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• Imagine you submit paper with a Bayesian analysis and a 
specific (pre-chosen!) prior

• (because of the benefits of Bayes: probability that hypothesis
is true, more stable estimates …)  

• But a reviewer wants you to use another prior!
• But this can not be a real prior!

• Dilemma: stick with your prior vs. satisfy the 
reviewer

We suggest a solution that builds on “reverse 
Bayesian analysis” 

Open Science issue of priors
in Bayesian analysis:
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Choose prior Collect data analysis

Bayesian analysis usually looks forward:

Time

evidence?

• Criticized for being subjective through choosing the prior

• (But a specific prior may be more defendable than the
frequentist “I know nothing before seeing the data“)
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Reverse Bayes looks backward
Collect data

Time

What priors would have
yielded evidence?

analysis evidence?Choose prior

• Avoids being subjective
• By e.g. asking: what is the most pessimistic prior that allows

concluding effect > 0 (Δ)? 
• This is easy if both the prior and the data contribution are

normally distributed (see appendix) 
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Origin and use of reverse Bayes

Good (1950):
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Special case: “sceptical prior“,  
prior expectation eo = 0 : “no effect“

With normal prior only question left: what prior standard deviation sdo? 
How strong pre-belief in values around 0?

„Sufficiently sceptical prior“ : 
How sceptical may it be? = lowest SD that allows for inferring
effect > 0 (Δ)



Own approach: “Regions on evidence“

• We want to extend that by presenting all such priors

• Presenting all possibilities also avoids being subjective! 

• Covers all possible priors like our own and the one of the
reviewer

• → Who would conclude an effect and who would not?
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Hypothetical example: effect of intelligence
training on measured IQ

• Two randomly assigned groups

• training versus no training, n = 30 each

• Choose Δ = 3.75 (= SD/4 on the IQ scale)

• In a sample those with training score 6.0 IQ points higher

                                           
      Total          60  104.0307  15.45682
                                           
   training          30  107.0169  14.17013
no training          30  101.0445  16.33471
                                           
          x           N      mean        sd

     by categories of: x 
Summary for variables: IQ

. tabstat IQ , stat(n mean sd) by(x)
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• In the example the estimate of effect ≈ 
normally distributed with expectation 6.0 and 
variance 3.9*3.9 = 15.6, ~ N(6.0, 15.6)

• Einseitiger p-Wert = .068, also nach üblichem frequentistischen Standard 
keine Evidenz für effect > 0 

• (A bit confusing: standard error = standard deviation of the estimate‘s
distribution)

                                                                              
       _cons     101.0445     2.7917    36.19   0.000     95.45627    106.6327
           x      5.97242    3.94806     1.51   0.136    -1.930481    13.87532
                                                                              
           y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    14095.8921        59  238.913425   Root MSE        =    15.291
                                                   Adj R-squared   =    0.0214
    Residual    13560.8451        58  233.807674   R-squared       =    0.0380
       Model    535.046963         1  535.046963   Prob > F        =    0.1358
                                                   F(1, 58)        =      2.29
      Source         SS           df       MS      Number of obs   =        60

. regress y x
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With normal prior and a normally distributed
estimate, we easily get the posterior distribution:

With ep = e0/sd2
0 + eobs/sd2

obs
1

sd2
0
+ 1

sd2
obs

inverse-variance weighted 
average of prior and observed effect
the higher the precision (inverse variance, 1

sd2
p
) 

in the prior = the stronger the prior belief, the more is eobs
shrunk toward e0

And sd2
p = 1

1

sd2
0
+ 1

sd2
obs

The posterior then is also a normal distribution:

(*)effect posterior ~ N(ep, sdp)
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effect posterior ~ N(ep, sdp)

effect > 0 
effect > Δ

|effect|< Δ

Regions of evidence

Now use the formula *
to determine relevant regions of evidence and 
display with which prior one may conclude that:
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Probability that effect > 0 = Φ(zp) 
> Δ= Φ(ep- Δ / sdp)

… must be > 1 - 𝛼𝛼 (equation *)

E.g. show that effect > 0 (Δ)

Calculate z-statistics zp= ep/sdp
usual idea: divide an estimate by it‘s standard error. Technically, the standard error of an estimate is the standard
deviation of the estimate‘s distribution. 

Φ = cumulative of the standard normal distribution. 
For the common 𝛼𝛼 = .05, Φ-1(1 - .05) = 1.64 
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Unfortunately, the formula * is complicated to solve, 
but it is computational easy

For any eobs and sdobs, simulate 1m data points, 
determine for each point whether it is inside or outside

// simulate
clear
set obs 500000
gen x=uniform()*15-5
gen y=uniform()*10

// Posterior mean
gen ep= (  x/y^2  + `e1'/`v1') /  (1/y^2 + 1/`v1')   

// Posterior SD
gen sdp = sqrt(1/  (1/y^2 + 1/`v1')) 

// posterior z for delta=0
gen z0=ep/sdp
// posterior z for delta=3.75
gen z375=(ep-3.75)/sdp

// evidence, binary
gen ev0  =  (z0   >`phi')
gen ev375=  (z375 >`phi')
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In the example * = eobs = 6.0, sdobs = 3.9, Δ = 3.75

Every „sceptical prior“ (e0=0) is outside

↑ * flat prior: e0 = 0, 
huge SD

* obs determines
the entire graph!

0
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* prior res. 1

Integration of several researchers priors: 
Who would conclude an effect after 
observing the same?
Dilemma solved

* prior res. 2

* prior res. 3

* prior res. 5

* prior res. 4

* prior res. 6
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To show sceptical prior: 
What if we had observed a twice as large effect? 
eobs = 12.0, sdobs = 3.9

In these areas we would assume a negative effect, e0 < 0, but SD0 is large, so the
weight of this prior is small

Sufficiently
sceptical prior

*

0
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Implementation
Self-written command arev in Stata:

Can be used as immediate command; i.e., you don‘t need data, just 
enter any values for eobs and sdobs, maybe from a paper.

(1,000,000 missing values generated)
Probability that effect > 0 = .85097078
z-stat for effect > 0 = 1.040606 , one-tailed Bayesian 95% credibility interval = (1.185186, ∞)

Posterior distribution, ~ N(expectation,SD) , with 2.8300396 and 2.7196072
Model-based, observed, ~ N(expectation,SD) , with 5.97 and = 3.95
Prior normal distribution, ~ N(expectation,SD) , with 0 and 3.75
alpha = .05

Results of AREVI, area of evidence for Reverse Bayes analysis

. arevi  , immediate(5.97  3.95) prior(0 3.75) rope(3.75)

Robert Miller has written a R function.

>  [postpoint] 
>  [prpoint]  
>  [conflict]  
>  [xline(numlist min=1 max=3)]
>  [sdpoint(numlist min=1 max=1)] 
>  [epoint(numlist min=1 max=1)] 
>  [sdmax(numlist min=1 max=1)]  
>  [erange(numlist min=2 max=2)] 
>  [ n(numlist min=1 max=1)] 
>  [ ALpha(numlist min=1 max=1)] 
>  [rope(numlist min=1 max=1)]  
>  [ DElta(numlist min=1 max=1)] 
>  [ PRior(numlist min=2 max=2)] 
>  [par(namelist min=1 max=1)] 
> [IMmediate(numlist min=2 max=2)]
> 
. syntax [anything] [using/]  , 
delimiter now ;
. #delimit;
  1. 
. program define arevi
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Appendix

The easy and relevant case of

normal distributions
• Estimates from data have distributions (although
effect itself is just an unknown constant in frequ. stats)

• „Maximum likelihood“ Estimates are often normally
distributed

• E.g. estimates of regression coefficients in many
kinds of models (any “maximum likelihood estimate“, e.g. ln(𝛽𝛽) in 
logistic regression; at least approximately with increasing sample size) 
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How to choose a normal prior? “Percentile method“

• With expectation e0: bet as much on effect < e0 as you
bet on effect > e0

• Variance: uncertainty on effect, how large is the variance
around the expectation e0? Huge variance → flat prior

• SD = √Variance translates into intervals of belief:

• Choose the variance e.g. via the value sd0 for which you would
bet 2:1 that the true value is within e0 – sd0 and e0 + sd0

• Or bet 95:5 that true value is within e0 – 2* sd0 and e0 + 2 * sd0 
(similar to 95% confidence interval)

• In normal distributions this interval covers ≈ 2/3 probability mass
• Thus you get the prior N(e0, sd0

2)
• Here, we might choose e0 = 0 (see below)
• Assume that huge effect in both directions is unlikely:
• E.g. 2 * sd0=  3.75 → 95% interval ≈ -7.5, 7.5 (effect is likely to be 

≤ ½ standard deviation on IQ scale)
• → prior = N(0, 14.1)
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