behavior. Similarly,
in future work, additional biases, e.g., choice-supportive bias or
the effect of previous successes with an offer, can be added to the
generative model in a straightforward way, using model selection
to identify those bias parameters that provide for better models
of adaptive risk aversion.
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