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Most rewards in our lives require effort to obtain them. It is known that effort is seen

by humans as carrying an intrinsic disutility which devalues the obtainable reward.

Established models for effort discounting account for this by using participant-specific

discounting parameters inferred from experiments. These parameters offer only a static

glance into the bigger picture of effort exertion. The mechanism underlying the dynamic

changes in a participant’s willingness to exert effort is still unclear and an active topic of

research. Here, we modeled dynamic effort exertion as a consequence of effort- and

probability-discounting mechanisms during goal reaching, sequential behavior. To do

this, we developed a novel sequential decision-making task in which participants made

binary choices to reach a minimum number of points. Importantly, the time points

and circumstances of effort allocation were decided by participants according to their

own preferences and not imposed directly by the task. Using the computational model

to analyze participants’ choices, we show that the dynamics of effort exertion arise

from a combination of changing task needs and forward planning. In other words, the

interplay between a participant’s inferred discounting parameters is sufficient to explain

the dynamic allocation of effort during goal reaching. Using formal model comparison,

we also inferred the forward-planning strategy used by participants. The model allowed

us to characterize a participant’s effort exertion in terms of only a few parameters.

Moreover, the model can be adapted to a number of tasks used in establishing the

neural underpinnings of forward-planning behavior and meta-control, allowing for the

characterization of behavior in terms of model parameters.

Keywords: effort, discounting, sequential, computational modeling, decision making, goal-directed action

1. INTRODUCTION

It has been known for long that physical effort appears to bear an inherent cost both in humans
and other animals (Hull, 1943; Walton et al., 2006). Although the nature of cognitive effort remains
elusive (Shenhav et al., 2017), the role of mental effort has been studied more recently in the same
vein (Kool et al., 2010; Schmidt et al., 2012; Apps et al., 2015; Pessiglione et al., 2018), as well as
its neural underpinnings (e.g., Radulescu et al., 2015). Generally, effort seems to carry a disutility
that diminishes the value of reward an action entails, a phenomenon known as effort discounting
(Botvinick et al., 2009; Westbrook et al., 2013).

In psychology and economics, much effort has been put into establishing so-called effort
discount functions, i.e., parameterized functions that describe how the subjective value of a reward
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diminishes as a specific amount of effort is required to
obtain it. As with delay- and probability-discounting, several
parametric shapes of the effort discounting function have been
suggested: hyperbolic (Prévost et al., 2010), inspired by delay- and
probability-discounting; linear (Skvortsova et al., 2014); bilinear
(Phillips et al., 2007); parabolic (Hartmann et al., 2013); and
sigmoidal (Klein-Flügge et al., 2015). Additionally, a framework
based on prospect theory conceptualizes effort discounting as
a shift of the status-quo (Kivetz, 2003). See also (Talmi and
Pine, 2012; Klein-Flügge et al., 2015; Białaszek et al., 2017) for
comparisons between these different models.

While these studies established a mathematical description
of how required effort affects the valuation of a reward, the
experiments were typically constrained to the particular case
where the decision to invest effort to obtain rewardmust be made
immediately. However, in most cases of goal-directed behavior
in daily life, the reward is not obtainable immediately but must
be pursued over an extended time period. This means that in
typical effort discounting experiments one cannot address the
question of when people will invest effort to obtain a reward that
remains obtainable over an extended period of time. For example,
an employee may be given a deadline of 2 weeks to complete an
assignment that takes one day. The question for this employee
on every day until assignment completion is whether she should
invest the effort today or wait until later (Steel and König, 2006).
This question is outside the domain of typical effort discounting
experiments because there is no “wait until later” option. Some
individuals would probably do the assignment early because there
may be an unforeseen situation that prevents them from finishing
later. Others would prefer to wait and intend to do the assignment
late, e.g., just before the deadline runs out, because perhaps it
turns out that the assignment is no longer required. Clearly,
all possible courses of actions (do the effort early or late) have
their advantages and disadvantages and put individuals into a
decision dilemma. We believe that this dilemma is central to the
meta-control question of how effort discounts potential reward
because the dilemma emerges typically when one is pursuing
goals that cannot be obtained now but only after some extended
time (Goschke, 2014).

In order to induce this dilemma, it is necessary to put
participants in a situation where forward planning and future
contingencies are important, as opposed to the single-trial
experiments traditionally used to elicit discounting. By forward
planning, wemean that to make a decision one has to plan several
time steps into the future to predict the consequences of possible
courses of actions (Dolan and Dayan, 2013). For example, the
employee may on day one simulate through in her mind several
alternatives of when to do the assignment, select one of these
alternatives and execute the first action of this alternative. The
question is how one can model decision making in this dilemma
by combining forward planning over several trials and previously
established effort discounting models for a single trial.

To address this question, we developed a sequential decision
making task that captures the effort-investment decision
dilemma described above. In each trial of a trial sequence,
participants were given the choice to exert effort right away to
improve their chances of obtaining a reward at the end of the trial

sequence, or wait and not invest effort to see how the situation
evolves, so that eventually the need for effort might disappear,
however at the price of lowering the chances of reward. We
found that the proposed computational model was able to explain
different time points at which different participants invested
effort. Using formal model comparison, we inferred the forward-
planning strategy used by participants during the task. We
also show that the inferred effort- and probability-discounting
parameters provided for an easily interpretable explanation of the
early vs. late effort allocation effect observed in the choice data.

In summary, we present a computational-experimental
approach, in the form of a novel experimental task and
a sequential decision-making model, that enables future
studies into the effects of pursuing long-term goals based on
moment-by-moment decisions about effort investment in
human participants.

2. METHODS

Participants were recruited from a pool of potential participants
organized by the Technische Universität Dresden that includes
students as well as individuals from the general population. Of
N = 60 participants taking part in the experiment, five had to
be excluded based on their poor performance during an initial
training period (see below). This left N = 55 participants (18
female, with an average age of M = 26.0, SD = 10.8) for
our analyses.

Participants went through two different experimental tasks
which, together with introduction and training, took an average
of 1.5 h. The two experimental tasks were a single-task
effort/probability discounting paradigm and the novel sequential
task. In this work, we report only the analysis of the sequential
task data that was performed before the single-trial task. For this
reason, we describe here only the sequential task.

Payoff was a basic reimbursement of 9 Euros for participating,
plus a performance-based bonus of up to 5 Euros for
the sequential task. Some participants traded the basic
reimbursement for course credit. On average, participants
who did not trade the basic reimbursement for course credit
earned around 14 Euros for the whole experiment.

The study was approved by the Institutional Review Board
of the Technische Universität Dresden (protocol number EK
541122015) and conducted in accordance with the declaration of
Helsinki. All participants gave their written, informed consent.

2.1. Sequential Task
In this task, participants were instructed to accumulate points
over the course of a mini-block (a trial sequence) of ten trials,
with the objective of surpassing a point threshold at the end of a
mini-block (displayed as an empty bar to fill with points). To do
this, they had to, at every trial, choose between amentally effortful
and a probabilistic option.

If the participant chose the effortful option, she must complete
a number-sorting task, in which a set of numbers was shown
on screen with five digits each that can differ in any of the
digits (see Figure 1A). The participant had to sort the set of
numbers in ascending order by sequential mouse clicks on the
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FIGURE 1 | Effort and sequential task. (A) Cue and decision phase of the sequential task. Participants had to choose between the easy option (Leicht, in the original

German), which corresponded to the probabilistic option (see main text), and a hard option (Schwierig), which corresponded to the effortful option, which lead to the

task shown in (B). The choice was made with keyboard keys C and M, for the option on the left and right, respectively; the side on which each option appeared is

randomly selected at every trial. The trial number is shown on top as 2/5, which means the second trial out of five (B) Number-sorting task, where participants had to

select the shown numbers in ascending order to correctly complete a single trial of the sequential effort-investment task. To select a single number, participants could

click anywhere in the box containing this number. (C) Schedule of the different phases of a single trial in the sequential task. The shown screens are those in (A,B).

The times for each screen are shown at the bottom, along with the name of each phase. Note that the time allotted to sorting the numbers was the same both for the

probabilistic (leicht) or effortful (schwierig) option. The main experiment consisted of 25 mini-blocks (sequences of trials) with ten trials each. The text size on (A,B) was

increased for visual clarity.

displayed numbers within a fixed time period, the length of which
was determined during training (see below). If the participant
correctly sorted the numbers, a point was gained for that trial,
which was shown on the bar at the bottom. No point was gained
if the numbers were not sorted correctly.

If the participant chose the probabilistic option, she had to
complete a number-sorting task as well, but all numbers had a
single digit, rendering the task practically cognitively effortless.
If the numbers were correctly sorted, participants had a 50%
chance of earning a point (and 50% of earning none), of which
they were informed during the instructions. The probabilistic
option corresponded to waiting until a later trial to exert effort,
if it ever became necessary. The probability associated with the
probabilistic option was included to create mini-blocks in which
the participant could win without having to exert any effort by

choosing this option at every trial and being “lucky” with the
outcomes. We included the single-digit sorting trial to equalize
the physical effort that comes from using the mouse to click on
the numbers.

The time allotted to a participant for sorting the numbers
was adapted to each participant during training such that their
performance on the number-sorting task (with five digits) is
around 90% (see section 2.2) to equalize the required effort
across all participants. To avoid time becoming a confound, this
participant-specific time was the same for both the effortful and
the probabilistic option, determined for each participant during
training. By doing this, all trials lasted exactly the same time for
each participant.

At each trial, the current number of points was displayed as
a bar shown on the bottom of the screen (see Figure 1B) during
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the cue and decision phase (see Figure 1C). In order to fill the
bar in the mini-block, five points were necessary. If during a
mini-block the bar was filled, 20 Euro cents were added to the
participant’s final reward. Otherwise, they gained no reward for
the mini-block. Each participant went through 25 mini-blocks.
Monetary reward was contingent on winning mini-blocks (as
opposed to simply maximizing points) to give special significance
to winning a mini-block and to implicitly dissuade participants
from focusing on getting the maximum number of points by
always choosing the effortful option.

Each trial of the sequential task was divided into three phases:
(1) the cue and decision phase (Figure 1B), in which participants
had to choose between the two options using the keyboard (“c”
for the option shown on the left, “m” for the option shown on
the right). The left/right position of the two options (probabilistic
and effortful) on the screen was randomized every trial. This
phase lasted until the participant made the decision, but no
longer than 3 s; (2) the sorting phase, in which participants had
to carry out the selected task. This phase lasted between 4 and
10 s, depending on the participant’s performance during training
(see below); and (3) the feedback phase, in which participants
were told whether they correctly completed the task or not. This
phase lasted half a second. Figure 1C shows a diagram of the trial
timing, including all the screens observed by participants as well
as the timings of each phase of the trials.

Importantly, the number of points required to win a mini-
block was only half of the number of trials in the mini-block.
This, combined with the 50% chance of getting a point with
the probabilistic option, had the effect that, by just choosing
the probabilistic option, the participant could win on average
half the mini-blocks in the experiment. Additionally, because
the difficulty of the effortful task was set such that expected
performance is close to 100%, the participant was almost
guaranteed to win every mini-block, regardless of the strategy
chosen, as long she was willing to invest the effort associated
with the effortful option when it became necessary, i.e., when she
would otherwise have risked not having enough points at the end
of the mini-block.

2.2. Procedure
The experimental session began with instructions shown on the
screen. No instructions were given by the experimenter. Then,
the participant went through an introduction to the number-
sorting task with the intention of getting them acquainted
with how the mouse is used to sort the numbers. During
this familiarization period, participants completed twelve trials,
divided into six single-digit sorting tasks and six five-digit sorting
tasks. Training followed, during which participants’ response
times for the main experiment were adjusted. Participants first
had to go through a block of 40 trials, in which they had to
sort the four numbers as quickly as possible within a fixed time-
interval of 12 s per trial. This was long enough that no participant
timed out. After this initial block, the new interval was chosen
to be the 95% percentile of the participant’s reaction times. After
that, three more blocks of 40 trials were possible; after each
of them, the participant’s performance (i.e., the percentage of
times they correctly sorted the numbers before the deadline) was

measured. If the performance was below 85%, the deadline was
increased. If above 95%, the deadline was decreased. This was
repeated for a maximum of four training blocks. If after the
training phase the performance was not between 85 and 95%,
we excluded the participant from further analysis. The duration
of the training phase varied across participants. Once training
was done, participants received instructions for the sequential
experiment, followed by ten practice mini-blocks, in which they
earned no reward (stated in the instructions). Once they finished
these, they performed the main experiment with 25 mini-blocks,
earning monetary reward for each one completed successfully.

2.3. Exclusion Criterion
As mentioned in section 2.2, we excluded participants who could
not maintain the required accuracy while sorting numbers. The
reasoning behind this was 2-fold. On the one hand, too low
performance on the number-sorting task would bias participants
toward choosing the effortful option early in the miniblock, to
make sure that they had a chance to win. On the other hand, too
high performance would leave us unable to adjust the allotted
sorting time to ensure that all participants were given time just
enough for them to accurately sort the numbers, and no more. A
participant that has a 100% accuracy in sorting the numbers may
find the task not to be effortful at all.

In total, participants were excluded from analysis due to
their success rates being outside of the range 85–95% in the
number-sorting task throughout the experiment. The remaining
55 participants were used for the analysis in the section 3.

2.4. Single-Trial Discounting Models
The sequential decision-making model proposed in this work
is based on classical single-trial discounting models. For
completeness, we briefly describe their mathematical form in
this section.

It is now well-accepted that the best-fitting discounting
function for probability discounting is a hyperbola-like one
(Ostaszewski et al., 1998), whose mathematical form is given by:

V̂ = Vfp(p) (1)

where V̂ is the subjective value, p is the probability of obtaining
the reward, V is the objective reward value (e.g., the amount of
money), and fp is given by:

fp(p) =
1

(

1+ κp
1−p
p

)s (2)

where κp and s are the model’s free parameters which are
to be fit to behavioral data. These two parameters have
the effect of creating steeper discounting the higher their
values are; κp is regarded as a probability-scaling parameter,
while s is regarded as a non-linear sensitivity to probability
(Green and Myerson, 2004).

We made use of this model during our study with one caveat:
while the inclusion of the parameter s has been previously found
to add explanatory power to the model, it makes comparison
between groups more difficult (McKerchar and Renda, 2012), as
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discounting is affected by these two parameters, and it severely
complicates parameter fitting due to the high correlation between
the parameters (Myerson et al., 2001). For this reason, we chose
to fix s to 1 for all participants.

For effort discounting it is less clear which discounting
function describes behavioral data best (Kivetz, 2003; Kool et al.,
2010; Klein-Flügge et al., 2015, 2016; Białaszek et al., 2017).
Formal model comparison has been performed between different
discount functions, with differing results (Klein-Flügge et al.,
2015; Białaszek et al., 2017).

In this work, we exemplify our model using hyperbolic
and sigmoid effort discount functions. We chose hyperbolic
discounting for its long tradition in probability- and delay-
discounting, which makes it a prime candidate for effort
discounting. Sigmoid discounting, on the other hand, has the
property of being concave for low effort levels and convex for
high effort levels, which Klein-Flügge et al. (2015) argued was
an integral part of effort discounting. However, note that our
modeling approach presented below can be applied to any other
discount function.

The hyperbolic effort discount function is given by:

fǫ(ǫ) =
1

1+ κǫǫ
(3)

where ǫ is the effort level and κǫ is the only free parameter,
which, as with probability discounting (Equation 2), represents
effort scaling.

The sigmoid discount function is given by:

fǫ(ǫ) =

(

1−

(

1

1+ e−m(ǫ−ǫ0)
−

1

1+ emǫ0

)

(

1+ e−mǫ0
)

)

(4)

with free parameters m and ǫ0 that correspond to slope of the
function at the center (where the value of the function is 0.5) and
the coordinate of the center.

While the interpretation of ǫ = 0 is clear (there is no effort),
effort does not have a natural scale like those of delay and
probability. Instead, we chose the units of effort such that the
effort level of one number-sorting task is M − 1, where M is
the number of digits of each number to sort. In this scale, the
probabilistic option (see section 2.1) has an effort level of zero
and the effortful task has an effort level of four.

2.5. Sequential Discounting Models
In this work we present a novel family of models that bring
the single-trial discounting models of the previous section into
the realm of sequential decision-making models of goal-directed
behavior. To do this, we built on Equations (1) to (4) and added a
component that implements forward planning over future trials
to achieve the goal of filling the point bar during a mini-block.

2.5.1. Action Sequences
For our forward-planning model, we first introduce the concept
of action sequences π , which we defined as a list of actions to
perform in future trials, one for every trial left in the mini-
block. Because in the sequential task, the participant must make
forced choices between an effortful and a probabilistic option, an

action sequence consists of these binary choices, one for each
remaining trial until the end of a mini-block. For example, at
the very beginning of a mini-block (with 10 trials left), an action
sequence could consist of only the probabilistic choices at every
trial in the future. This would be the policy of a participant
who, at the beginning of the mini-block, prefers not to choose
the effortful options throughout the mini-block. Another would
be an action sequence consisting only of choosing the effortful
options. Planning for more nuanced strategies is also possible,
i.e., a mix of both options.

The model evaluates every possible action sequence in a way
that reflects the overarching goal leading to reward, i.e., filling
the point bar. Since at every trial the choice is binary, the total
number of possible action sequences at the beginning of trial t
is 2T−t+1, including the one to be made at trial t, where T is the
total number of trials in a mini-block (10 in our experiment).

It is unlikely that human participants use such a brute-
force, binary-tree search algorithm to find the best strategy, as
the number of action sequences grows exponentially with the
number of trials left; therefore, we created a model in which the
only two strategies available are (1) committing to choosing the
probabilistic option for the remaining trials in themini-block and
(2) committing to choosing the effortful option for the rest of
the mini-block, or until the point bar has been filled. Using only
these two action sequences captures the essence of the task, in
which a frugal decision-making agent would choose to exert no
effort unless it becomes absolutely necessary, and a more reward-
sensitive agent (i.e., one that wants to maximize the probability
of obtaining reward, disregarding the cost of effort) would prefer
exerting effort until the probability of winning the mini-block
is high enough to risk the probabilistic option. We discuss the
validity and usefulness of this reduction in the number of policies
in the section 4.

We define these two action sequences with πp as the action
sequence of all-probabilistic choices and πǫ as the action
sequence of all-effortful choices. With these, we define the set
A = {πp,πǫ}.

For every action sequence π ∈ A the model produces an
evaluation z(π) which determines how beneficial this action
sequence is for achieving the goal. Then, the model selects
an action (probabilistic or effortful) using these valuations.
Concretely, the action at at trial t is sampled according to:

at ∼ σβ

(

z(πp), z(πǫ)
)

(5)

where σβ is the softmax function with inverse-temperature
parameter β . We fix the value of this parameter to 5 for all
models and participants, which produced posterior probabilities
(for effort and probability) in the full range of 0 to 1.

The evaluation function z is defined in terms of the single-trial
discounting models discussed in section 2.4. In what follows, we
discuss z(πp) and z(πǫ) separately.

2.5.2. Forward Planning With Probability
When planning to choose the probabilistic option for every trial
into the future, we propose two natural ways of calculating
z(πp); one aim of the study was to use model comparison to
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disambiguate between these two ways. The first way is to stack
the discounting function as many times as there are trials left:

z(πp) = Vfp(p)
(T−t+1) (6)

= V





1

1+ κp
1−p
p





T−t+1

(7)

where fp(p) is given by Equation (2) with s = 1. This simply
means that the objective reward V obtained at the end of the
mini-block is discounted once for each remaining trial. We refer
to this variant as “stack.” Note that we explicitly do not call this
variant “multiply” because some other discounting functions (not
considered in this paper) are not multiplicative.

With the second variant, the model calculates the overall
probability of winning the reward by choosing the probabilistic
option in every remaining trial in the mini-block, as if it were
a single action with an overall probability. The calculation of
this overall probability is done with the binomial distribution
and the resulting probability is used to apply hyperbolic
probability discounting:

pall =

inf
∑

x̂=X−x

B(x̂, p,T − t + 1) (8)

z(πp) = Vfp(pall) (9)

= V





1

1+ κp
1−pall
pall



 (10)

where B(x̂, p,T − t + 1) is the probability mass function of
the binomial distribution, x̂ is the number of successes for the
binomial, p is the probability of success and T − t + 1 is the
number of trials left; X is the number of points necessary to win
themini-block and x is the current number of points. fp(·) is given
by Equation (2). We refer to this variant as “add.”

These two alternative models represent two different ways
in which participants could be taking future decisions into
consideration. In the “stack” variant, each one of the future trials
is seen as an independent probabilistic action, with an associated
probability to win and to lose. In contrast, the “add” variant sees
all future trials as one single probabilistic action, calculating an
overall probability of winning using a binomial distributions.
While we do not expect participants to perform such complex
calculation, they could calculate an approximation to it and use
that to make a decision.

A key difference between these two alternatives is related
to the way the discounting curves change as a function of the
number of trials left. As can be seen in Figure 2A, there is more
variability across the curves for the “add” model, all in brown
tones, than those for “stack,” all in green tones, as the number
of points necessary to win (different shades) changes from five
(beginning of the miniblock; lightest shades) to one (darkest
shades); compared to the “stack” variant, the “add” variant is
capable of both discounting less steeply when few points are
needed and more steeply when many points are needed. The

“stack” model is unable to change the discounting curves as
much, for any given value of κp.

2.5.3. Forward Planning With Effort
In analogy to the probabilistic action sequence, we propose
two variants of the effortful action sequence evaluation. The
first variant is the direct counterpart of the stack variant
in probability:

z(πǫ) = Vfǫ(ǫ)
T−t+1 (11)

where f (ǫ) can be hyperbolic effort discounting (Equation 3) or
sigmoid effort discounting (Equation 4). As for the probabilistic
action sequence, we refer to this version as “stack.”

The second variant is the direct counterpart of the add variant
in probability, and is defined by adding all the future efforts as if
it were a single action and discounting the resulting added effort
using the hyperbolic or sigmoid functions:

ǫall = (T − t + 1)ǫ (12)

z(πǫ) = Vfǫ(ǫall) (13)

where fǫ(·) can be the hyperbolic effort discounting (Equation
3) or sigmoid effort discounting (Equation 4). As for the
probabilistic action sequence, we refer to this version as “add”.

As with probability discounting, these two alternative models
represent different ways in which the model could consider
future effortful actions. In the “stack” variant, as with probability,
future effortful actions are seen as independent from present
effortful actions and each is discounted separately, which, given
that all effortful actions carry the same amount of effort in our
task, is represented as a stacking of the discounting function.
The “add” variant, on the other hand, posits that effort itself is
additive: performing an effortful task takes only half the effort
of performing two such tasks. In this variant, the model would
think of the effort necessary to perform N effortful actions into
the future as having magnitude N times that of a single effortful
action and would discount this action sequence based on that
added effort.

Additionally, in Figure 2B we show how these two models
display different behavior. The discount curves change more
for the “add” and “stack” variants of the model as fewer future
efforts are necessary to win the miniblock.Whenmany points are
needed (e.g., at the beginning of the miniblock; darkest shades),
the difference between the two variants’ discount curves is at
its greatest, but as fewer points are needed (close to winning;
lightest shades), the curves look more similar between variants
until they become the same, as can also be seen from Equation
(11) to (12) by setting t = T. It is important to note that the
“stack” variant discounts rewards more steeply than the “add”
variant when many points are needed, which means that is has a
greater range of discounting steepness across the miniblock; this
is regardless of the value of the discount parameters. We further
discuss these differences in the section 4.

2.5.4. Model Variants
We defined the different variants of the sequential model
depending on the type of forward planning used for effort and
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FIGURE 2 | Hyperbolic discount curves for the “add” (brown tones) and “stack” (green tones). Markers (circles and crosses) are placed at regular intervals (in

probability and effort) only so that it is clear when two lines are overlapping. (A) Probability discounting. Each curve represents a probability discount curve for a

number of needed points for the two variants. The parameter κp was set to 1 and 5, for the “add” and “stack” variants, respectively. The different values were used so

the curves would be as similar as possible. The gray, vertical line represents the 0.5 probability of getting a point used in the experiment. (B) Effort discounting. Each

curve represents the effort discount curve for the number of needed points for the “add” (brown tones) and “stack” (green tones) variants. For both variants, the

discount parameter was set to κe = 1. The gray, vertical line represents the value used for the effort of a single effortful action.

probability, each of which could be “stack” or “add.” This gave
us a total of four variants of the sequential component, naming
the effort variant first: add/add, stack/add, add/stack, stack/stack.
For example, we refer to the variant in which effort is stacked and
probability is added as stack/add.

In addition, two effort discount functions were
considered—hyperbolic and sigmoid—, which,

combined with the sequential component, yield eight
models in total.

2.6. Model Comparison
In total, we propose a family of eight (2 × 2 × 2) models:
(sigmoid or hyperbolic)× (stacking or adding effort)× (stacking
or adding probability). In order to select the one that fits our
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data best, we implemented the hierarchical model proposed by
Stephan et al. (2009), which we only briefly describe here. Note
that Stephan et al. (2009) suggest using the so-called exceedance
probability to produce a ranking between several models, which
takes into account both howmany times each model was inferred
to be the best for participants, and the uncertainty derived
from the inference procedure, making it a more appropriate
measure for model comparison than approximations to the
model evidence such as the Bayesian information criterion
(Schwarz, 1978).

Stephan et al. (2009) defined a hierarchical model in which the
models to be compared are first fit to the data of each participant
using Bayesian methods. From this fitting, the model evidence
can be calculated for every combination of participant andmodel.
This matrix of model evidences is then used as “data” for the
hierarchical model. Formally, the model evidence is introduced
as p(d|m), where d is the data (participants’ choices) and m
represents one of the 8 variants we propose, defined as a vector
of zeros with a single 1 in the place of the model [for example, the
third model is represented by m = (0, 0, 1, 0, 0, 0, 0, 0)]. This is
used to infer, using Bayes theorem, which model best fits the data
of all participants together.

The hierarchical model then defines the probability of the
modelm given an auxiliary variable r:

p(m|r) =

8
∏

i=1

r
mi
i (14)

The variable ri can be interpreted as the number of participants
for which modelmi was the best model (highest model evidence),
although this is a simplification. The last component to define
is the prior probability of r, which we defined as a flat
Dirichlet distribution (as was done by Stephan et al., 2009 in
their examples):

p(r) = Dirichlet(α) (15)

where α is a vector of ones, which reflects that we did not have any
hypothesis a priori regarding which of the variants of our model
fits the data best.

Finally, the full generative model is given by:

p(d,m, r) = p(d|m)p(m|r)p(r) (16)

which we inverted to produce the posterior probability q(m|d) by
using the NUTS sampler as implemented in PYMC3 (Salvatier
et al., 2016). These posterior distributions can then be used
to perform model comparison via the computation of the
exceedance probability, which is a way of determine how much
more likely is one model to better describe the data than all other
models (Stephan et al., 2009).

To calculate the exceedance probability for model i, it suffices
to calculate the cumulative distribution of p(ri|data) over all
values for which p(ri|data) > p(rj|data), for all j 6= i.

2.7. Dividing Participants Into Groups
We divided participants into three groups based on their effort
exertion strategy which we determined given their choice data.

The first group, called all-effort group, consisted of those
participants who chose the effortful option in more than 90%
of trials. This implies that these participants used the effortful
option even after winning the mini-block.

The remaining participants were divided into two groups:
those who applied effort early in the mini-block (early-effort
group) and those who applied it late (late-effort group). To divide
participants we made use of the frequency of effort calculated at
every trial number across mini-blocks. Intuitively, the frequency
of effort for participants in the early-effort group decreases as the
trial number increases (until the mini-block has been won), while
late-effort group increases their frequency with trial number. To
quantify this, we calculated the change in frequency of effort
between each trial and the next one:

mt = Ft+1 − Ft , ∀t ∈ [0, 10) (17)

where Ft is the overall frequency of effort for trial number t. We
found that to classify participants based on when they exerted
effort, the best strategy was to count the number of times, for each
participant, that the slope was positive for all trials and subtracted
the number of times it was negative:

ξparticipant = dim{t|mt > 0} − dim{t|mt ≤ 0} (18)

where dim() is a function that returns the number of elements in
a set. ξparticipant determines whether a participant belongs to the
early-effort group (ξ ≤ 0) or to the late-effort group (ξ > 0).

2.8. Parameter Estimation
Parameter estimation was done using a variational inference
scheme implemented the NUTS MCMC sampler implemented
in PYMC3 (Salvatier et al., 2016). The outcome of this Bayesian
inference scheme is estimations for the mean and standard
deviations of the posteriors for eachmodel parameter (see section
2.5), providing both a single-point estimate, e.g., the mean of
the Gaussian posterior, and estimations for the uncertainty of
the inference.

Additionally, the model evidence for all models and
participants is calculated as the negative loss produced by
PYMC3, which is used for model comparison in section 2.6.

Parameter estimation was done using the following
generative model:

q(θ |d) = p(d|θ)p(θ) (19)

p(θ) ∼ Uniform (20)

where p(·) is a probability distribution, θ is the set of parameters
to fit to the data and q(θ) is the posterior distribution over the
parameters. Uniform refers to uninformative priors, i.e., prior
distributions in which no special prior information is encoded.
p(d|θ) is the likelihood function provided by our decision-
making model.

3. RESULTS

We first show that there were inter-participant differences in
the strategies used to reach the goal, which were reflected in
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the circumstances under which participants chose the effortful
option instead of the probabilistic one. Furthermore, we divided
the participants according to three behavioral categories, based
on their strategies. This is followed by formal Bayesian model
comparison to identify the best among eight different models,
which differ in terms of how forward planning computes the
subjective value of reward, and which out of two discount
functions is used. Having selected the best model for our data,
we show that this model correctly captured the overall preference
for effort shown by participants. Finally, we show that the
overall preference for effort can be understood in terms of the
inferred discounting parameters (more specifically, their ratio),
providing an intuitive description of apparent effort preference
in participants.

3.1. Behavioral Analysis
3.1.1. Preference for Effort
As a first step to determine whether our task elicited differences
in the adaptation of effortful choices between participants, we
calculated the overall frequency of effort for each participant
in the sequential task, i.e., in what percentage of trials the
participant chose the effortful option. The results are summarized
in Figure 3A; to determine whether participants had fully
understood the instructions regarding reward contingencies (i.e.,
that gaining points after filling the point bar would bring no
further reward), the trials were separated into before and after
having won themini-block (i.e., filled the points bar), displayed as
blue and green bars, respectively. It can be seen that, on average,
participants chose the effortful option much less frequently after
having won the mini-block, which is congruent with the rules of
the task (i.e., that getting more points after having filled the bar is
of no use).

In total, we identified three different groups of participants,
differing on when they chose to exert effort (see Figure 3B and
section 2.7 in Methods for more details).

We found that 14 (25%) of all participants continued to choose
to do effort even after they had won the mini-block. We refer to
these participants as the all-effort group for the rest of this work.
In the remaining participants we identified two further distinct
categories of behavior when looking at those trials before the
mini-block had been won, i.e., trials for which the number of
obtained points is smaller than five. The first category comprises
six (11%) participants that showed a lower frequency of effortful
choices at the beginning of the mini-block, averaged across all
mini-blocks, and only later increased their frequency. We refer to
these participants as the “late-effort” group. The second category,
which included 35 (64%) participants, pertains to participants
with the opposite behavior; they started every mini-block with
a high frequency of effort and only later in the mini-block, when
they had accumulated many points (not necessarily having won
the mini-block), started choosing the probabilistic option. We
refer to these participants as the “early-effort” group.

We considered that all-effort participants may have
misinterpreted the instructions of the task. To discard this
possibility, we asked all participants in a post-task questionnaire
if they understood that gaining points after filling the bar
led to no further reward, to which all participants but one

responded that they had understood this; the one participant
who responded that she did not understand was part of the
all-effort group. Importantly, the task was designed such that
all participants could easily win all mini-blocks; we found that
across all participants, only four mini-blocks were lost (in all
cases by a single point) and no participant lost more than one.
We will discuss potential reasons for the choice behavior of the
all-effort group in the section 4.

The model-based analysis results we present in the following
sections can account for the all-effort group simply by inferring
very low effort-discounting parameters so that the effortful
action no longer comes with disutility and thus can be selected
freely. However, the choice data of the all-effort group is rather
uninformative about the way individuals resolve the dilemma of
when to invest effort to reach a goal that is a few trials away, as
one might expect given that they always chose to exert effort.
Therefore, the all-effort groupwill be excluded from the following
analyses except when explicitly stated.

The dynamics of the frequency with which participants
chose the effortful option can be seen in Figures 3C,D for the
three categories of participants (late-, early-, and all-effort). For
Figure 3C, we averaged, for every trial number, all the choices
made by all the participants in each group.We show in Figure 3D
the same data but using only the trials before the mini-block
had been won. It can be seen clearly that toward the end of
the miniblock participants tended to choose to do effort more
frequently, because in those mini-blocks when early participants
made it to such high trial numbers without having won the mini-
block, they urgently needed to accumulate points and thus effort
was required to ensure filling the point bar.

3.2. Model-Based Analysis
In this section, we discuss several hypotheses on how exactly
human participants select choices in the sequential task. To do
this, we use a series of model-based analyses, using Bayesian
model comparison to select the best models.

It is important to note that the following analyses are not
affected by the distribution of participants across the three groups
(early-, late-, and all-effort). This is because themodels were fitted
for each participant separately and the model comparisons are
made with all participants.

For all analyses that follow, only trials before the mini-block
were used, as only these trials represent goal-seeking behavior.

3.2.1. Forward-Planning Strategies
We first determined which strategy participants used for forward
planning, i.e., how they took into consideration all the possible
actions that can be taken in the future and their potential
outcomes to decide whether they would exert effort or not at
any given trial. Effectively, the question we address here is how
the discounting models used to describe single-trial behavior
are used by participants in tasks that require forward-planning,
goal-reaching behavior.

We considered, for each discounting type (effort or
probability), two different ways in which participants computed
the subjective value of a reward that can only be obtained after
several trials. For future efforts, participants may have used
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FIGURE 3 | Preference for effort for all participants. (A) Histogram of participants’ overall frequency of choosing effort averaged across all trials, separated into before

(blue) winning the mini-block and after (green). (B) Classification of participants into the three groups: all-, early-, and late-effort; see main text. (C) Frequency of effort

as a function of trial number for the three groups of participants, averaged over participants in each group. (D) Same as (C), but only decisions made before the

mini-block had been won are included. The different ranges of the lines (e.g., all-effort only reaches trial 8) is because participants who chose effort more often won

the mini-block earlier.

either the strategy to apply the effort discount function as many
times as necessary to win the mini-block (we call this “stack”),
or adding all necessary efforts to win the mini-block and using
the discount function on this sum (we call this “add”). For
probability, the strategy can be stacking the discount function
(“stack”), or calculating the probability of winning by choosing
the probabilistic option all remaining trials (“add”). In total,
this resulted in four (two variants for effort × two variants for
probability; for details see section 2.5). We refer to the model
variants as (effort strategy)/(probability strategy), with the four
variants being: add/add, add/stack, stack/add, stack/stack. For
example, add/stack refers to the strategy where effort is added
and probability stacked. To determine which forward-planning
strategy was used by participants, we performed formal model
comparison between the four forward-planning strategies,
following (Stephan et al., 2009).

The results of the model comparison between forward-
planning strategies, done by marginalizing over discount
functions, can be seen in Figure 4. The posterior distributions
over the different variants clearly favor the “effort:
stack/probability: add” variant, with an exceedance probability
of ~ 0.99, which means that this forward-planning strategy
is orders of magnitude more likely than the others, given the
participants’ choices.

From our results we can see that the data strongly favors a
forward-planning strategy in which future efforts are considered
independently of each other (efforts are stacked), discounting
the monetary reward at the end of the miniblock once for
every future trial in which effort is planned. In contrast, future
probabilities are not taken independently; instead, participants
seem to calculate the overall probability of winning a miniblock
without having to exert any effort and using that calculation for
discounting the reward. We further discuss these results in the
section 4.

3.2.2. Discount Functions
Having selected the forward-planning strategy with the highest
posterior probability given the data (i.e., effort: stack, probability:
add), we set out to determine which effort discount function
(sigmoid or hyperbolic) best fit our participants’ data. To do
this, we performed model comparison between the two discount
functions. Our results clearly indicate that hyperbolic effort
discounting fits the data better than sigmoid discounting, with
an exceedance probability ~1.

These analyses were performed with the data of early-
and late-effort participants only, excluding the all-effort
group. For completeness, we performed the same analysis
including all participants and found that the results do
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FIGURE 4 | Comparison of the four variants of the forward-planning strategy. The label effort: add/probability: stack, for example, refers to the forward-planning

strategy where effort is added and probability stacked. Each of the four distributions, indicated by a solid curve and a histogram, represents the estimated posterior

probability of a specific model. It can be clearly seen that the best model for all participants was the “effort: stack/probability: add” variant. The colored lines are an

interpolation with a Gaussian kernel. The two effort discount functions (hyperbolic and sigmoid) have been marginalized to compare only the forward-planning

components. The y-axis is the probability density of ri given the data [p(ri|data) in Equation 14]; the x-axis spans all the possible values of r. The peak of the red

(add/stack) curve is not shown because the vertical range was cut short for visual clarity.

not change. This is due to the fact that, for all models,
the effort discounting parameter κǫ (from Equation 3)
for all-effort participants was estimated to be very low,
which caused the model evidence of all models to be the
same for that participant. This greatly simplifies model-
based data analysis, as it obviates the need for arbitrary
exclusion criteria.

3.2.3. Modeling Effort Preferences
Having selected the best-fitting model for the participants’
data (hyperbolic effort discounting, with stacking effort
and adding probability, to which we now refer to as HSA),
we show in this section that this model indeed captured
participants’ behavior in a measure not directly used
for model comparison: the overall frequency of effort for
each participant.

To this end, we compared the HSAmodel to the experimental
data by calculating the overall frequency of effort for each
participant across all mini-blocks and doing the same for the
models. We performed the analysis only for the early- and late-
effort groups. We summarize the results of the comparison in
Figure 5A, where we show the observed (experimental) and
modeled frequencies of effort for each participant separately. We
separated the participants into the late- and early-effort groups;

the division is shown as a vertical line, to the left of which are the
late-effort and to the right, the early-effort participants.

As can be seen in Figure 5B, the HSA model estimated
the probability of choosing effort very well, being within 5%
(in frequency of effortful choices) of the experimental data for
most participants. Only for three participants we found an error
greater than 15%, which is a level of uncertainty expected from
binary data.

It is clear from Figure 5A that the fit is better for higher
frequencies of effort than for lower. This is because participants
with a high frequency of effort have less variability in their
choices, which makes them easier to predict by a model. The
extreme case of this was participants with an overall frequency
of effort (in the early- and late-effort groups) ~ 1, who had almost
zero variability in their choices.

Note that for the late-effort group in Figure 5A, one
participant can be seen with a high frequency of effort. For this
participant, effort frequency started very high early in the mini-
block and increased as the mini-blocks progressed, meeting our
definition of the late-effort group.

3.2.4. Effort Allocation
In this section, we show that the overall frequency of effort
observed in participants can be explained in terms of the
discounting parameters fitted from the HSA model. More
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FIGURE 5 | Frequency of effort for each participant (excluding the all-effort group) and the HSA model (hyperbolic discounting applied to the “effort:stack/probability:

add” model variant). Only trials before winning the mini-block are included. (A) For each participant, two colored dots are shown, which represent the experimental

data (green) and the model prediction (brown). Each dot represents the total frequency of effort for the whole experiment. The two dots for each participant are

horizontally offset and connected by a line for visual clarity. Participants are divided by the vertical dashed line into late-effort and early-effort. (B) Histogram of absolute

error between the model and the experimental frequency of error shown in (A).

specifically, we show that participants with a higher frequency
of effort are those who discounted probability more steeply
than effort.

To do this, we calculated, for each participant, the ratio of
the posterior means of the HSA model’s probability discounting
parameter κp from hyperbolic probability discounting, to κǫ from
effort discounting. Figure 6 shows these ratios plotted against
the individual overall frequencies of effortful choices. It can be
seen that there is amonotonically-increasing relation between the
ratio of discount parameters and the overall preference for effort,
save for two outliers (one of which has a large absolute difference
in Figure 5, belonging to the early-effort group).

This monotonically-increasing relation can be interpreted in
terms of the comparison between the two options in the task:
a participant with a high ratio discounted probability more
steeply than effort, which translates into a lower valuation of
any probabilistic offer, compared to an effortful one. At values
of the frequency of effort ~1, the log-ratio increases rapidly
(faster than exponentially) due to the nature of the model, as the
probability of effort grows more slowly than exponentially as κǫ

decreases linearly.

4. DISCUSSION

We designed a sequential decision-making task in which
participants could choose, in each trial, to exert mental effort

in order to improve their chances of obtaining reward at
the end of a mini-block (i.e., sequence) of ten trials. In this
task, participants had the option to exert effort immediately
to ensure future reward or choose a probabilistic option
and wait until a later trial to re-evaluate if effort needed
to be exerted. With this task, we aimed at determining
when participants choose to exert effort and which forward-
planning strategy they employed to make such a decision. To
this end, we proposed a forward-planning model for goal-
directed, sequential decision-making behavior that incorporates
different strategies for the consideration of future exertion
of effort.

Our results show inter-participant variation in when they
chose to exert effort, with most participants choosing to start a
mini-block with effort and only later choosing not to exert effort.

Additionally, the results of our model comparison between four
different forward-planning strategies show that most participants
considered future efforts by stacking the effort discount function,
i.e., by applying the function as many times as they planned
to exert effort in future trials. For probability discounting,
we found that the best-fitting model calculates the overall
probability of reaching the goal (winning a mini-block) when
always choosing the probabilistic option. We also found that
hyperbolic effort discounting fits the data of our experiment
better than sigmoid effort discounting. Finally, we showed that
the overall frequency of effort for a participant can be explained
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FIGURE 6 | Frequency of effort vs. log-ratio of probability to effort discounting parameters. Each dot represents a participant, divided into late-effort (dark dots) and

early-effort (light dots). We plot the frequency with which a participant chose the effortful action (until reaching the goal of a mini-block) on the x-axis and the log-ratio

of the HSA model (hyperbolic discounting applied to the “effort:stack/probability: add” model variant) parameters for probability to effort discounting, i.e., κp to κǫ , on

the y-axis (log-scale for clarity).

by the ratio of the inferred probability discounting to the effort
discounting parameters.

4.1. Forward-Planning Strategies
In this section we showed that the forward-planning strategy
which best fits the data is one in which effort is “stacked”
and probability “added,” which we call HSA (for hyperbolic
discounting applied to the “effort:stack/probability: add” model
variant). In this model, an overall probability of reaching the goal
of the miniblock (i.e., accumulate enough points to fill the bar) is
calculated for the all-probability action sequence, and this overall
probability is used to discount the monetary reward at the end of
the miniblock. In contrast, future efforts are taken into account
one at a time, discounting the reward once for every future effort
necessary to win the miniblock.

We speculate that this model reflects an important difference
in which probabilities and effort are processed by participants.
While the probabilities of success of a number of future actions
can be collapsed into a single overall probability, this is not done
for effort. Rather, effort seems to play a different role in forward
planning, whereby a participant asks herself how she will value
a reward after each single instance of (future) effort required to
obtain it. Such piecemeal considerations could be prompted by
the structure of the task itself, where at each future trial, the
participant can choose not to continue exerting effort. There
could be a difference in the way future effort discounts reward

if, instead of having five independent instances of effort exertion,
participants could simply choose to exert five times the effort,
once. In real life, this would be the difference between having to
decide whether to work for 5 h in one go, or having to make five
sequential decisions to work for 1 h, where the decision about
each work hour is followed by a prospective, internal evaluation
how one will feel, in relation to an overall goal, after having
completed one further hour of work.

4.2. Future Modeling Perspectives
Based on previous research, we believe effort and probability are
the main driving forces behind behavior in our task. However,
this does not preclude the possibility of other effects being in
place. Some of these effects could be included in the value of the
discount function parameters, like a preference for cognitively-
demanding tasks (Westbrook et al., 2013), which we directly
infer from the data and therefore implicitly model. Others can
be thought of as competing goals in the form of intrinsic
motivation, like wanting to please the experimenter, as discussed
by Pessiglione et al. (2018), whose effects are constant throughout
the experiment, and could be added to the model as part of the
reward to be obtained (e.g., with the all-effort action sequence,
but not the all-probability one).

A third type of effects comprises dynamic effects, whose
influence on decisions changes from trial to trial. In our task,
one such effect may be an avoidance of negative feedback, which
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would differ from extrinsic motivation by reward (obtained when
winning a miniblock). We do not believe that such an effect
may explain participants’ choice because feedback for every trial
continues even after the point bar has been filled. This would
imply that its effects would need to disappear, or at least be greatly
lowered, once enough points have been secured in the miniblock,
although winning the miniblock should not affect the desire
to avoid negative feedback. However, the effects of feedback
could be added as another component of the model, either in
the reward space, i.e., that the obtainable reward from the all-
effort action sequence is modeled as 20cents + (T - t)(Feedback),
where “feedback” is the predicted positive or negative feedback
for the action sequence, or as a discounting force, i.e., Subjective
Reward = f(negative feedback, monetary reward), where f(., .) is a
discount function which decreases with negative feedback.

It would be the subject of future research to determine which
of these effects significantly affects behavior to build a more
complete account of behavior in such sequential tasks.

4.3. Preference for Effort
We found that most participants had a strong preference for
effort. A quarter of participants (the all-effort group) went as
far as choosing to exert effort even when it brought no extra
monetary reward. In particular, participants in the all-effort
group did not seem to be following the instructions of the task.
A similar phenomenon, i.e., continuing to exert effort when
it no longer is necessary, has been observed in physical effort
experiments (Schmidt et al., 2008; Bouc et al., 2016).

Theremay be two possible reasons for this phenomenon: First,
the level of cognitive effort in our number-sorting task could be
too low to trigger a cost/benefit analysis in participants in the
all-effort group. In our task, the effortful option came implicitly
tied to an increase in the probability of earning monetary reward,
which added to the overall benefit of exerting some effort.
Moreover, other reasons may be that for some participants, the
number-sorting task was interesting on its own (Inzlicht et al.,
2018), participants did not want to wait for the next trial while
doing nothing, and wanted to make sure they did not lose
practice, all of which were reported by our participants in a
post-task questionnaire. A related possibility was suggested by
Pessiglione et al. (2018), namely that participants might want to
“make an impression on the experimenter” by always choosing to
exert effort.

Second, we speculate that highly motivated individuals might
“flatten” their effort discount curves (e.g., by making κǫ smaller)
to more easily attain highly-valued rewards in a scenario like a
psychological experiment, which they might misunderstand as a
competitive scenario. As volunteer participants can be assumed
to be highly motivated, especially when monetary reward is
contingent on performance (Hertwig and Ortmann, 2001), this
would mean that their effort discounting parameters are lower,
causing the observed high frequency of effort.

Testing these two possible explanations could prove fruitful
in future research. Testing the low-effort level possibility would
require a task that parametrically varies the effort level to
establish higher levels of cognitive effort, as is done typically
with physical effort (Prévost et al., 2010). Based on these

variations, the proposed model-based approach can be used to
infer meta-control by establishing differences in individual effort
and probability discounting parameters between different levels
of effort requirements.

4.4. Action Sequences
As part of the present model’s definition, we limited the
action sequences considered by the model to the all-effort (πǫ)
and the all-probability (πp) action sequences (see section 2.5).
Here, we discuss the reasoning behind this choice and its
interesting ramifications.

We posit that as a means to prune the decision tree,
participants developed a strategy in which they evaluate the
current state of the task and determine it to be “good” or “bad,”
which in turn allowed them to simplify the decision tree to the
two action sequences πǫ and πp. A good state is one in which the
participant is close to winning. A bad state is one in which losing
seems likely. A good state is then one in which the participant can
afford to choose the probabilistic option without it becoming too
likely to lose themini-block, while a bad one is one in which effort
needs to be exerted to continue to have a chance at winning. It
depends on the participant where exactly this change from good
to bad state lies.

In a bad state, effort is, by definition of the bad state, necessary
not only in the current trial, but also for all the remaining ones,
as otherwise the probabilistic option would still be viable and
the state would be good. Therefore, considering a mixed action
sequence (i.e., one in which both effort and probability can be
planned for future trials) is unnecessary in bad states.

In contrast, in a good state, the probabilistic option is still
viable. This definition does not preclude future necessity of effort,
as things could go wrong and all probabilistic options be lost,
which eventually would lead to a bad state. However, as states are
evaluated at every trial during the experiment, it is unnecessary
to consider this possibility when evaluating the action sequences
during a good state; instead, the participant can simply wait until
the state has actually become bad in the future and then switch to
the all-effort strategy. This implies that good states only require
the evaluation of πp.

How is this state evaluation carried out? Since the only viable
option in a good state is πp and the only viable option in a bad
state is πǫ , one can turn this around and define a good state
as one in which z(πp) > z(πǫ), where z(·) is the valuation
function (Equation 7), and a bad state as one in which the
opposite is true. Therefore, the decision-making agent can decide
between effort and probability by comparing the valuations of
πp and πǫ , as done in the proposed model. This evaluation
could be affected by the meta-control we discussed in section 4.3;
for example, a highly-motivated individual would classify states
as “bad” more often than one with low motivation. Whether
motivation and, more generally, meta-control could change
which action sequences are evaluated at all should be the target
of future research.

4.5. Effort and Goal Reaching
It has been suggested that individuals generally tend to avoid
cognitive effort (Kool et al., 2010; Westbrook et al., 2013).
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However, in the tasks used in the experiments by Kool et al.
(2010) and Westbrook et al. (2013), there was no set goal that
could be reached more readily via the exertion of cognitive effort.
In the study by Kool et al. (2010), participants could not earn
additional money if they chose themore effortful taskmore often.
In the experiments in Westbrook et al. (2013), the association
between the actual investment of effort in an increasingly difficult
n-back task, the choice behavior in the titration procedure used
to determine the subjective value of redoing the different n-back
levels, and the actual payment based on four randomly selected
choices in the titration procedure may simply have been too
unconstrained. In the present task, it was clear in every trial and
mini-block that choosing the effortful option would be beneficial
for obtaining the reward.

This caveat to the assumption of a general tendency of
individuals to avoid the exertion of cognitive effort is also
backed by the observation that stable individual differences
in personality traits related to the tendency to willingly exert
cognitive effort have been found to be associated with effort
discounting: Kool and Botvinick (2013) found that individuals
with higher scores in Self-Control showed less avoidance of
cognitive demand, and Westbrook et al. (2013) observed that
participants with higher scores in Need for Cognition showed
less effort discounting. While Self-Control is characterized by
the investment of mental effort to control one’s impulses that
interfere with long-term goals (Tangney et al., 2004), Need
for Cognition refers to the tendency to engage in and enjoy
effortful mental activities (Cacioppo et al., 1996), which can be
summarized as cognitive motivation. It remains to be determined
whether our participants’ habitual cognitive motivationmay have
played a modulatory role in their decisions to choose the effortful
condition more frequently because of their intrinsic motivation

to invest cognitive effort. Taken together, our results partly
corroborate the seminal findings by Kool and Botvinick (2013)
and Westbrook et al. (2013) in pointing to individual differences
in the willingness to invest cognitive effort and extend them
by showing that the assumption of a general tendency for the
avoidance of the exertion of cognitive effort only holds if there is
no goal that can be achievedmore readily by the exertion of effort.

In conclusion, we have presented a novel combination of
a sequential decision making task and a computational model
based on discounting effects to describe how participants plan
forward to exert effort to reach a goal. We believe that this
computational-experimental approach will be highly useful for
future studies in the analysis of how participants meta-control
the cost/benefit ratio during goal reaching.
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